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Abstract
Given a graph G, an isometric path cover of a graph is a set of isometric paths that collectively
contain all vertices of G. An isometric path cover C of a graph G is also an isometric path partition
if no vertex lies in two paths in C. Given a graph G, and an integer k, the objective of Isometric
Path Cover (resp. Isometric Path Partition) is to decide whether G has an isometric path
cover (resp. partition) of cardinality k.

In this paper, we show that Isometric Path Partition is NP-complete even on split graphs,
i.e. graphs whose vertex set can be partitioned into a clique and an independent set. In contrast, we
show that both Isometric Path Cover and Isometric Path Partition admit polynomial time
algorithms on cographs (graphs with no induced P4) and chain graphs (bipartite graphs with no
induced 2K2).
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1 Introduction and results

Finding paths in graphs is of fundamental interest to the algorithmic graph theory community.
An example is the Path Cover where the objective is to decide whether the vertex set of
a graph can be covered by at most k paths. This problem is NP-hard even if k = 1 which
is equivalent to Hamiltonian Path. Recently, researchers have studied the problem of
covering graphs with isometric paths i.e. shortest path between its end-vertices. Given a
graph G, an isometric path cover of a graph is a set of isometric paths that collectively
contain all vertices of G. An isometric path cover C of a graph G is also an isometric path
partition if no vertex lies in two paths in C. Given a graph G, and an integer k, the objective
of Isometric Path Cover (resp. Isometric Path Partition) is to decide whether G

has an isometric path cover (resp. partition) of cardinality at most k. Besides algorithmic
graph theory, Isometric Path Cover has been studied in different contexts like machine
learning [14], combinatorial games [1] etc.

Despite being a natural covering problem, the algorithmic complexity of Isometric
Path Cover has thus far remained mostly unexplored. Isometric Path Cover and
Isometric Path Partition have been proven to be NP-hard in chordal graphs (i.e. graphs
without induced cycles of order four or higher) and bipartite graphs of diameter 4 [5, 8]. The
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39:2 Covering and Partitioning with Isometric Paths

Parameterized complexity of Isometric Path Cover has been studied with respect to
various parameters like solution size, neighbourhood diversity, etc [7, 8]. Approximability
of Isometric Path Cover has also been studied [4, 5]. It was shown that Isometric
Path Cover admits constant factor approximation algorithms on graph classes like chordal
graphs and more generally on graphs with bounded treelength and bounded hyperbolicity,
outerstring graphs, universally-signable graphs and more generally on (theta, pyrmaid,
prism)-free graphs [4, 5]. It was also shown that Isometric Path Cover admits O(log n)-
approximation algorithm on general graphs [14]. On the other hand, polynomial time
solvability of Isometric Path Cover is only known for special graph classes such as
block graphs [12] which is a subclass of chordal graphs. This motivated us to study the
computational complexities of Isometric Path Cover and Isometric Path Partition
on split graphs which is a popular subclass of chordal graphs.

A graph is a split graph if the vertex set can be partitioned into a clique C and an
independent set I. In this paper, we prove that the Isometric Path Partition problem
remains NP-hard on split graphs answering an open question in the literature [5]

▶ Theorem 1. Isometric Path Partition is NP-hard on split graphs.

Our reduction techniques deviate significantly from the known ones which typically reduce
the problem of partitioning a graph into induced Pk (for appropriately chosen k, also known
as Induced Pk Partition) by adding few vertices of large degree, so that a path in the
reduced graph is isometric if and only if it was an induced Pk in the original graph. However,
one difficulty in applying this technique is that the complexity of Induced Pk Partition
for k ∈ {3, 4} on split graphs is not known. The problems of partitioning split graphs into
(non-induced) P3’s can be solved in polynomial time [15] by reducing it to finding a maximum
matching in some auxiliary graph.

We reduce from the NP-complete problem 3-XSAT [13] where the input is a CNF formula
that has exactly 3 positive literals in every clause and every variable occurs exactly 3 times,
and the objective is to decide if there is an assignment that satisfies exactly one literal from
every clause. As a biproduct of our proof, we also get the following corollary. Isometric
P≥t Partition denotes the problem of partitioning the vertex set of a graph into isometric
paths with at least t vertices.

▶ Corollary 2. For t ≤ 3, Isometric P≥t Partition is NP-hard on split graphs.

We note that the computational complexity of Isometric Path Cover on split graphs
remains open. Theorem 1 motivates the study of Isometric Path Partition on natural
subclasses of split graphs. Threshold graphs, the class of split graphs without an induced P4,
is one of the well-studied subclass of split graphs [11]. We show that both Isometric Path
Cover and Isometric Path Partition admit polynomial-time algorithms on threshold
graphs. In fact, we prove the following more general result. Cographs were introduced in [6]
and are exactly the class of graphs with no induced P4.

▶ Theorem 3. Isometric Path Cover and Isometric Path Partition admit polynomial
time algorithms on cographs.

Our algorithm for Isometric Path Partition on cographs is based on dynamic pro-
gramming on cotrees [6], which also characterise cographs. The class of cographs contains
the class of threshold graphs, which are exactly the class of split graphs whose vertices in the
independent set can be linearly ordered under inclusion of their open neighbourhoods. We
note that designing algorithms for cographs is a popular direction of research in algorithmic
graph theory [2, 3, 9, 10].
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Figure 1 Normal forms of optimal solutions for Isometric Path Partition on chain graphs.
Connected components or marked vertices indicate isometric paths in the solution.

Motivated by the success on cographs we then consider the class of chain graphs, the
bipartite analogue of threshold graphs. A chain graph is a bipartite graph such that the
vertices of each color class can be linearly ordered under inclusion of their open neighbourhoods.
We show the following result:

▶ Theorem 4. Isometric Path Cover and Isometric Path Partition admit polynomial
time algorithms on chain graphs.

Note that a path in a chain graph or a cograph is an isometric path if and only if it is
induced. Due to Theorems 3 and 4, we have the following corollary.

▶ Corollary 5. Induced Path Partition and Induced Path Cover admit polynomial
time algorithms on cographs and chain graphs.

Our algorithm for Isometric Path Partition on chain graphs is based on the observation
that any (optimal) solution can be converted into one of three normal forms, two of which are
illustrated in Figure 1 and where the induced paths can be thought of (roughly) as following
the ordering of the vertices according to the neighbourhood inclusion relation. Obtaining the
normal forms is also the main challenge behind the algorithm as it turned out to be surprising
difficult to find the right order of operations required to transform any solution into one
of these normal forms without sacrificing previously made progress. Once the normal form
is obtained, however, Isometric Path Partition can be solved via a simple brute-force
algorithm that guesses the important positions of a solution in normal form. Finally, a simple
reduction from Isometric Path Cover to Isometric Path Partition on chain graphs
then allows us to obtain the polynomial-time algorithm for Isometric Path Cover on
chain graphs.

Structure of the paper. In Section 2 we introduce some definitions. In Section 3 and
Section 4 we prove Theorems 3 and 4 respectively. In Section 5 we prove Theorem 1.
Statements whose full proofs are omitted due to space constraints can be found in the full
version.

2 Preliminaries

All graphs considered here are finite, simple, and undirected. That is, a graph G = (V, E)
consists of a finite set V of vertices and a set E ⊆ V (2) of edges, where V (2) is the set of
2-element subsets of V . An edge {u, v} will also be written as uv. The graph H = (U, F ) is
a subgraph of G = (V, E) if U ⊆ V and F ⊆ E. The subgraph H is induced if F = E ∩ U (2),
denoted as H = G[U ]. The neighbourhood NG(v), or simply N(v) if G is clear from the
context, of a vertex v ∈ V in graph G is {u | uv ∈ E}. Moreover, for a subset V ′ of vertices,
we denote by NG(V ′) the set

⋃
v∈V ′ NG(v).
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39:4 Covering and Partitioning with Isometric Paths

A path in G is a subgraph P = (U, F ) with U = {ui | 0 ≤ i ≤ l} and F = {ui−1ui | 1 ≤
i ≤ l}. We usually refer to P by the sequence (u0, u1, u2, . . . , ul). The length of this path is
l, the number of edges in P .

The distance between two vertices u and v of G is the length of a shortest path between
u and v. It is denoted by dG(u, v). A path P = (u, . . . , v) is isometric if dG(u, v) = dP (u, v).
Every isometric path is an induced path, and induced paths of length at most two are
isometric.

3 Algorithms for Chain Graphs

Here, we provide our algorithms for Isometric Path Partition and Isometric Path
Cover on chain graphs. A bipartite graph G = (T, B, E) is a chain graph if, for every pair
of vertices v, u ∈ T or v, u ∈ B, we have N(v) ⊆ N(u) or N(v) ⊇ N(u), respectively; see also
[16]. This implies an ordering < of the vertices in T and the vertices in B such that u < v if
NG(u) ⊆ NG(v). For convinience and by resolving ties arbitrarily, we will assume that < is
a total ordering on T and on B.

The main step of our proofingredient and the main challenge for the algorithms is to show
that any solution to Isometric Path Partition on a chain graph can be transformed into
an equally-sized solution that follows a certain normal form (Section 3.1). Assuming this
normal form, then essentially allows us to solve Isometric Path Partition in polynomial-
time via a brute-force approach (Section 3.2). Finally, our polynomial-time algorithm for
Isometric Path Cover then uses a simple reduction from Isometric Path Cover to
Isometric Path Partition (Section 3.2).

3.1 Normal Form
In this subsection we introduce our normal form for solutions to Isometric Path Partition
on chain graphs and show that there is always an optimal solution adhering to this normal
form. We start by introducing some important notation.

Let G = (T, B, E) be a chain graph and let P be a set of isometric paths. A pattern can
be thought of as a string over the symbols , , , , , and , where it is possible for symbols
to overlap with each other; such as in or , which consists of two overlapping symbols

and respectively and . We also allow special symbols to indicate that a symbol is
repeated arbitrary many times, e.g., , , , and represent arbitrary many (non-crossing) ’s,
’s, ’s, and ’s, respectively. Moreover, represents arbitrary many ’s that are pairwise

in pattern , e.g., is an element of .
We say that P has pattern α if the drawing of all paths in P, i.e., the drawing obtained

by drawing all vertices in T from right to left in the order < on top of all vertices in B drawn
according to < from left to right, looks like α. For instance, if P ∈ P is a single path, then
P has pattern , , , , , or , if |V (P ) ∩ T | = 0 and |V (P ) ∩ B| = 1, |V (P ) ∩ T | = 1 and
|V (P ) ∩ B| = 2, |V (P ) ∩ T | = 1 and |V (P ) ∩ B| = 1, |V (P ) ∩ T | = 2 and |V (P ) ∩ B| = 1,
|V (P ) ∩ T | = 2 and |V (P ) ∩ B| = 2, or |V (P ) ∩ T | = 1 and |V (P ) ∩ B| = 0, respectively.
Alternatively, we also say that P is an α-path, if P has pattern α. We denote by Pα the set
of all α-paths in P and we denote by P◦ the set P ∪ P . Observe that since G is a chain
graph every path in P is either a -path, a -path, an -path, a -path, a -path, or a -path.

We say that a path P ∈ P is before (or to the left) of a path P ′ ∈ P if b < b′ for
every b ∈ V (P ) ∩ B and b′ ∈ V (P ′) ∩ B and moreover t > t′ for every t ∈ V (P ) ∩ T and
t′ ∈ V (P ′) ∩ T . We say that P is after (or to the right of P ′) if P ′ is before P . We say that
P and P ′ cross if P is neither before nor after P ′.
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The main aim of this section is to show the following theorem.

▶ Theorem 6. Let G = (T, B, E) be a chain graph. G has an optimal isometric path partition
that has one of the following patterns:
(1) , i.e., any number of -paths, followed by any number of -paths, followed by any

number of -paths, followed by any number of -paths,
(2) , i.e., same as (1) but with exactly one -path in the center,
(3) , i.e., same as (2) but with the -path replaced by any number of -paths,

-paths, and -paths such that every pair of those paths has one of the following patterns
, , , , , or .

Towards showing Theorem 6, we will introduce various intermediate normal forms and we
will then show that a solution can be transformed step-by-step into more and more restrictive
normal forms. Let G = (T, B, E) be a chain graph and P be an isometric path partition of G.
Most of our normal forms are based on the correct relationships between pairs of paths in P .
In particular, we say that two distinct paths P and P ′ in P are in normal position if either:
(1) If P or P ′ is a -path, then {P, P ′} has pattern , , , , or . In other words, all

-paths are to the left of all other paths in P.
(2) If P or P ′ is a -path, then {P, P ′} has pattern , , , , or . In other words, all

-paths are to the right of all other paths in P.
(3) If P is a -path and P ′ is a -path ( -path), then {P, P ′} has pattern ( ). In other

words, all -paths are to the right of all -paths and to the left of all -paths in P.
(4) If both P and P ′ are -paths, then {P, P ′} has pattern . In other words, no two

-paths in P cross each other.
(5) If both P and P ′ are -paths, then {P, P ′} has pattern . In other words, no two

-paths in P cross each other.
(6) If both P and P ′ are -paths, then {P, P ′} has pattern .
(7) If P is a -path and P ′ is a -path ( -path), then {P, P ′} has pattern or ( or

).
(8) If P is a -path and P ′ is a -path, then {P, P ′} has pattern .
We say that P satisfies (i), i ∈ [8], if condition (i) holds for every two distinct paths P and
P ′ in P. We are now ready to define our normal forms.

▶ Definition 7. Let P be an isometric path partition of a chain graph G.
We say that P is NI-minimal if either P = ∅ and |P | ≤ 1 or P ̸= ∅ and P = ∅.
We say that P is in S-normal form if P is NI-minimal and P satisfies (1) and (2).
We say that P is in I-normal form, A-normal form, V-normal form, or N-normal form if
P satisfies (3), (4), (5), or (6), respectively.
We say that P is in mixed normal form if P is in S-normal form and additionally P
satisfies (7) and (8).
We say that P is in pair-normal form if P is in mixed normal form, in I-normal form, in
A-normal form, in V-normal form, and in N-normal form.

All normal forms given above are purely defined in terms of restrictions on the relationships
between pairs of paths in an isometric path partition. However, to obtain a normal form for
the pattern given in Theorem 6 (3), we need to additionally put restrictions on the patterns
allowed for triples of isometric paths. We say that P is in AN-normal form if there are no
distinct PA ∈ P , PN , P ′

N ∈ P such that {PN , PA} has pattern and {P ′
N , PA} has pattern

. In other words, for every PA ∈ P it holds that either {PA, PN } has pattern for every
PN ∈ P or {PA, PN } has pattern for every PN ∈ P . Similarily, we say that P is in

MFCS 2024



39:6 Covering and Partitioning with Isometric Paths

NV-normal form if and there are no distinct PV ∈ P , PN , P ′
N ∈ P such that {PN , PV } has

pattern and {P ′
N , PV } has pattern . Finally, we say that P is in normal form if P is in

pair-normal form, AN-normal form, and in NV-normal form.
Observe that any isometric path partition in normal form has one of the three patterns

given in Theorem 6. To show Theorem 6, it therefore suffices to show the following.

▶ Theorem 8 (⋆). Let G = (T, B, E) be a chain graph. There is an optimal isometric path
partition of G in normal form.

The main challenge for proving Theorem 8, whose proof turned out to be surprisingly difficult,
is to define the right operations and to apply them in the right order to obtain more and more
restricted normal forms while maintaining the progress already made. In particular, after
defining the required operations, we will show how to obtain normal form in the following
order: S-normal form, mixed normal form, I-normal form, A-normal form, N-normal form,
V-normal form, AN-normal form, and finally NV-normal form.

We say that a pattern α implies a pattern β (denoted by α → β) if for any chain graph
that contains a set P of pairwise disjoint isometric paths with pattern α there is a set P ′ of
pairwise disjoint isometric paths with pattern β such that V (P) = V (P ′). (Here V (P) is the
set of vertices covered by the paths in P.) For a set ∆ of patterns we write ∆ → β if δ → β

for every δ ∈ ∆.
For a pattern α, we denote by α↷ the pattern obtained from α after rotating α by 180◦

degrees around the center of the pattern. For instance, ↷ = , ↷ = , ↷ = ,
↷ = , and α = α↷↷. Moreover, for a set of patterns ∆, we define ∆↷ as { δ↷ | δ ∈ ∆ }.

The following observation is very useful to reduce the number of cases that have to be
considered in the proofs and follows easily from the symmetry of chain graphs w.r.t. rotation
by 180◦ degree around the center.

▶ Observation 9. Let α and β be patterns. Then α → β implies α↷ → β↷.

We say that a pattern α is valid if there is a set of pairwise disjoint isometric paths in
some chain graph with pattern α. For a pattern α, we denote by [α], the set of all valid
patterns that can be obtained from α after reordering the endpoints of the lines on the top
and/or on the bottom of the pattern α in an arbitrary manner. For instance, [ ] = { , , }
and [ ] = { , , , , , }. Note that [ ] does not contain any pattern where the lines
of the cross each other because those patterns are not valid.

The following auxiliary lemma provides the most important production rules on patterns
that we will use to transform an arbitrary solution into a solution in normal form.

▶ Lemma 10 (⋆). The following holds:
(a) [ ] → and [ ] → ,
(b) [ ] → ,
(c) [ ] → and [ ] → ,
(d) [ ] → and [ ] → ,
(e) [ ] ∪ [ ] → and [ ] ∪ [ ] → ,
(f) [ ] ∪ [ ] \ { } → and [ ] ∪ [ ] \ { } → ,
(g) [ ] → and [ ] → ,
(h) [ ] ∪ [ ] → ,
(i) [ ] \ { } → and [ ] \ { } → ,
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Sketch. (a) and (b) follow immediately because [ ] = { }, [ ] = { }, and [ ] = { }.
Let G = (T, B, E) be a chain graph and let P and P ′ be two isometric paths in G.

Let (V (P ) ∪ V (P ′)) ∩ T = {t1, . . . , tc} and (V (P ) ∪ V (P ′)) ∩ B = {b1, . . . , bd} such that
t1 > · · · > tc and b1 < · · · < bd.

Towards showing (e), assume that {P, P ′} has pattern α for some α ∈ [ ] ∪ [ ]. Then,
c = 2, d = 2 and b1 must have degree at least 1 in G. Therefore, because NG(t2) ⊆ NG(t1),
it follows that b1t1 ∈ E(G), which in turn implies that b2t1 ∈ E(G) since NG(b1) ⊆ NG(b2).
Therefore, {(b1, t1, b2), (t2)} is a pair of isometric paths with pattern , as required. Because
of Observation 9, we also obtain [ ] ∪ [ ] → . The remaining cases can be shown in an
analogous manner. ◀

The remainder of this subsection is about showing that there are optimal solutions that
have more and more restrictive normal forms. As an illustrative example we show next how
to obtain a mixed normal form from a solution in S-normal form. We start by stating the
lemma required to obtain a S-normal form.

▶ Lemma 11 (⋆). Let G = (T, B, E) be a chain graph. There is an optimal isometric path
partition P which is in S-normal form.

Building upon S-normal form, the following lemma now shows that we can achieve mixed
normal form. The proof of the lemma is based on an exhaustive application of certain
production rules from Lemma 10 combined with a potential function approach for showing
that this process terminates.

▶ Lemma 12 (⋆). Let G = (T, B, E) be a chain graph. There is an optimal isometric path
partition of G in mixed normal form.

Sketch. Let G = (T, B, E) be a chain graph and let P be an optimal isometric path partition
of G. Because of Lemma 11, we can assume that P is in S-normal form.

Let P ′ be the isometric path partition of G obtained from P after exhaustively applying
the following transformation rules from Lemma 10:
(1) [ ] → ,
(2) [ ] \ { } → , and
(3) [ ] \ { } → ,
Observe that if P ′ exists, then it trivially satisfies all the claims made in the statement of
the lemma. It therefore suffices to show the existence of P ′ or in other words that the above
rules can only be applied finitely often to P.

Towards showing this we will define a potential function Φ that assigns a two dimensional
vector of natural numbers to every isometric path partition of G. For the definition of Φ,
we need the following additional notation. For two vertices u and v of G such that either
u, v ∈ B or u, v ∈ T , we denote by [u, v]G the set {u, v} ∪ { w | u < w < v } of vertices of G.

For a path P = (p1, p2, p3, p4) ∈ P , we denote by WG(P ) the integer |[p1, p3]G|+|[p2, p4]G|.
For a path P = (p1, p2, p3) ∈ P , we denote by LG(P ) the integer |[fb, p1]G| + |[fb, p3]G| +
|[ft, p2]G|, where fb is the smallest vertex in B and ft is the largest vertex in T w.r.t. <.

For a path P = (p1, p2, p3) ∈ P , we denote by RG(P ) the integer |[lt, p1]G| + |[lb, p2]G| +
|[lt, p3]G|, where lt is the smallest vertex in T and lb is the largest vertex in B w.r.t. <.

For a isometric path partition P⋆ of G, we define the first and second component of
Φ(P⋆) as follows.

Φ(P⋆)[1] =
∑

P ∈P⋆

WG(P ) Φ(P⋆)[2] = −
( ∑

P ∈P⋆

LG(P )
)

−
( ∑

P ∈P⋆

RG(P )
)

MFCS 2024



39:8 Covering and Partitioning with Isometric Paths

Let P1 and P2 be two isometric path partitions of G such that P2 is obtained from P1 by
applying exactly one of the operations given in (1)–(3). We claim that Φ(P2) > Φ(P1),
where > is the lexicographical ordering among two dimensional integer vectors. Because Φ is
finite, i.e., (0, −|B||P⋆ ∪ P⋆|) ≤ Φ(P⋆) ≤ (|B||P⋆|, 0), this then shows that P ′ is well defined.

It suffices to show the claim for the cases that P2 is obtained from P1 using one of the
operations (1)–(3). We show the case for operation (1) as an illustration and leave operations
(2) and (3) for the full version. If P2 is obtained from P1 by applying operation (1) to two
paths PA ∈ P1 and PV ∈ P1, then Φ(P2)[1] = Φ(P1)[1] and Φ(P2)[2] > Φ(P1)[2] because
no path in P1 other than PA and PV is changed and moreover because is the unique
pattern that maximizes Φ({P, P ′}) for any two paths P ∈ P1 and P ′ ∈ P1. ◀

Surprisingly, even after reaching mixed normal form, we are still rather far away from
our final normal form. In particular, we will go through the following normal forms (in that
order): I-normal form, A-normal form, N-normal form, V-normal form, AN-normal form,
and finally NV-normal form (⋆).

3.2 The Algorithms
Having developed our normal forms, we are now ready to show Theorem 4. We start by
showing the result for Isometric Path Partition.

▶ Lemma 13 (⋆). Isometric Path Partition admits a polynomial-time algorithm on
chain graphs.

Sketch. Let G = (T, B, E) be a chain graph. Theorem 6 implies that there is an optimal
isometric path partition of G having pattern , , or . It therefore suffices
to show that we can compute an optimal solution having any of these patterns in polynomial-
time. It suffices to provide the proof for the most involved of those patterns, i.e., the pattern

, as the proof of the other two patterns is analogous. Hence, let P be an isometric
path partition of G having pattern , then P can be defined by the following 6
numbers:

the number p1 of -paths,
the number p2 of -paths that are to the left of any -path,
the number p3 of -paths,
the number p4 of -paths that are inside all -paths,
the number p5 of -paths that are inside all -paths, and
the number p6 of -paths that are to the right of any -path.

We say that a tuple U = (p1, . . . , p6) of those six numbers is valid if there is an isometric
path partition of G with pattern with the number of paths as given by U . It
is now straightforward to show that the validity of any tuple U can be verified in time
O(|V (G)|) by checking the existence and non-existence of certain edges in G.

Putting everything together, we can solve Isometric Path Partition in time O(|V (G)|7)
by enumerating all of the at most |V (G)|6 tuples U in time O(|V (G)|6), testing their validity
in time O(|V (G)|), and then returning the solution that corresponds to a valid tuple U

minimizing p1 + p2 + p3 + p4 + p5 + p6 + (|T | − p2 − 2p3 − p4 − 2p5 − 2p6). ◀

We will now show that Isometric Path Cover on chain graphs can be reduced to
Isometric Path Partition on chain graphs with the help of the following lemma.
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▶ Lemma 14 (⋆). Let G = (T, B, E) be a chain graph, t ∈ T be a vertex such that t > t′ for
all t′ ∈ T \ {t}, and b ∈ B be a vertex such that b′ < b for all b′ ∈ B \ {b}. Then, there is an
optimal isometric path cover P of G such that all vertices in V (G) \ {t, b} appear in exactly
one path in P.

Now to solve Isometric Path Cover on a chain graph G = (T, B, E) we do the
following. Fix two vertices t ∈ T and b ∈ B such that t > t′ for all t′ ∈ T \ {t}, and b′ < b

for all b′ ∈ B \ {b}. From Lemma 14, we know that there is an optimal isometric path cover
C such that no vertex in V (G) \ {t, b} belongs to more than one path. Now we guess the
numbers nt and nb such that the number of paths in C that contain t and b are nt and
nb, respectively, and create a new graph G′ by adding nt − 1 copies a1, . . . , ant−1 of t, and
nb − 1 copies c1, . . . , cnb−1 of b. Moreover, each vertex in {a1, . . . , ant−1} is adjacent to all
the neighbours of t and each vertex in {c1, . . . , cnb−1} is adjacent to all the neighbours of b.
Then, clearly there is an isometric path partition P in G′ of size |C|. Also, any isometric
path partition Q in G′ can be converted into an isometric path cover in G of size |Q|. Hence,
we solve Isometric Path Partition on G′ and output accordingly.

4 Algorithms on Cographs

Here we design polynomial time algorithms for Isometric Path Partition and Isometric
Path Cover on cographs. Complement-reducible graphs (or cographs for short) were
introduced in [6]. To define the class we use the operations union ⊕ and join ⊗ for
graphs G = (V, E) and H = (U, F ) with V ∩ U = ∅, i.e., G ⊕ H = (V ∪ U, E ∪ F ) and
G ⊗ H = (V ∪ U, E ∪ F ∪ {vu | v ∈ V, u ∈ U}).

▶ Definition 15. The cographs can be defined recursively:
K1 is a cograph.
If G and H are cographs then so are G ⊕ H and G ⊗ H.
There are no other cographs.

A cotree T of a graph G = (V, E) can be defined as a rooted binary tree where the leaves
are the vertices in V and the inner nodes are marked with ⊕ and ⊗ such that two vertices
u, v ∈ V are adjacent if and only if their least common ancestor in T is marked by ⊗. Then
we say that G has a cotree.

▶ Theorem 16 ([6]). For every graph G the following conditions are equivalent.
1. G is a cograph.
2. G does not contain P4 as induced subgraph.
3. G has a cotree.

The following observations follow from the definition of cotrees.

▶ Observation 17. Let T be a cotree of a cograph G. Let (v1, v2, v3) be an induced path in
G. Then, there is a node t labelled ⊗ in the tree such that the least common ancestor of v1
and v2, as well as v2 and v3 is t.

▶ Observation 18. Let T be a cotree of a cograph G. For a node t in T , let Tt be the subtree
of T rooted at t. For a node t, if Gt is the cograph that has the cotree Tt, then Gt is the
subgraph of G induced on V (Gt). This implies that for any u, v ∈ V (Gt), if (u, v) /∈ E(Gt),
then (u, v) /∈ E(G).
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Now, we discuss an algorithm for Isometric Path Partition on cographs. For a
cograph G = (V, E) let Q(G) denote the set of quadruples (p̈, p1, p2, p3) such that V has a
partition S into p̈ + p1 + p2 + p3 subsets S ⊆ V such that

for i ∈ {1, 2, 3}, exactly pi sets S ∈ S induce a graph G[S] isomorphic to Pi, which is a
path on i vertices, and
for the remaining p̈ subsets S ∈ S the subgraph G[S] is isomorphic to 2P1, which is an
edgeless graph on two vertices.

Theorem 16 implies that each partition of a cograph into isometric paths consists of P1s, P2s
and P3s only.

▶ Lemma 19. For a cograph G on n vertices we can compute Q(G) in time O(n10).

Proof. A cotree T of G can be computed in linear time [6]. We compute Q(G) as follows:

Q(K1) = {(0, 1, 0, 0)}
Q(G′ ⊕ H) = {(p̈ + q̈ + r, p1 + q1 − 2r, p2 + q2, p3 + q3) | 0 ≤ r ≤ min{p1, q1},

(p̈, p1, p2, p3) ∈ Q(G′), (q̈, q1, q2, q3) ∈ Q(H)}
Q(G′ ⊗ H) = {

(
(p̈ − k) + (q̈ − l), (p1 − i − l) + (q1 − i − k), p2 + q2 + i,

(p3 + k) + (q3 + l)
)

| 0 ≤ i, 0 ≤ k ≤ p̈, 0 ≤ i + k ≤ q1, 0 ≤ l ≤ q̈,

0 ≤ i + l ≤ p1, (p̈, p1, p2, p3) ∈ Q(G′), (q̈, q1, q2, q3) ∈ Q(H)}

The equation for ⊕ holds because G′ ⊕ H does not contain any edges between G′ and H.
Every path in G′ ⊕ H is either a path in G′ or in H. We can count a P1 in G′ and a P1 in
H as one 2P1 in the first coordinate or as two P1 in the second. For ⊗ we can create i paths
P2 from a P1 in G and a P1 in H, k paths P3 from one 2P1 in G and one P1 in H, and l

paths P3 from one P1 in G and one 2P1 in H. Using induction on the nodes of the cotree
and the Observations 17 and 18, we prove that the above recursive formulae are correct.

Note that for any cograph G′, the number of quadruples in Q(G′) is at most n3, because,
by knowing specific values for p̈, p2 and p3, we can determine p1 through the equation
2p̈ + p1 + 2p2 + 3p3 = |V (G′)|. The cotree T has 2n − 1 nodes. Now we estimate the time
to compute Q(G′ ⊗ H), which is asymptotically larger than that of Q(G′ ⊕ H). For each
(p̈, p1, p2, p3) ∈ Q(G′) and (q̈, q1, q2, q3) ∈ Q(H), we run over three values k, l, i, each of them
is upper bounded by n, and constructs tuples in Q(G′ ⊗ H). The number of choices for k, l, i

is at most n3. Thus, for each each (p̈, p1, p2, p3) ∈ Q(G′) and (q̈, q1, q2, q3) ∈ Q(H), we will
be taking O(n3) time. Since the cardinalities of Q(G′) and Q(H) are upper bounded by n3

each, the total running time to compute Q(G′ ⊗ H) is O(n9). Since the cotree has 2n − 1
nodes, the total running time of our algorithm is O(n10). ◀

▶ Lemma 20. Isometric Path Partition can be solved in O(n10) time on cographs.

Proof. The recurrence for Q leads to a dynamic programming algorithm computing the
isometric path partition number of a cograph G, which is min{p1 + p2 + p3 | (0, p1, p2, p3) ∈
Q(G)}. ◀

Next, we explain how to use the values in Q(G) to solve Isometric Path Cover on
connected cographs.

▶ Lemma 21. Let G be a connected cograph. Let Q(G) be the set defined before in this
section. Then, the cardinality of an optimal isometric path cover of G is

min{p̈ + p1 + p2 + p3 | (p̈, p1, p2, p3) ∈ Q(G)}.
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Proof. Let (p̈, p1, p2, p3) ∈ Q(G). We claim that there is an isometric path cover of G of
size p̈ + p1 + p2 + p3. Since (p̈, p1, p2, p3) ∈ Q(G), we know that V (G) has a partition into
p̈ + p1 + p2 + p3 subsets S ⊆ V (G) of which,
(a) for i ∈ {1, 2, 3}, exactly pi induced G[S] is isomorphic to Pi, and
(b) for the remaining p̈ subsets we have G[S] isomorphic to 2P1.

Since G is a connected cograph, in Case (b), there is an induced path of length 2 with the
vertices in S being its end vertices. So these paths along with the paths in Case (a) forms
an isometric path cover of G of size p̈ + p1 + p2 + p3.

Now we prove the reverse direction. Without loss of generality we assume that there is an
optimal isometric path cover P of G where for each path P ∈ P , its end vertices appear only
in one path which is P . Let ℓ = |P|. Now we claim that there is a tuple (p̈, p1, p2, p3) ∈ Q(G)
such that p̈+p1 +p2 +p3 = ℓ. Let P = P1 ∪P2 ∪P3, where Pj contains all paths on j vertices
from P. Let Q1 = {V (P ) : P ∈ P1} and Q2 = {V (P ) : P ∈ P2}. Now we construct Q̈ and
Q3. Initially, we set Q̈ := ∅ and Q3 := ∅. Consider a vertex z such that z is an intermediate
vertex in a path in P3. Suppose z is present in nz paths. Because of our assumption of P , we
know that z is the intermediate vertex in all those nv paths in P3. Let R1, R2, . . . , Rnz be
these paths. Now let Sz,i be the set containing the end vertices of Ri for all i ∈ [nz − 1] and
Sz,nz = V (Rnz ). Now we set Q̈ := Q̈ ∪ {Sz,i : i ∈ [nz − 1]} and Q3 := Q3 ∪ {Si,nz }. We do
this procedure for each z such that it is an intermediate vertex of a path in P3. Let p̈ = |Q̈|
and pi = |Qi| for all i ∈ {1, 2, 3}. It is easy to see that p̈ + p1 + p2 + p3 = ℓ and the above
construction of Q̈ and Q3 implies that (p̈, p1, p2, p3) ∈ Q(G). ◀

Lemma 21 implies that Isometric Path Cover can be solved in time O(n10) on
cographs.

5 Hardness on Split Graphs

Here, we show that Isometric Path Partition is already NP-hard on split graphs.

▶ Theorem 22 (⋆). Isometric Path Partition is NP-hard on split graphs.

Sketch. We provide a polynomial-time reduction from the NP-complete 3-XSAT problem [13,
Lemma 5], where given a propositional formula Φ in CNF such that every clause of Φ has
exactly 3 positive literals and every variable occurs exactly in 3 clauses of Φ, the task is
to decide whether there is an assignment of the variables of Φ that satisfies exactly one
literal from every clause. Let Φ be the given instance of 3-XSAT. We will construct a split
graph G = (T, B, E) where T is the independent set and B is the clique such that Φ has
an assignment satisfying exactly one literal from every clause if and only if G has isometric
path partition P of size at most 32n2 − 4n, where n is a number of clauses (and also the
number of variables) of Φ. We shall frequently refer to B as “bottom” and T as “top”.

Let C = {C1, . . . , Cn} be the set of clauses of Φ and let X = {x1, . . . , xn} be the set of
variables of Φ. G is constructed from three types of gadgets defined as follows and illustrated
in Figure 2. For every variable xa, G contains the gadget GX (xa) defined as follows. Let Ci,
Cj and Ck with 1 ≤ i < j < k ≤ n be the 3 clauses that contain xa. For every b ∈ {i, j, k},
GX (xa) has the vertices xa,b, xa,b, x⊗

a,b and x⊙
a,b with xa,b, xa,b ∈ B and x⊗

a,b, x⊙
a,b ∈ T and

the edges xa,bx⊗
a,b and xa,bx⊙

a,b. Additionally, GX (xa) contains the edges xa,ix
⊗
a,j , xa,jx⊗

a,k,
and xa,kx⊗

a,i. Intuitively, the gadget is used to ensure that all occurrences of the variable xa

are assigned in the same manner, which is achieved by forcing that any solution for G can
cover all vertices in the gadget in only two manners, which are illustrated in Figure 2.
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GC(Ci) GX (xa) GD(x⊙
a,j , x⊙
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x⊗
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xa,j xa,j
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a,i

xa,j xa,j
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x⊗
a,k x⊙
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d

d⊙

PC(a, i) P2
X (a) PD(d)

c⊗
i
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i

xb,i xc,i xa,i xa,i

x⊗
a,i x⊙

a,i
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x⊗
a,j x⊙

a,j

xa,k xa,k

x⊗
a,k x⊙

a,k d⊗

d

d⊙

Figure 2 Illustration of the gadgets GC(Ci), GX (xa), and GD(x⊙
a,j , x⊙

a,k) used in the proof of
Theorem 1. The colors of the edges indicate, which gadget they belong to, i.e., red, blue, and
green edges are part of GC(Ci), GX (xa), and GD(x⊙

a,j , x⊙
a,k), respectively. The top figure provides

the edges that are part of each gadget (without the edges that are part of the clique on B). The
dashed green edges indicate pairs of twin vertices, i.e., the only pairs on the top that can be used as
endpoints of isometric paths of length 3. The center and the bottom figure together provide the
two possible configurations for how the vertices of the gadgets can be cover in an isometric path
partition, which is also descripted in (1), (3), and (4). The center figure illustrates the case that
the variable xa is set to 0 and does not satisfy the clause Ci and the bottom figure illustrates the
opposite case.

For every clause Ci ∈ C, G contains the gadget GC(Ci). The gadget GC(Ci) consists of
1 new bottom vertex ci, 2 new top vertices c⊗

i and c⊙
i , and the edges cic

⊗
i and xa,ic

⊙
i for

every xa ∈ Ci. This gadget GC(Ci) will ensure that every clause in Φ is satisfied by exactly
one literal. Given two distinct top vertices u and v, the last gadget GD(u, v), which we call
the destroyer gadget, has 1 bottom vertex du,v, 2 top vertices d⊗

u,v and d⊙
u,v and the edges

du,vd⊗
u,v, du,vd⊙

u,v, du,vu and du,vv. The purpose of the destroyer gadget is to ensure that
the two top vertices u and v can not occur together in a path of length 3.

We are now ready to define the graph G. Let G′ =
⋃

x∈X GX (x) ∪
⋃

C∈C GC(C). Note
that |T (G′)| = 6n + 2n = 8n. We say that two top vertices v and v′ from T (G′) are twins,
if there exists u ∈ B(G′) such that v = u⊗ and v′ = u⊙. Then, G is the union of G′ and
an instance of the destroyer gadget GD(u, v) for every two distinct top vertices u and v of
T (G′) that are not twins. Let BD be the set of all bottom vertices from all of the destroyer
gadgets. Note that |T (G)| = |T (G′)|(|T (G′)| − 2) + |T (G′)| = 64n2 − 8n.

Consider an isometric path partition P of G with |P| = |T (G)|
2 = 32n2 − 4n. The

correctness of the reduction can now be shown rather straightforwardly from the following
properties (⋆):
(1) For every d ∈ BD, the path PD(d) = (d⊗, d, d⊙) is included in P.
(2) If a path P ∈ P is of length 3, then its endpoints are twins.
(3) For every i ∈ [n] there exists a ∈ [n] such that PC(a, i) = (c⊗

i , ci, xa,i, c⊙) is in P.
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(4) For any a, i, j, k ∈ [n] with xa belonging to Ci ∩ Cj ∩ Ck and i < j < k, precisely one of
the following scenarios occurs:
(a) The set of paths P1

X (a) = { (x⊗
a,ℓ, xa,ℓ, xa,ℓ, x⊙

a,ℓ) | ℓ ∈ {i, j, k} } is a subset of P, or
(b) P2

X (a) = { (x⊗
a,i, xa,k, x⊙

a,k), (x⊗
a,j , xa,i, x⊙

a,i), (x⊗
a,k, xa,j , x⊙

a,j) } is a subset of P.
(5) For every a, i ∈ [n] and P ∈ P, such that xa ∈ Ci and xa,i ∈ V (P ), P = PC(a, i) or

P ∈ P1
X (a). ◀

6 Conclusion

In this paper we proved that Isometric Path Partition remains NP-hard on split graphs.
We also showed that both Isometric Path Cover and Isometric Path Partition
admit polynomial time algorithms on chain graphs and cographs. Algorithms faster than the
ones provided in this paper would be interesting. Another direction of research is to look
for other graph classes where Isometric Path Cover and Isometric Path Partition
admit polynomial time algorithms. Graph classes like bipartite permutation graphs, proper
interval graphs, strongly chordal split graphs, etc. are natural candidates. The computational
complexities of Isometric Path Cover and Induced Path Cover on split graphs remain
open.
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