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Insight into the two-source structure of the jet

noise spectrum using a generalized shell model of

turbulence

M. Z. Afsar

Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, OH 44142, USA.

[mohammed.afsar@cantab.net]

There is a large body of experimental evidence that shows the jet noise spectrum is
composed of two sources. Our aim here is to prove, mathematically, that the two-source
paradigm can be derived using a minimum number of self-consistent approximations
based on our current knowledge of jet turbulence in cold flows. The starting point of
the paper is Goldstein’s [1] exact re-arrangement of the Navier-Stokes equations, which
shows that turbulence enters the acoustic spectrum formula through the Reynolds stress
auto-covariance tensor. We extend the shell model of turbulence using a more general
symmetry approximation that amounts to assuming the Reynolds stress auto-covariance
is, firstly, axi-symmetric, and secondly is equivalent to the same tensor only after it has
been averaged (point-wise) over the azimuthal separation.

As a consequence of these two assumptions, the space-time Fourier transform of the
Reynolds stress auto-covariance (which we refer to as the spectral tensor) depends on
the transverse wave vector only through the square of its magnitude and, moreover, is
also an axi-symmetric tensor. This defines the generalized shell model (or GSM) and we
apply it to the jet noise problem. The final result shows that the acoustic spectrum can
be written as the sum of two groups of terms, one of which corresponds to the peak jet
noise in the weakly non-parallel flow limit.

1. Introduction

The physics of sound generation by jet turbulence is a subject of real-world
importance. When aircraft take off, the acoustic waves that propagate away from
the exhaust jet flow create considerable nuisance if the aircraft is flying from an
airport situated in an urban setting.

The Navier Stokes equations provide the most fundamental theoretical starting
point for the jet noise problem. They show that momentum transfer by turbulence
in the jet produces pressure fluctuations, which propagate away as sound. This
result was found by Lighthill [2] who introduced the first systematic theory of jet
noise referred to as the acoustic analogy. Ever since Lighthill’s work, however,
there has been on-going debate about the structure of acoustic “sources” in jet
turbulence. The Navier Stokes equations may provide an exact formula for the far
field acoustic spectrum, but its complexity (and in particular that of the Reynolds
stress auto-covariance tensor) necessitates the introduction of certain rational ap-
proximations to make the end formula useable for engineering problems. Hence,
the mathematical model defined by these approximations should be based on ex-
periments in jet turbulence—and, ideally, this should be from as wide a data set
as possible to maximize the range of applicability of the model
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What most experiments have shown is the possibility that the acoustic spec-
trum may possess a two-source structure. This is in the sense that, at a particular
observation angle with respect to the jet axis, the total acoustic spectrum is given
by the sum of the individual acoustic spectra from each source. The two source
distributions appear to have different spectral properties and different radiation
patterns with regard to the position of the observation point relative to the jet
axis. The first of these appears to have a relatively narrow spectrum and a highly
directional radiation pattern that peaks at small angles to the downstream axis
(referred to here as type I behavior) and the second appears to have a more broad
band spectrum and a much less directional radiation pattern (referred to here as
type II behavior).

Although speculation on the two-source structure began to emerge decades
ago, after the experiments on low Mach number flows by Lush [3] and Ahuja [4],
this picture has become much more compelling in recent years where the focus
has shifted to higher Mach number flows that exhibit a much clearer separation
between the type I and type II behaviors. There is now an extensive literature
discussing these observations (for example: [5], [6], [7], [8], [9], [10], [11] and [12]).
Indeed the recent symposium on sound source mechanisms in turbulent shear flows
(ERCOFTAC [13]) was specifically organized to discuss the existence of the two-
source structure. Much of the discussion in the ERCOFTAC meeting focused on
whether this two-source structure implies that jet flow is composed of two different
turbulence scales that radiate sound in distinct ways, or whether it is a natural
result of the mean flow interaction effects and differences in the structure of the
various components of the Reynolds stress auto-covariance tensor. The aim of
this paper is to show that this two-source paradigm of the acoustic spectrum can
be derived using a model of jet turbulence based on a minimum number of self-
consistent approximations.

There are a number of reasons why a self-consistent theory of jet noise was not
derived before. Firstly, the early models were based on Lighthill’s theory (Ribner
[14] and Goldstein & Rosenbaum [15]), which despite its simplicity, introduces a
number of technical complications. For example, it had long been known that
Lighthill’s equation does not separate out the mean flow interaction effects from
turbulence source fluctuations that actually produce the sound and, therefore, is
not the best starting point since the type I behavior must in some way depend
on the mean flow field (a point argued by Bishop et al [16]). Secondly, in the
past, there was little data on the space-time properties of the Reynolds stress
auto-covariance tensor from which to base models on. Both of these points have,
hitherto, been remedied to some extent.

There is now a large data set available on the properties of the Reynolds stress
auto-covariance, both from experiments and Large Eddy Simulations (LES); for
example: [17], [18], [19] and [20]. Moreover, in the last decade there have been
advances in the acoustic analogy approach itself. Goldstein [1] showed that, in
the absence of solid surface effects, the far-field pressure auto-covariance can be
expressed as the convolution product of a propagator and a two point time-delayed
auto-covariance of a fluctuating stress tensor, which reduces to the usual Reynolds
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stress auto-covariance tensor in the absence of enthalpy fluctuations. The prop-
agator can be calculated once the mean flow is known, since it involves Green’s
functions that can be determined quite easily for simple flows (e.g. [21]). On
the other hand, the Reynolds stress auto-covariance tensor is modeled using its
symmetries and the experimentally observed properties of jet flow turbulence. It
possesses 36 independent components owing to the pair symmetries in its tensor
suffixes. Moreover, for a fixed spatial location and given time delay, it is a function
of a vector separating two points in space. Due to this complexity, some logical
method is required to simplify the mathematical structure of the tensor, to make it
easier to calculate for aero-acoustic purposes in an engineering setting. The chal-
lenge for mathematical modeling, however, is to achieve this simplification without
compromising on the theoretical consistency of the approximations that are made,
which should, therefore, be kept to a minimum.

A number of very important recent discoveries have been made on the prob-
lem how best to model the Reynolds stress auto-covariance. Goldstein & Leib [22]
(hereafter referred to as G & L) obtained a formula for the pressure auto-covariance
based on the formalism developed in Goldstein [1] and certain statistical assump-
tions about the turbulence. Although their fundamental result was an acoustic
spectrum displaying the two-source structure (i.e. two terms that could be added
together to obtain the total), it was based on some relatively pragmatic approxi-
mations of the Reynolds stress auto-covariance that, simplified the computations,
but were more restrictive than necessary. The G & L model was based on the
following assumptions: (i) the mean flow is weakly non-parallel; (ii) the four di-
mensional space-time spectrum of the Reynolds stress auto-covariance (which we
call the the spectral tensor) has the same tensorial structure as the correspond-
ing zero wave vector tensor; (iii) the auto-covariance tensor is consistent with the
quasi-normality hypothesis and finally, (iv) the turbulence is axi-symmetric. Since
we are focusing on the structure of the Reynolds stress auto-covariance tensor, we
discuss only assumptions (ii), (iii) & (iv).

Recent turbulence measurements (conducted for jet noise modeling purposes)
appear to be limited to components of Reynolds stress auto-covariance tensor and
its one-dimensional (frequency) spectrum, i.e. the real space tensor and not its four
dimensional space-time spectrum ([17] and [20]). Hence the validity of assumption
(ii) cannot be assessed with complete certainty, but the result shown in figure
(10) in the paper by Pokora & McGuirk [20] indicates a small variation in the
longitudinal component of the Reynolds stress auto-covariance when the transverse
separation is increased and the axial separation is held fixed, which would imply
assumption (ii) must be re-thought.

Assumption (iii), i.e. the quasi-normal approximation, implies the fluctuating
Reynolds stress tensor is a stationary random function whose joint probability
distribution is normal (or a multi-dimensional Gaussian random field). G & L
only use this assumption to express the fourth rank Reynolds stress auto-covariance
tensor as products of second rank correlation tensors ([23] and p. 44 of [24]). Quasi-
normality is usually justified by invoking the central limit theorem (see ch. 8 of
Batchelor [25]). The arguments appear to be reasonable for single point statistics
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and the conclusions appear to be verified for grid turbulence by the measurements
of [26], [27] and [28] (see p. 241 of [29] for details). The same argument cannot be
used to justify normality of two-point statistics, and especially for the shear flow
turbulence that is relevant to the jet noise problem (Morris & Zaman [30]). For
example, the statistics of the large energy bearing eddies cannot be Gaussian (at
least) because the ordered motions prevent application of the central limit theorem.

The normality hypothesis also becomes problematic when dynamical consid-
erations are brought into play (p. 284 of [29], p. 164 of [31] and p. 81 of [32]).
This approximation often leads to non-physical behavior that violates physical
realizability in this case ([33], [34], [35], [36], [37] and [38]). Even though quasi-
normality was used by G & L in the kinematic sense only (and not as a dynamical
approximation to the Navier Stokes equations), it still remains desirable to formu-
late a model of the acoustic spectrum that avoids quasi-normality altogether, and
thereby satisfies the requirement of theoretical consistency.

The fourth assumption G & L introduced (of axi-symmetric turbulence) does
seem to have a fairly firm basis. Away from jet turbulence, there has been consid-
erable study on axi-symmetric turbulence and justification of its use in areas such
as atmospheric science ([39], [40] and [41]) and rotating turbulence ([42] and [43]).

In jet flow turbulence, it has long been known that the strongest correlations
occur in the stream wise direction. This would imply that the longitudinal com-
ponent of the Reynolds stress auto-covariance for example, is significantly smaller
for points separated in the transverse direction (this particular finding is clearly
evident in figure (10d) in Pokora & McGuirk [20]) than it is for points separated
in the stream wise direction. Moreover, recent computational and experimental
evidence shows that the amplitudes of the longitudinal and lateral components of
the Reynolds stress auto-covariance are un-equal, with the longitudinal component
being about three times bigger than the lateral at locations near the end of the
potential core of the jet ([18], [19], [20] and [30]). All of which indicates that an
assumption of isotropy would not be very accurate.

In this paper, we, therefore, introduce two basic assumptions consistent with
the experimental data we have reported. Firstly, we assume the Reynolds stress
auto-covariance is an axi-symmetric tensor, and secondly, that it is equivalent to
the same tensor only after it has been averaged (point-wise) over the azimuthal
separation. The consequences of these assumptions are that the spectral tensor
depends on the transverse wave vector only through the square of its magnitude
and, finally, that this tensor is also an axi-symmetric tensor. We refer to this model,
when applied to the spectral tensor, as the generalized shell model (or GSM), since
it represents a kinematic generalization of the spherical shell models discussed in §.
8.7 in [24], p. 418 in [44] and ch. 3 in [45]. Hence the presentation of the GSM and
its application to the jet noise problem are the aspects of this work that we believe
are new. The rest of the paper is organized as follows. The starting equation
for the acoustic spectrum is derived very briefly in section (2) using Goldstein’s [1]
acoustic analogy formalism. The GSM is introduced in section (3) and the acoustic
spectrum is analyzed in section (4).
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2. Basic equation

The acoustic spectrum,

Iω(x) =

+∞
∫

−∞

eiωτ0p2(x, τ0) dτ0 (2.1)

at the observation point x, i.e. the Fourier transform of the far-field pressure
auto-covariance

p2(x, τ0) =
1

2T

+T
∫

−T

p(x, t)p(x, t+ τ0) dt (2.2)

can be expressed in terms of Iω(x | y), the acoustic spectrum at x, due to a unit
volume of turbulence at y, by the equation:

Iω(x) =

∫

V∞(y)

Iω(x | y) dy (2.3)

where V∞(y) denotes integration over all space with respect to y. G & L show
that this latter quantity is given by

Iω(x | y) = (2π)2Γνj(x | y;ω)
∫

V∞(η)

Γ∗

µl(x | y + η;ω)Hνj,µl(y, η, ω) dη (2.4)

where the asterisks denote complex conjugate, Greek suffixes range from 1 to 4,
and Latin suffixes from 1 to 3. The second rank tensor defined by,

Γνj(x | y;ω) = 1

2π

+∞
∫

−∞

eiω(t−τ)γνj(x | y, t− τ) d(t− τ) (2.5)

is the Fourier transform of a “propagator”

γνj(x, t | y, τ) =
∂gaν4(x, t | y, τ)

∂yj
− (γ − 1)δνk

∂ṽk
∂yj

ga44(x, t | y, τ) (2.6)

that depends on the adjoint vector Green’s function gaµν(y, τ | x, t), determined
by equations (4.8) and (4.11) of G & L. The Green’s function and, therefore,
γνj(x, t | y, τ) can be calculated once the mean flow is known. The rank four
tensor Hνj,µl(y, η, ω) is related to the spectrum

Hνj,µl(y, η, ω) =
1

2π

+∞
∫

−∞

e−iωτ0Rνj,µl(y, η, τ0) dτ0 (2.7)
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of the generalized auto-covariance tensor

Rνj,µl(y, η, τ0) =
1

2T

+T
∫

−T

[

ρv′νv
′

j − ρv′νv
′

j

]

(y, τ)
[

ρv′µv
′

l − ρv′µv
′

l

]

(y + η, τ + τ0) dτ

(2.8)
by the simple linear transformation,

Hνj,µl = ǫνj,σmHσm,λnǫµl,λn (2.9)

where v′µ denotes a four dimensional velocity fluctuation (with the fourth compo-
nent defined by equation 2.14 of G & L) and ṽk denotes the Favre averaged mean
flow velocity, the overbar denotes the time average and,

ǫνj,σm =

(

δνσδjm − γ − 1

2
δνjδσm

)

(2.10)

where γ is the ratio of specific heat capacities (γ = 1.4 for air).
This result was found by G & L, but in a less algebraically compact form, and it

also appears in §.(2) in [46]. It shows that there is an exact relation between the far-
field acoustic spectrum and the generalized Reynolds stress auto-covariance tensor.
The dimensionless ratio, v′4/Ujetv

′

j , which determines the relative importance of the
fourth component of v′µ to v′i, where Ujet denotes a characteristic jet velocity must

scale as O(
√
v′2/Ujet) for unheated jets when the Mach number is O(1) (Lilley [47]

and Morfey, Szewczyk & Tester [48]) because c′2 is expected to be O(
√
v′2)2 in this

case. The enthalpy component of v′µ should, therefore, be small for cold jets and
can be set to zero in Rνj,µl(y, η, τ0), which will equal zero whenever (µ, ν) = 4. The
generalized auto-covariance tensor will then reduce to the usual Reynolds stress
auto-covariance tensor Rij,kl(y, η, τ0), which is defined by

Rij,kl(y, η, τ0) =
1

2T

+T
∫

−T

[

ρv′iv
′

j − ρv′iv
′

j

]

(y, τ)
[

ρv′kv
′

l − ρv′kv
′

l

]

(y + η, τ + τ0) dτ

(2.11)
The acoustic spectrum then reduces to

Iω(x | y) = (2π)2Γij(x | y;ω)
∫

V∞(η)

Γ∗

kl(x | y + η;ω)Hij,kl(y, η, ω) dη (2.12)

2.1. Spectral tensor formalism

The mean flow fields in jets involve two characteristic dimensions: a cross-
stream dimension, say Djet, and a much longer stream wise dimension, say L,
where (L ≫ Djet). In the absence of strong critical layer effects (see G & L),
the propagator Γ∗

kl(x | y + η;ω) can only depend on the two characteristic scales
Djet and L and the acoustic wavelength, λacoustic = c

∞
/ω when |x| is in the far
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field. But for a given (x | y), the propagator contributes to Iω through the integral
over the correlation volume V∞(η), after being weighted by Hij,kl(y, η, ω). Then
Γ∗

kl(x | y + η;ω) can only change by a significant amount over the correlation
volume V∞(η) of the turbulence if Djet/λacoustic is large when the stream wise and
transverse length scales of the turbulence are small compared to the corresponding
dimensions L and Djet of the mean flow.

Now, axial correlation lengths are always small compared to the stream wise
dimension L of the mean flow and, moreover, figure (10) in Pokora & McGuirk [20]
shows that the transverse correlation lengths are small compared to the transverse
dimension of the mean flow (a result which was recently corroborated by Morris &
Zaman [49]). Hence we can legitimately assume that the stream wise and transverse
length scales of the turbulence are small compared to the corresponding dimensions
Djet and L of the mean flow. The propagator Γ∗

kl(x | y + η;ω) can then be
represented by its high frequency, or WKBJ approximation (Khavaran [50]). So
for variations on the scale of the correlation volume, V∞(η), we have

Γ∗

µl(x | y + η;ω) ≈ Γ∗

µl(x | y;ω) exp
[

i
ω

c
∞

η.∇yS(x | y)
]

(2.13)

where

Γ∗

µl(x | y;ω) = (ω/c
∞
)A

(0)
µl (x | y) exp

[

i
ω

c
∞

S(x | y)
]

(2.14)

The term A
(0)
µl (x | y) is the first term in the amplitude series and S(x | y) is the

phase function that satisfies the usual Eikonal equation (see appendix B in [46] for
further details).

If we substitute this WKBJ approximation of Γ∗

kl(x | y + η;ω) into equation
(2.12), it gives a purely algebraic result for the acoustic spectrum:

Iω(x | y) ≈ (2π)2Gij(x | y;ω)G∗

kl(x | y;ω)Φ∗

ij,kl

(

y, k, ω
)

(2.15)

where, Gij = (Γij + Γji)/2 is a symmetric rank two tensor. Equation (2.15)
depends on the turbulence correlations only through the complex conjugate of the
fourth rank spectral tensor Φij,kl(y, k1, k

⊥
, ω), which is related to the Reynolds

stress auto-covariance by the Fourier transform

Φij,kl(y, k1, k
⊥
, ω) =

∫

η

Hij,kl(y, η, ω)e
−ik.η dη. (2.16)

The wave vector k is defined by its Cartesian components k = (k1, k
⊥
), where k1 is

the axial component and k
⊥
= (k2, k3) is in the transverse direction. Hij,kl(y, η, ω)

is related to the Reynolds stress auto-covariance through equations (2.7)—(2.9),
and k can be identified as (ω/c

∞
)∇yS(x | y) (see [46]). The spectral tensor has two

pair symmetries since Φij,kl = Φji,kl and Φij,kl = Φij,lk. Therefore, it possesses 36
independent components. Our aim now is to reduce this number by developing a
generalized shell model in axi-symmetric turbulence.
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3. Generalized shell model (GSM)

3.1. Two fundamental approximations

Pokora & McGuirk [20] measured turbulence in an incompressible jet flow.
Their results revealed three very important properties of the Reynolds stress auto-
covariance tensor. Firstly, R11,11 remains the biggest component of the tensor,
and the amplitudes of R11,11, R22,22 and R33,33 are not equal to one another. This
is shown in their figure (15) at a downstream location at the end of the potential
core. Secondly, figure (10) in Pokora & McGuirk [20] shows that R11,11(y, η, τ0)
is correlated over much longer distances in the stream wise direction η

1
than the

transverse direction η
⊥

. And, finally, there is a small variation of R11,11(y, η, τ0)

with circumferential separation. These particular trends in the amplitudes of the
Reynolds stress auto-covariance tensor were corroborated in the LES computations
by McMullen et al [19]; moreover, similar space-time behavior was also found in
the work of Harper-Bourne [17].

Since the measurements seem to suggest that the turbulence is approximately
axi-symmetric, we introduce the following approximation:

Fundamental Assumption 3.1. We suppose:

Rij,kl(y, η, τ0) is an axi-symmetric tensor, (3.1)

in the sense that the tensor form defined by Rij,kl(y, η, τ0) remains invariant to
proper and improper rotations. Or, in the language of Lie group theory (see [62]
and [63]), the tensor form defined by Rij,kl is invariant under the O(3) symmetry
group.

However, the structure of Rij,kl(y, η1
, η

⊥

, τ0) is not known with great certainty

when the azimuthal separation ψ = tan−1 (η2/η3) is increased (with η
1
held fixed).

We, therefore, introduce a second approximation.

Fundamental Assumption 3.2. We suppose:

Rij,kl(y, η, τ0) = Rij,kl(y, η1 , η⊥
, ψ, τ0) ≈ Rij,kl(y, η1 , η⊥

, τ0), (3.2)

where η
⊥
= |η

⊥

| and

Rij,kl(y, η1 , η⊥
, τ0) =

1

2π

2π
∫

0

Rij,kl(y, η1 , η⊥
, ψ, τ0) dψ. (3.3)

When taken together, assumptions (3.1) and (3.2) imply:

Rij,kl(y, η1
, η

⊥
, τ0) is an axi-symmetric tensor. (3.4)

Now since a time Fourier transform performed on Rij,kl(y, η, τ0) will not affect
assumptions (3.1) and (3.2), we can make equivalent statements for the tensor
Hij,kl(y, η, ω); that is,
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Hij,kl(y, η, ω) is an axi-symmetric tensor, (3.5)

and,
Hij,kl(y, η, ω) = Hij,kl(y, η1 , η⊥

, ψ, ω) ≈ Hij,kl(y, η1 , η⊥
, ω) (3.6)

where

Hij,kl(y, η1
, η

⊥
, ω) =

1

2π

2π
∫

0

Hij,kl(y, η1
, η

⊥
, ψ, ω) dψ. (3.7)

Whence,
Hij,kl(y, η1 , η⊥

, ω) is an axi-symmetric tensor. (3.8)

3.2. Consequences of assumptions (3.1) and (3.2)

Assumptions (3.1) and (3.2) imply the following two lemmas:

Lemma 3.1. If Rij,kl(y, η, τ0) is an axi-symmetric tensor, then the spectral tensor
Φij,kl(y, k, ω) is also an axi-symmetric tensor, under the same symmetry group as
Rij,kl(y, η, τ0). The proof of this lemma is immediate because it is the tensor form
of Rij,kl that must remain invariant as part of assumption (3.1).

Lemma 3.2. Φij,kl(y, k1, k
⊥
, ω) depends upon the transverse wave vector, k

⊥
, only

through the square of its magnitude, k2
⊥
, when assumption (3.2) is satisfied. That

is,
Φij,kl(y, k1, k

⊥
, ω) = Φij,kl(y, k1, k⊥

,Ψ, ω) ≈ Φij,kl(y, k1, k
2
⊥
, ω), (3.9)

where

Φij,kl(y, k1, k⊥
, ω) =

1

2π

2π
∫

0

Φij,kl(y, k1, k⊥
,Ψ, ω) dΨ (3.10)

Ψ = tan−1 (k2/k3) and k⊥
= |k

⊥
|.

Proof. Equation (2.9) shows that Hij,kl is linearly related to Hij,kl. Therefore,
assumption (3.2) implies:

Hij,kl = ǫij,pqHpq,rsǫkl,rs (3.11)

That is:

Hij,kl(y, η, ω) = Hij,kl(y, η1 , η⊥
, ψ, ω) ≈ Hij,kl(y, η1 , η⊥

, ω), (3.12)

where

Hij,kl(y, η1
, η

⊥
, ω) =

1

2π

2π
∫

0

Hij,kl(y, η1
, η

⊥
, ψ, ω) dψ. (3.13)
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After using assumption (3.2) in the form of (3.12) we can write the integral defi-
nition of the spectral tensor as follows:

Φij,kl(y, k1, k
⊥
, ω) =

∫

η
⊥

∫

η1

Hij,kl(y, η1
, η

⊥
, ω)e−ik1η1

2π
∫

0

e
−ik

⊥
.η

⊥ dψ dη
1
η
⊥
dη

⊥
.

(3.14)
The ψ-integral can be easily evaluated to give:

Φij,kl(y, k1, k
⊥
, ω) = 2π

∫

η
⊥

∫

η1

Hij,kl(y, η1
, η

⊥
, ω)e−ik1η1J0(k⊥

η
⊥
) dη

1
η
⊥
dη

⊥
,

(3.15)
which is just the Hankel transform of

2π

∫

η
1

Hij,kl(y, η1
, |η

⊥

|, ω)e−ik1η1 dη
1

(3.16)

(p.962 in [51]). Since the expansion of J0(k⊥
η
⊥
) involves only even powers of its

argument (p.57 in [52]), the spectral tensor depends on k
⊥
only through the square

of its magnitude k2
⊥
. Hence:

Φij,kl(y, k1, k
⊥
, ω) = Φij,kl(y, k1, k⊥

,Ψ, ω) ≈ Φij,kl(y, k1, k
2
⊥
, ω) (3.17)

where

Φij,kl(y, k1, k⊥
, ω) =

1

2π

2π
∫

0

Φij,kl(y, k1, k⊥
,Ψ, ω) dΨ. (3.18)

Finally, we can combine Lemmas (3.1) and (3.2) to arrive at the result that

Φij,kl(y, k1, k
2
⊥
, ω) is an axi-symmetric tensor. (3.19)

Equation (3.19) is a direct consequence of assumptions (3.1) and (3.2) and is
an interpretation of axi-symmetric turbulence theory that would seem to be most
suitable for jet noise modeling purposes. However, by averaging over the azimuthal
separation at the outset, we have, in fact, generalized the spherical shell models
that appear as the starting point of various dynamical theories in turbulence (e.g.
Obukhov [53]; Gledzer [54]; Yamada & Okhitani [55] & [56]; L’vov et al [57] etc.,
see ch. 3 in Ditlevsen [45]), to cylindrical shells, without altering the kinematic
consequences of axi-symmetry appropriate to jet turbulence. We, therefore, refer to
equation (3.19) as the generalized shell model (or GSM) to emphasize this apparent
generality.

It is shown in appendix A that the algebraic representation of the GSM under
O(3) (i.e. the full rotation group – proper and improper rotations) will be the
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same even if the symmetry group is projected down to the SO(3) sub-group (i.e.
invariance to proper rotations only). Appendix A shows that Φij,kl(y, k1, k

2
⊥
, ω) is

given by:

Φij,kl(y, k1, k
2
2 + k23, ω) = [δijδkl − δi1δj1δkl − δk1δl1δij + δi1δj1δk1δl1] Φ22,22(y, k1, k

2
⊥
, τ0)

+
[

δikδjl + δilδjk − 2δijδkl + 2δi1δj1δkl + 2δk1δl1δij

− δi1δl1δjk − δj1δl1δik − δj1δk1δil − δi1δk1δjl
]

Φ23,23(y, k1, k
2
⊥
, τ0)

+
[

δi1δl1δjk + δj1δl1δik + δj1δk1δil

+ δi1δk1δjl − 4δi1δj1δk1δl1
]

Φ12,12(y, k1, k
2
⊥
, τ0)

+ [δi1δj1δkl − δi1δj1δk1δl1] Φ11,22(y, k1, k
2
⊥
, τ0)

+ [δk1δl1δij − δi1δj1δk1δl1] Φ22,11(y, k1, k
2
⊥
, τ0)

+ δi1δj1δk1δl1Φ11,11(y, k1, k
2
⊥
, τ0). (3.20)

Equation (3.20) satisfies Millionshchikov’s identity in spectral space,

Φ22,22(y, k1, k
2
⊥
, τ0) = Φ22,33(y, k1, k

2
⊥
, τ0) + 2Φ23,23(y, k1, k

2
⊥
, τ0). (3.21)

The real space equivalent (equation 12.131 on p. 68 in Monin & Yaglom [29])
was analyzed numerically in [58]; it was shown there to be in excellent agreement
with LES of a round cold jet flow and the experimental data reported in Pokora
& McGuirk [20].

4. Acoustic spectrum

Inserting equation (3.20) into the acoustic spectrum formula (2.15) shows that
the far field acoustic spectrum is given by:

Iω(x | y)
(2π)2

≈ [GiiG
∗

kk − 2Re(G11G
∗

kk) +G11G
∗

11] Φ
∗

22,22

+ Re [G11G
∗

kk −G11G
∗

11]
(

Φ∗

11,22 +Φ∗

22,11

)

+ G11G
∗

11Φ
∗

11,11

+ 2 [GikG
∗

ik −GiiG
∗

kk + 2Re(G11G
∗

kk)− 2Gk1G
∗

k1] Φ
∗

23,23

+ 4 [Gk1G
∗

k1 −G11G
∗

11] Φ
∗

12,12

(4.1)

(Re denotes the real part). The Φ∗

23,23 spectral tensor component can be re-written
using the Millionshchikov identity (equation 3.21) and the result can be rearranged
to obtain the following remarkably simple formula for the acoustic spectrum.
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Iω(x | y)
(2π)2

≈
[

|G22|2 + |G33|2 + 2|G23|2
]

Φ∗

22,22

+ Re

[

G11(G
∗

22 +G∗

33)

]

(

Φ∗

11,22 +Φ∗

22,11

)

+ |G11|2Φ∗

11,11 + 2

[

Re (G22G
∗

33)− |G23|2
]

Φ∗

22,33

+ 4

[

|G12|2 + |G13|2
]

Φ∗

12,12

(4.2)

where the arguments of the symmetric propagator, Gij , are (x | y;ω) and the

components of spectral tensor are functions of (y, k1, k
2
2 + k23, ω). Equation (4.2)

applies to jets of any cross section because equation (3.19) is likely to remain
accurate in the rectangular jet case as well.

Equation (4.2) depends on the six independent components Φ∗

22,22, Φ∗

11,22,

Φ∗

22,11, Φ
∗

11,11, Φ
∗

22,33 and Φ∗

12,12, of the spectral tensor Φ∗

ij,kl which are related to
the components of the Reynolds stress auto-covariance tensor by equations (2.7)—
(2.10) and (2.16). It is a generalization of equation (6.27) in G & L that does not
require the mean flow to be weakly non-parallel as can easily be seen by putting

G0 ≡ G22 +G33 (4.3)

and using the identity

|G22|2 + |G33|2 ≡ |G0|2 − 2Re (G22G
∗

33) (4.4)

to re-write equation (4.2) in the form,

Iω(x | y)
(2π)2

≈ |G0|2Φ∗

22,22 +Re (G11G
∗

0)
[

Φ∗

11,22 +Φ∗

22,11

]

+ |G11|2Φ∗

11,11

+ 2

[

|G23|2 − Re (G22G
∗

33)

]

(

Φ∗

22,22 − Φ∗

22,33

)

+ 4

[

|G12|2 + |G13|2
]

Φ∗

12,12

(4.5)

(G & L replaced the (Φ∗

11,22 + Φ∗

22,11)/2 term in (4.2) by Φ∗

11,22, but the present
analysis shows that Φ∗

11,22 & Φ∗

22,11 are actually independent components of Φ∗

ij,kl).
All of the spectral tensor coefficients would be positive definite in equation (4.5)

if |G23|2 ≥ Re (G22G
∗

33), since the remaining coefficients are clearly positive for all
values of (x | y;ω). The numerical simulations in G & L show that this inequality
will be satisfied for a weakly non-parallel flow. But all of the spectral tensor
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coefficients will only be positive definite in equation (4.2) if |G23|2 < Re (G22G
∗

33).
However, experiments and LES data both indicate R22,33/R11,11 is negligibly small
and, therefore, that the Φ∗

22,33 term can be neglected. This also implies that the
magnitude of R22,22 will be large compared to the magnitude of R22,33. Figure
(16) in McMullen et al [19] and figure (15) of Pokora & McGuirk [20] show that
this is true at a particular point near the end of the potential core on the nozzle
lip line, while further analysis of McMullen’s LES solution shows that this ratio is
negligible almost everywhere in a region extending from y1/Djet = 4 to y1/Djet = 8
in the axial direction, and r/Djet = 0 to r/Djet = 1 in the radial direction. Hence
equation (4.2) can be approximated to obtain the even simpler result:

Iω(x | y)
(2π)2

≈
[

|G22|2 + |G33|2 + 2|G23|2
]

Φ∗

22,22

+ Re (G11G
∗

0)
[

Φ∗

11,22 +Φ∗

22,11

]

+ |G11|2Φ∗

11,11

+ 4

[

|G12|2 + |G13|2
]

Φ∗

12,12

(4.6)

that is a linear combination with positive definite coefficients of only five compo-
nents of Φ∗

ij,kl (i.e. Φ
∗

22,22, Φ
∗

11,22, Φ
∗

22,11, Φ
∗

11,11 and Φ∗

12,12).

4.1. Thinking of the spectrum as two sources

The acoustic spectrum takes the simple form,

Iω ∼ GiiG
∗

kkΦ
∗

11,11 + 2 (GikG
∗

ik −GiiG
∗

kk) Φ
∗

12,12 (4.7)

when the spectral tensor (equation 3.20) is replaced by the isotropic model

Φij,kl(y, k1, k
2
2 + k23, ω) = δijδklα(y, ω) + (δikδjl + δilδjk)β(y, ω) (4.8)

discussed in G&L (equations 6.11 & 6.12), since (as noted in that paper, and in
terms of the spectral tensor Φ∗

ij,kl),

Φ∗

11,11 = Φ∗

22,22 = 2Φ∗

12,12 +Φ∗

11,22 and Φ∗

22,33 = Φ∗

11,22 (4.9)

holds in the isotropic case. And since GikG
∗

ik is a quadratic form which possesses
Hermitian symmetry and GiiG

∗

kk is a quadratic form with diagonal symmetry, the
coefficient of each spectral tensor component in equation (4.7) is positive definite.
This implies that the sound field will behave as if it were generated by two statis-
tically independent source distributions, Φ∗

12,12 and Φ∗

11,11, if Re
[

Φ∗

12,12(ω)
]

and

Re
[

Φ∗

12,12(ω)
]

are both positive. Using equation (5.1) in Afsar [58] (and the re-
sults in §.(5.2) of that paper), the Hermitian quadratic form GikG

∗

ik, which will be
O(ω2) as ω → 0, will be proportional to cos4 θ(1−M cos θ)−6, where M =M(y

⊥

)

is the Mach number profile and θ is the observation angle with respect to the down-
stream jet axis, and will, therefore, produce a highly directional radiation pattern
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that vanishes at 900 and peaks at small observation angles to the jet axis, for the
parallel flow limit considered in G & L. This source distribution is expected to be
highly localized since it will tend to be concentrated in regions where the mean flow
velocity and the turbulence intensity are both large (i.e. on the jet centerline just
downstream of the potential core). It is therefore expected to produce a relatively
narrow spectrum. On the other hand, the diagonal quadratic form GiiG

∗

kk, which,
will be O(ω4) as ω → 0 (using the equation (5.2) in Afsar [58]), will depend on a
somewhat lower inverse power of the Doppler factor and, therefore, be less direc-
tional in the weakly non-parallel limit. These are the type I and type II behaviors
discussed in the introduction.

The situation is more complicated in the more general statistically axi-symmetric
case, but the conclusion is basically the same. The acoustic spectrum again reduces
to an algebraic form that can be interpreted as being the sum of two independent
sources (each having groups of terms). In order to show this more clearly equation
(4.2) is written as:

Iω(x | y)
(2π)2

= type I terms + type II terms (4.10)

where

type I terms = |G11|2Φ∗

11,11 +Re (G11G
∗

0)
[

Φ∗

11,22 +Φ∗

22,11

]

(4.11a)

+ 4

[

|G12|2 + |G13|2
]

Φ∗

12,12

type II terms =

[

|G22|2 + |G33|2 + 2|G23|2
]

Φ∗

22,22 (4.11b)

and, where, all of the coefficients of the spectral components are positive definite.
Equations (4.10) & (4.11) therefore imply that the sound field will behave as if it
were generated the source distributions Φ∗

11,11, Φ
∗

22,22, Φ
∗

11,22, Φ
∗

22,11 and Φ∗

12,12.
But since any group of sources can be thought of as a single source, we can again
think of these as two distinct source distributions. And since the coefficients are all
positive definite these sources will behave as if they were statistically independent
source distributions if the real parts of the spectral tensor components are positive
as they are for the Reynolds stress auto-covariance model used in G & L (see
appendix B). Notice that this implies that all of the terms will be positive definite
in the more exact equation (4.5) since the LES simulations and experimental data
([19] and [20]) imply that Re

(

Φ∗

22,22

)

− Re
(

Φ∗

22,33

)

will be positive in this case.
Moreover, [19], [20] and recent work by Morris & Zaman [49] all indicate that
R11,11(y, η, τ0) has the longest correlation length. But more importantly, for a
parallel mean flow, all of the wave propagation terms in type I are dominant

at small observation angles from the cos θ dependence. For example,

[

|G12|2 +

|G13|2
]

, which will be of O(ω2) in the parallel flow, as ω → 0, is the only term
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proportional to cos4 θ(1−M cos θ)−6, and will therefore produce the most highly
directional radiation pattern and have a relatively narrow spectrum in the weakly
non-parallel limit. These are again the type I and type II behaviors discussed in
the introduction. Source coherence effects are also expected to play a role here, but
that is beyond the scope of this paper. Equation (4.11) is then the main results of
this paper. It shows that the acoustic spectrum will behave as if it were produced
by two independent sources if the Reynolds stress auto-covariance is simplified by
the introduction of assumptions (3.1) and (3.2). This result puts the two-source
paradigm of jet noise on a more rigorous theoretical foundation and can hopefully
be used as the new starting point for the next generation of jet noise models.

5. Conclusions

The structure of noise sources in turbulence has been the subject of long stand-
ing debate in the aero-acoustics community. Goldstein & Leib [22] (referred to in
this paper as G & L) recovered the two-source behavior from equation (2.4) by
showing that it can be reduced to an algebraic form consisting of two types of terms
that can be interpreted as being independent sources. But their analysis makes
a number of relatively restrictive assumptions about the turbulence. The present
paper shows that this can be accomplished under much more general symmetry
approximations that experiments show are less restrictive.

The paper begins with equation (2.4), which is an exact result that expresses
the acoustic spectrum as a convolution product of a propagator and the two-point
time delayed auto-covariance Rνj,µl(y, η, τ0) of generalized Reynolds stress. As
in G & L, the present paper is restricted to cold jets and neglects the enthalpy
terms in Rνj,µl order to reduce to the usual Reynolds stress auto-covariance tensor
Rij,kl. It also assumes that the stream wise and transverse length scales of the
turbulence are small compared to the corresponding length scales of the mean
flow in order to reduce equation (2.4) to a purely algebraic result that depends
on the turbulence only through the four-dimensional space time Fourier transform
Φij,kl(y, k, ω) of Rij,kl(y, η, τ0) (referred to here as the spectral tensor). But G & L
used the quasi-normality approximation and assumed Φij,kl(y, k, ω) possessed the
same tensorial structure as it would if the transverse component of the wave number
vector k were zero in order to simplify this tensor. However, the experiments by
Pokora & McGuirk [20] cast some doubt on the quasi-normality approximation
and, moreover, there are a number of technical complications associated with that
approximation that prevent it from being used unequivocally. In the present paper
we, therefore, extended the shell model of turbulence under a general symmetry
approximation that amounts to assuming the Reynolds stress auto-covariance is,
firstly, axi-symmetric, and secondly is equivalent to the same tensor only after it
has been averaged (point-wise) over the azimuthal separation. The model is given
by equation (3.19) and referred to as the generalized shell model (or GSM).

Unlike the G & L result, the final formula for the acoustic spectrum (given
by equation 4.11) which generalizes equation (6.27) of G & L is valid for any
mean flow. It shows that the acoustic spectrum can be interpreted as being the
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result of two more-or-less independent source distributions (referred to here as type
I and type II source distributions). The relatively localized type I distribution
(equation 4.11a) produces a fairly narrow spectrum that tends to dominate the
sound field at small observation angles to the downstream jet axis. The type II
distribution term (equation 4.11b) implies that it would be greatest at larger angles
and higher angular frequencies. The type II distribution tends to produce a much
less directional sound field with somewhat broader spectrum.
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Appendix A. Proof of Equation (3.20)

In this appendix we use the invariant theory of tensors expounded in Robertson
[60] and Chandrasekhar [61].

A.1. Axi-symmetry in Φij,kl(y, k, ω) under the O(3) symmetry group

Let a, b, c & d be arbitrary unit vectors. At a particular field point y, and for
a given time delay τ0, the symmetric quartilinear tensor form R(η, λ; a, b, c, d) =
Rij,kl(η, λ)aibjckdl will be a scalar field depending on these six vectors: η, λ, a, b, c
& d, where λ is a unit vector that signifies the direction of preference. So R will be
an invariant of the full rotation group with respect to λ when the Cartesian tensor
Rij,kl(y, η, τ0) is axi-symmetric. This means that the quartilinear tensor form R
must remain the same under a proper rotation of the co-ordinate axes about e1,
when λ is pointing in the axial direction (λ = e1) and to an improper rotation,
such as a reflection of the entire configuration, but now through any co-ordinate
plane containing λ and perpendicular to λ (see figure A.1). Invariance to proper
and improper rotations constitutes the O(3) symmetry group of R, of which SO(3)
is a sub-group (see figure 2.5 on p. 47 in Gilmore [62]).

Since Φij,kl(y, k1, k
⊥
, τ0) has the same pair symmetries in its tensor suffixes as

Rij,kl(y, η, τ0), Φij,kl must be an axi-symmetric tensor if Rij,kl is axi-symmetric
since the tensor form Φ(k, λ; a, b, c, d) = Φij,kl(k, λ)aibjckdl is related to R by
equations (2.7)—(2.10) and (2.16). So Φ must be invariant to the full rotation
group if R is invariant. In other words, Φ and R are homomorphic under the O(3)
symmetry group.

Now since the field point y and the time delay τ0 are treated as fixed, the axi-
symmetric representation for Φij,kl is obtained by requiring that the quartilinear
symmetric (spectral) form Φ to be invariant to the full rotation group involving
λ, means that it can be expressed in terms of its integrity basis by the first main
theorem of invariant theory (pp. 36-39 in Weyl [64]). The integrity basis (or
the integral rational basis, after Weyl [64], p. 30) of Φ is the collection of basic
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Figure A.1: Vector configuration (c.f. fig. 6 in Monin & Yaglom [29] and fig. 1 in
Robertson [60]).

invariants that can be formed from its vector arguments. The first main theorem of
invariant theory can be used to prove that Φ can be expressed as a scalar multiple
of the basic invariants that can be formed by the various inner tensor products in
the list of its vector arguments (k, λ; a, b, c, d).

Generally, we can write the integrity basis of Φ as,

Φij,kl(y, k1, k
⊥
, τ0) =

∑

perm(i,j,k,l)

B
(p,m,n)
ij,kl (k, λ; a, b, c, d)α

I(p,m,n)
(y, k2, k1, τ0)

(A.1)
where the scalar field, α

I(p,m,n)
(y, k2, k1, τ0), is an arbitrary function of k2 = kiki =

|k|2 and kiλi = k1 (treating field point y and the time delay τ0 as fixed) for the n-th
permutation in (i, j, k, l). The notation perm(i, j, k, l) denotes a permutation over
all possible combinations of the tensor suffixes (i, j, k, l). The function I(p,m, n) is
a mapping of the 3-dimensional subspace p = 1, 2, 3, ..., P,m, n = 1, 2, 3 of positive
integers into the space of positive integers where the index p individuates the
unique permutation of perm(i, j, k, l) with P being the total number of independent
permutations possible. Equation (A.1) is basically the same as equation (8) in Arad
et al [41] and equation (2.11) in Kurien & Sreenivasan [65], but for a tensor of
rank 4. At this point we could use the Clebsh-Gordan method known in Quantum
Mechanics to develop the O(3) representation. This is described in detail in Arad
et al [41]. In this paper, however, we develop this by hand using invariant theory,
since the problem is still not too complicated.

The tensor form of B
(p,m,n)
ij,kl (k, λ), with unit vectors (a, b, c, d), is composed of

the following,
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δij [δkl, kkλl, λkλl] aibjckdl

kikj [δkl, kkλl, kkkl] aibjckdl

λiλj [kkkl, kkλl, λkλl] aibjckdl











Basic invariants (A.2)

but in all possible combinations of the tensor suffixes (i, j, k, l). (This can be proved
formally by mathematical induction, as Mouron [66] did in his proof of the first
main theorem of invariant theory. One could also formulate a proof using Lie group
formalism by, for example, extending the work of Rajan [67] on algebraic groups,
to the orthogonal groups, and in particular to the O(3) symmetry group).

So if Φij,kl(y, k1, k
⊥
, τ0) is axi-symmetric it can be expressed as a linear com-

bination of each basic invariant in the integrity basis multiplied by a scalar field.
This allows one to write equation (A.1) as:

Φij,kl(y, k1, k
⊥
, τ0) =

∑

perm(i,j,k,l)

[

δij
(

δklαI(p,1,1)
+ kkλlαI(p,1,2)

+ λkλlαI(p,1,3)

)

+

+ kikj
(

δklαI(p,2,1)
+ kkλlαI(p,2,2)

+ kkklαI(p,2,3)

)

+

+ λiλj
(

kkklαI(p,3,1)
+ kkλlαI(p,3,2)

+ λkλlαI(p,3,3)

)

]

(A.3)

The arguments in Φ reduce to (k; a, b, c, d) when λ = 0. The integrity basis
will, therefore, only involve permutations of the three basic invariants,

δijδklaibjckdl

kikj [δkl, kkkl] aibjckdl

}

Basic invariants when λ = 0 (A.4)

in all possible combinations of the tensor suffixes (i, j, k, l) when Φ is invariant
under the O(3) symmetry group. This corresponds to the isotropic result given by
equation (3.3.7) on p. 42 in Batchelor [25].

Since the spectral tensor has two pair symmetries:

Φij,kl = Φji,kl and Φij,kl = Φij,lk, (A.5)

equation (A.3) can be simplified to show the axi-symmetric tensor Φij,kl(y, k, τ0)
depends upon 22 independent scalar fields and can be written as:
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Φij,kl(y, k1, k
⊥
, τ0) =

δijδklα1 + (δikδjl + δilδjk)α2 + δij(kkλl + klλk)α4 + δkl(kiλj + kjλi)α6+

[δik(kjλl + klλj) + δjl(kiλk + kkλi) + δil(kjλk + kkλj) + δjk(kiλl + klλi)]α8+

δijλkλlα16 + δklλiλjα17 + (δikλjλl + δjlλiλk + δilλjλk + δjkλiλl)α18+

kikjδklα22 + kkklδijα23 + (kikkδjl + kjklδik + kiklδjk + kjkkδil)α24+

kikj(kkλl + klλk)α28 + kkkl(kiλj + kjλi)α30+

[kikk(kjλl + klλj) + kjkl(kiλk + kkλi) + kikl(kjλk + kkλj) + kjkk(kiλl + klλi)]α32+

kikjkkklα40+

λiλjkkklα41 + λkλlkikjα42 + (λiλkkjkl + λjλlkikk + λiλlkjkk + λjλkkikl)α43+

λiλj(kkλl + klλk)α47 + λkλl(kiλj + kjλi)α49+

[λiλk(kjλl + klλj) + λjλl(kiλk + kkλi) + λiλl(kjλk + kkλj) + λjλk(kiλl + klλi)]α51+

λiλjλkλlα59+
(A.6)

This result is too complicated to be of engineering use. However, in many phys-
ical instances, departures from isotropy are usually weak, such that the dependence
of Φij,kl on k = (k1, k

⊥
) can be approximated to k

⊥
= 0, i.e.

Φij,kl(y, k1, k
⊥
, τ0) ≈ Φij,kl(y, k1, 0, τ0) (A.7)

Physically, eddies in jet turbulence are usually quite elongated in the stream wise
direction, which means that Rij,kl(y, η, τ0) will be a rapidly varying function of
η

⊥

normalized by the stream wise correlation length. Rapid variation in the real

space field variable η
⊥

, implies a slow variation in spectral space field variable k
⊥
.

The limiting condition, therefore, corresponds to the “infinitely long” stream wise
eddy with zero thickness in spectral space. In which case, |Φij,kl|, has no variation
with k

⊥
, thus leaving the result that, Φij,kl(y, k1, k

⊥
, ω) ≈ Φij,kl(y, k1, 0, ω).

The integrity basis (equation A.3) can then be simplified to

Φij,kl(y, k1, k
⊥
, τ0) =

=
∑

perm

δijδklαI(p,1,1)
+

∑

perm

δijδk1δl1
[

kα
I(p,1,2)

+ α
I(p,1,3)

]

+

∑

perm

δi1δj1δklk
2α

I(p,2,1)

+
∑

perm

δi1δj1δk1δl1
[

k3α
I(p,2,2)

+ k4α
I(p,2,3)

+ k2α
I(p,3,1)

+ kα
I(p,3,2)

+ α
I(p,3,3)

]

(A.8)
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If we write this out in full, we can see there are only six basic invariants in the
reduced integrity basis.

Φij,kl(y, k1, 0, τ0) = δijδklA1(y, k
2, k1, τ0) + [δikδjl + δilδjk]A2(y, k

2, k1, τ0)

+ δi1δj1δklA4(y, k
2, k1, τ0) + δk1δl1δijA5(y, k

2, k1, τ0)

+ [δi1δk1δjl + δj1δl1δik + δi1δl1δjk + δj1δk1δil]A6(y, k
2, k1, τ0)

+ δi1δj1δk1δl1A10(y, k, k1, τ0). (A.9)

This result is similar to equation (25a) in Gaite [42] and to equation (10) in Gaite
[43]. However, both their results were in the homogeneous rotating turbulence
context, and moreover, the Gaite [43] result was for a fourth rank tensor that was
totally symmetric in its suffixes; whereas, in this paper, the spectral tensor has
only pair symmetries and the starting point is inhomogeneous turbulence.

The scalar fields (the A′s) are related to the α′s by:

A1(y, k
2, k1, τ0) = α1(y, k

2, k1, τ0) (A.10a)

A2(y, k
2, k1, τ0) = α2(y, k

2, k1, τ0) (A.10b)

A4(y, k
2, k1, τ0) =

[

α17 + 2kα6 + k2α22

]

(y, k2, k1, τ0) (A.10c)

A5(y, k
2, k1, τ0) =

[

α16 + 2kα4 + k2α23

]

(y, k2, k1, τ0) (A.10d)

A6(y, k
2, k1, τ0) =

[

α18 + 2kα8 + k2α24

]

(y, k2, k1, τ0) (A.10e)

A10(y, k
2, k1, τ0) =

[

α59 + k [2(α47 + α49) + 8α51] + k2 [(α41 + α42) + 4α43]

+ k3 [2(α28 + α30) + 8α32] + k4α40

]

(y, k2, k1, τ0) (A.10f)

The A′s in equation (A.9) are not really important because we can re-write them in
terms of components of Φij,kl (substituting (i, j, k, l) = (1, 2, 3) into equation 4.17).
The explicit form of Φij,kl(y, k1, 0, τ0) then follows, and shows that it depends upon
the six components: Φ11,11, Φ22,22, Φ11,22, Φ22,11, Φ12,12 & Φ23,23; i.e.

Φij,kl(y, k1, 0, τ0) = [δijδkl − δi1δj1δkl − δk1δl1δij + δi1δj1δk1δl1] Φ22,22(y, k1, 0, τ0)

+
[

δikδjl + δilδjk − 2δijδkl + 2δi1δj1δkl + 2δk1δl1δij

− δi1δl1δjk − δj1δl1δik − δj1δk1δil − δi1δk1δjl
]

Φ23,23(y, k1, 0, τ0)

+
[

δi1δl1δjk + δj1δl1δik + δj1δk1δil

+ δi1δk1δjl − 4δi1δj1δk1δl1
]

Φ12,12(y, k1, 0, τ0)

+ [δi1δj1δkl − δi1δj1δk1δl1] Φ11,22(y, k1, 0, τ0)

+ [δk1δl1δij − δi1δj1δk1δl1] Φ22,11(y, k1, 0, τ0)

+ δi1δj1δk1δl1Φ11,11(y, k1, 0, τ0) (A.11)
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A.2. Projecting the symmetry group down to the SO(3) sub-group

Under SO(3), the tensor form Φ must remain invariant to proper rotations only
(i.e. detLij = +1 where Lij is the transformation matrix). However, invariance
will continue to hold for certain types of improper rotations because Φij,kl(y, k, τ0)
is a tensor of even parity. For example, the tensor form Φ will continue to remain
invariant to a complete inversion (Lij = −δij), since the L-matrix occurs an even
number of times when Φij,kl is transformed (see p. 143 in Butcher & Cotter [69]).

On the other hand, an improper rotation where e3 is inverted, i.e. L =




1 0 0
0 1 0
0 0 −1



, would not maintain invariance of Φ because an odd grouping

of the suffixes (i, j, k, l) = 3, for example, would result in a change of sign (a sim-
ple consequence of the Cartan-Dieudonne theorem: pp. 10-12 in Cartan [70] and
p. 37 in Stillwell [71]).

To allow for the change in sign under the SO(3) sub-group, the algebraic ex-
pression of Φij,kl(y, k, τ0) must include permutations of the unit alternating tensor
ǫijk with vectors (k, λ) in all possible combinations of suffixes (i, j, k, l) in the in-
tegrity basis (equation A.3) . However, since ǫijk is anti-symmetric in any two
of its suffixes (with one held fixed or summed), the only extra terms would in-
volve: ǫijpǫklq (kpkq + λpλq) and Grassmann products of ǫijk and (k, λ) (i.e. skew-
symmetric products; see p. 92 in Bishop & Goldberg [72]). Therefore, we would
have the new integrity basis:

Φij,kl(y, k1, k
⊥
, τ0)

= Equation (A.3)

+

∑

perm

ǫijpkpǫklqkqαI(p,4,1)
+

∑

perm

ǫijpλpǫklqλqαI(p,4,2)

+

∑

perm

Grassmann algebra + ... (A.12)

But these additions to equation (A.3) are all zero when the weak axi-symmetry

condition (equation A.7) is applied. Hence, the decomposition of the spectral
tensor given by equation (A.11) remains the same if the symmetry group used to
derive it is, O(3), or the SO(3) sub-group.

A.3. Axi-symmetry as required by equation (3.19)

The GSM approximation requires Φij,kl(y, k1, k
2
⊥
, ω) to be an axi-symmetric

tensor. But if Φij,kl(y, k1, k
2
2 + k23, τ0) is assumed to be an axi-symmetric tensor,

no further basic invariants can be formed by the various inner tensor products in the
reduced list of vector arguments (ke1, λ; a, b, c, d), where k = ke1 and k

2 = k21+k
2
2+

k23 and k
2
2+k

2
3 since k

2
2+k

2
3 is a scalar. The integrity basis of Φij,kl(y, k1, k

2
2+k

2
3, τ0)
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is, therefore, kinematically identical to Φij,kl(y, k1, 0, τ0). Therefore, the algebraic
expression for the GSM is also given by equation (A.11), and is written as follows:

Φij,kl(y, k1, k
2
2 + k23, ω) = [δijδkl − δi1δj1δkl − δk1δl1δij + δi1δj1δk1δl1] Φ22,22(y, k1, k

2
⊥
, τ0)

+
[

δikδjl + δilδjk − 2δijδkl + 2δi1δj1δkl + 2δk1δl1δij

− δi1δl1δjk − δj1δl1δik − δj1δk1δil − δi1δk1δjl
]

Φ23,23(y, k1, k
2
⊥
, τ0)

+
[

δi1δl1δjk + δj1δl1δik + δj1δk1δil

+ δi1δk1δjl − 4δi1δj1δk1δl1
]

Φ12,12(y, k1, k
2
⊥
, τ0)

+ [δi1δj1δkl − δi1δj1δk1δl1] Φ11,22(y, k1, k
2
⊥
, τ0)

+ [δk1δl1δij − δi1δj1δk1δl1] Φ22,11(y, k1, k
2
⊥
, τ0)

+ δi1δj1δk1δl1Φ11,11(y, k1, k
2
⊥
, τ0) (A.13)

Appendix B. Spectral tensor components

Since Φij,kl is related to Hij,kl through the Fourier transform, equation (2.16),
we can write out the components of Φij,kl in the GSM (equation 3.20) in terms of
Hij,kl using equations (2.9) & (2.10). Hence:

H11,11 =

[

1− (γ − 1) +

(

γ − 1

2

)2
]

H11,11

+

[

2

(

γ − 1

2

)2

− (γ − 1)

]

(

H11,22 +H11,33

)

+

(

γ − 1

2

)2
(

H22,22 +H33,33

)

+ 2

(

γ − 1

2

)2

H22,33

(B.1)

H22,22 =

(

γ − 1

2

)2

H11,11 +

[

2

(

γ − 1

2

)2

− (γ − 1)

]

H11,22

+ 2

(

γ − 1

2

)2

H11,33 +

[

1− (γ − 1) +

(

γ − 1

2

)2
]

H22,22

+

[

2

(

γ − 1

2

)2

− (γ − 1)

]

H22,33 +

(

γ − 1

2

)2

H33,33

(B.2)
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H11,22 =

[

(

γ − 1

2

)2

− γ − 1

2

]

H11,11

+

[

1− (γ − 1) + 2

(

γ − 1

2

)2
]

H11,22

+

[

2

(

γ − 1

2

)2

− γ − 1

2

]

H11,33 +

[

(

γ − 1

2

)2

− γ − 1

2

]

H22,22

+

[

2

(

γ − 1

2

)2

− γ − 1

2

]

H22,33 +

(

γ − 1

2

)2

H33,33

(B.3)

H22,33 =

(

γ − 1

2

)2

H11,11 +

[

2

(

γ − 1

2

)2

− γ − 1

2

]

(

H11,22 +H11,33

)

+

[

2

(

γ − 1

2

)2

− γ − 1

2

]

(

H22,22 +H33,33

)

+

[

1− (γ − 1) + 2

(

γ − 1

2

)2
]

H22,33

(B.4)

H12,12 = H12,12 (B.5)

H23,23 = H23,23 (B.6)

G & L showed that components of the spectral tensor components, defined above
in terms of Hij,kl, have positive real parts.
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