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Acceleration-based friction coefficient estimation of a rail vehicle using 

ANN: Validation with track measurements 

 
Low friction can lead to poor adhesion conditions between the rail and wheel, 

which is detrimental to rail vehicle operation and safety. Up to date knowledge of 

the rail-wheel friction level is currently unknown across rail networks, meaning 

planning mitigation strategies is difficult. This paper presents a real-time friction 

coefficient estimation algorithm based on a feed-forward neural network (FNN). 

Unlike conventional methods, the FNN does not depend on slip/adhesion curves 

or creep force models, and after consideration of a range of wheelset motion data 

was found only requires wheelset longitudinal acceleration and speed. The 

wheelset acceleration and friction measurements are obtained by running a two-

car rail vehicle on a friction-modified track with five different levels of friction 

conditions at four different constant speeds. Four different FNNs with single 

hidden layers are trained for four different speed conditions, and their estimation 

performance were validated using a new set of data. Validation results show that 

the RSME from the four FNNs remains below 0.0024. 

 
Keywords: low adhesion detection; friction coefficient estimation; railhead 

conditioning; slip; creepage 

 
Introduction 

 
Low adhesion conditions can occur due to track contamination such as greases or 

compressed leaves that result in insufficient friction at the rail-wheel contact and create 

critical safety and operational issues. They can cause wheel spin/slide that can lead to 

network wide disruption due to defensive driving [1]. Poor adhesion conditions cost the 

UK rail industry and a wider public an estimated 355M £ each autumn [2]. It is a barrier 

to increasing capacity due to impact on the reliability and predictability of stopping trains 

under various adhesion conditions in a busy railway [2]. These problems show the 

importance of knowing accurate adhesion levels during operation so that their adverse 

effects can be mitigated [3]. The higher the acceleration/braking forces requirements, 

the higher the adhesion level required. While overestimation of the adhesion levels can 

lead 



to unexpected longer braking distance that can increase risk of collision and derailment 

[4], underestimation can lead to unnecessary implementation of defensive driving. 

Similar to the friction coefficient, the adhesion/traction coefficient 𝜇𝑎 is normally 

defined as the ratio between the longitudinal reactive tangential force from the rail to 

wheel 𝐹𝑐 and wheelset load 𝑄. Since the longitudinal reactive traction force 𝐹𝑐 almost 

entirely originates from the wheel-rail longitudinal friction force 𝐹𝑓 [6] according to 

Newton’s 3rd Law, and the wheelset load 𝑄 is approximately equal to the normal load 

from the rail to the wheelset 𝑁 [5], maximum 𝜇𝑎 is usually equal to maximum kinetic 

friction coefficient 𝜇 [6], which is: 𝐹𝑐𝑚𝑎𝑥 𝐹𝑓𝑚𝑎𝑥 𝜇𝑎𝑚𝑎𝑥 = 𝑄 ≈ 𝑁 = 𝜇 (1) 

 
where 𝜇𝑎𝑚𝑎𝑥 , 𝐹𝑐𝑚𝑎𝑥 , and 𝐹𝑓𝑚𝑎𝑥 are the maxima of 𝜇𝑎 , 𝐹𝑐 , and 𝐹𝑓 , respectively. 

Therefore, estimation of the friction coefficient can directly provide the estimation of 

maximum adhesion coefficient 𝜇𝑎𝑚𝑎𝑥, this being the crucial safety limiting value of relevance to a wheel slip or slide. The adhesion coefficient depends on a number of 

factors due to the complex and nonlinear interaction between the rail and wheel that 

include wheel and rail geometries, track irregularities, and variable load distribution on a 

small contact patch area [7], while also being affected by external factors such as weather 

conditions [8] and contact surface temperature [9]. These factors make adhesion 

estimation a challenging and complex task [5], and accurate modelling of the wheel-rail 

contact is essential in studying the wheel-rail interactions and vehicle behaviour. 

Adhesion estimation methods can be grouped into model-based and model-free 

approaches. Since it is difficult to directly measure or estimate the friction coefficient, 

most adhesion estimation methods rely on the estimation of the contact or creep forces, 

and slip/creepage that can indicate the adhesion level. Model-based methods are 

dependent on some prior knowledge about the vehicle model parameters when building 

a dynamic model to estimate the contact or creep forces, where those forces are then used 



to estimate the adhesion level [5]. These approaches include either a single wheel model 

[10], twin disc rolling contact test machines that can also be simulated by single wheel 

models [11] -[13], or wheelset models [14]. Authors in [15] used the ratio of the tangential 

to normal force to estimate the static friction coefficient using a roller rig. Nevertheless, 

rolling twin discs cannot incorporate the bogie/carbody motions that can affect the 

wheelset dynamics, such as changing the vertical wheelset load through coupling in the 

suspension forces. Although some methods also employ bogie or half vehicle models, as 

in [16],[17], they still cannot inherently incorporate the full effect of bogie and carbody 

motions. This leads to full vehicle models that can incorporate the full effects of the car 

body and the bogie motion on the wheelset dynamics for better estimation of adhesion 

levels [18]. In [19], measurements of vehicle body responses were used to build a grey- 

box inverse model of the carbody/wagon for estimating the wheel-rail contact forces. 

Inverse wagon/car body models based on wagon acceleration measurements were also 

used in [21] to estimate the contact forces. Nevertheless the high-frequency wheel-rail 

contact forces are low-pass filtered through the primary and secondary suspensions when 

they arrive at the wagon/vehicle body [19], and it is difficult to validate these contact 

force estimations without wheel-rail level contact force measurements [20]. 

Kalman filter (KF) or Kalman-Bucy filter (KBF) based adhesion estimation 

methods are generally model-based since they depend on some prior knowledge of the 

vehicle or contact force model parameters. Examples of extended KFs (EKFs) or 

unscented KFs (UKFs) used for adhesion estimation are given in [22]-[24]. A joint-UKF 

without post-processing was used in [25] to estimate the friction coefficient, where it 

requires at least 10 seconds of incoming data to reasonably estimate step changes in the 

friction levels. KBFs were also developed in [26]-[32] to estimate the creep/contact 

forces, and in [26]-[28] these forces were used to estimate the adhesion levels. The 

estimated creep forces 



and adhesion levels were validated in VAMPIRE simulation, and the adhesion estimation 

also requires 5 seconds of data processing. In [33], residuals from multiple KF estimates 

of wheelset lateral and yaw states were fed to a fuzzy-logic system to estimate the 

adhesion condition. A non-linear estimator was developed in [34] for real-time estimation 

of the contact forces at different adhesion levels. The adhesion condition was estimated 

using only slip and tractive force in [35] without creep force models. An online observer 

to estimate the adhesion condition was also reported and compared to existing approaches 

in [36]. 

Artificial neural networks (ANNs) are model-free methods if they do not require 

any prior knowledge of the vehicle or the creep force models. ANNs have proven to be a 

valid alternative in solving rail-wheel contact problems with better computational 

efficiencies compared to classical approaches either when estimating the contact forces 

[37] or determining wheel-rail contact points [38], providing real-time performances 

similar to lookup tables [39]. The first example of using NN to estimate the adhesion was 

reported in [40], where a recurrent NN (RNN) provided a good and better estimation than 

a conventional method. A feedforward NN (FNN) was trained and validated in [41] with 

experimental measurements of vehicle speed, wheelset angular speed, and brake pressure 

to accurately estimate the adhesion levels from slip curves. An FNN is also implemented 

as part of a kernel extreme learning machine with radial basis function (RBF) and particle 

swarm optimization (PSO) to estimate stable and unstable regions of adhesion in [42], 

rather than adhesion levels. PSO was also used in [43] to estimate and experimentally 

validate the adhesion coefficients for dry and wet conditions. 

Most of the above mentioned research depends on slip for estimation of adhesion 

levels. Nevertheless, slip requires accurate knowledge of wheelset longitudinal and 

rotational speeds that are not always available on vehicles, which lack an 

independent land based datum point, or through high-resolution 



instrumentation on the wheel or roller rigs [15]; Although the authors in this paper had 

managed to gain access to the encoder signals from the WSP system, slip is subject to 

drift since longitudinal wheelset velocity is only obtainable by integrating wheelset 

acceleration. Therefore, drift-free slip is not easily available. In addition, the conventional 

slip/adhesion curve is very steep at low levels of slip/creepage, which makes the precision 

of slip more important to such estimators and these estimators will always be sensitive to 

low levels of slip measurements, requiring the occurrence of larger slips for accurate 

estimation of adhesion levels. However, large slips only happen during wheel spin or 

slide during braking instances, which can impact the accuracy of slip-based estimators in 

normal running conditions without braking or wheel spin. Arguably any estimation 

which requires a large slip before it can be calculated is inherently going to be too late 

to be of value.  

 
Furthermore, none of the methods above solely employ wheelset accelerations, or 

wheelset acceleration/speed from a full-size vehicle without braking for estimating 

adhesion/friction levels. In this paper, an accurate estimation of friction coefficient is 

realized through an FNN that is trained and validated by friction and wheelset 

acceleration measurements obtained from a full-size test vehicle on a friction-modified 

track. Water, paper based tape, and standard top-of-rail products are applied to the rail 

head to achieve intermediate and low friction coefficients. Vehicle body, bogies and 

wheelsets are all instrumented with accelerometers and potentiometers for taking 

measurements when the rail vehicle goes over the friction modified track. The FNN 

friction estimation algorithm is only based on wheelset acceleration measurements, and 

does not depend on slip/adhesion curve, creep force models, or braking commands as in 

[41]. It is both accurate and can be considered real-time such that it can immediately 

inform drivers about low adhesion conditions, which could be used to slow down the 

vehicle earlier since low adhesion conditions can extend for some period in some cases, 

e.g., leaves on the rails for a long section of the track. Four different FNNs are trained 



for four different constant speed conditions and their estimation performance for the 

validation data are presented. 

 
Slip dynamics 

Slip arises from both deformation and sliding instances at the wheel-rail contact 

due to instances of friction force saturation. Longitudinal slip 𝑠𝑥 is proportional to the 

difference between the circumferential wheelset velocity 𝜔𝑟𝑤 and the translational 

inertial wheelset velocity in the longitudinal direction 𝑥̇𝑤 , where 𝜔 is the wheelset 

rotational speed, and 𝑟𝑤 is the wheel radius. It is also referred as slip ratio and is 

commonly given by: 𝑥̇𝑤 − 𝜔𝑟𝑤 𝑠𝑥 = 𝑥̇ 𝑤 (2) 

 
It can be seen in this equation that any velocity difference between 𝑥̇𝑤 and 𝜔𝑟𝑤 can create 

a non-zero slip. A positive slip occurs when 𝑥̇𝑤 > 𝜔𝑟𝑤, which can be referred to as a 

translational slip, and a negative slip when 𝑥̇𝑤 < 𝜔𝑟𝑤 , which can be referred to a 

rotational slip. If 𝑥̇𝑤 and 𝜔𝑟𝑤 are equal, then slip is zero. Slip can only be zero or near 

zero when the leading and trailing parts of the deformation at the contact patch are 

symmetrical so that although the wheel is rolling there is no velocity difference between 𝑥̇𝑤 and 𝜔𝑟𝑤. This can also happen when the vehicle is at rest so that the wheel-rail 

deformations are symmetrical. Existing slip/adhesion curves all show that the 

creep/friction forces are zero for zero slip [44]. Friction and consequent adhesion can 

also be dependent on the vehicle speed rather than just slip [45].  



Since slip/creepage during normal operation without braking or wheel slide is 

quite small, the slip dynamics is analysed first. The dynamics of slip can be explained by 

the slip dynamics rate, which can be obtained by the rate of change of slip. The 

longitudinal slip dynamics is then given by time-differentiating eq. (2): 𝑥̈𝑤 − 𝜔̇ 𝑟𝑤 𝑠̇𝑥 = 𝑥̈ 𝑤 (3) 

 
This equation shows that 𝑠̇𝑥 ∝ 𝑥̈𝑤 − 𝜔̇ 𝑟𝑤, which means measurements of 𝑥̈𝑤 and 𝜔̇ can 

indicate the amount of slip rate. If 𝜔̇ is constant, a higher 𝑥̈𝑤 means a higher 𝑠̇𝑥 in (3), 

which means a smaller 𝜇. Since it is sensible that there will be more slip or higher 𝑠̇𝑥 
when 𝜇 is smaller, it follows that there is an inverse relationship between 𝑥̈𝑤 and 𝜇 if 𝜔̇ 
is nearly constant (when there is no rotational wheel slide). This indicates that it should 

be possible to estimate the friction using acceleration as the inputs to the NN. 

 
Instrumentation and railhead conditioning 

 

Instrumentation 
 
The test vehicle used is a multi-purpose vehicle (MPV) owned by Network Rail that 

comprises of 2 vehicles/cars each with a pair of four-wheel bogies. Only one of the 

vehicles is instrumented and it is shown in Figure 1 below. 



 
 

Figure 1. MPV with instrumented vehicle nearest the camera 
 
Instrumentation of the vehicle was carried out by Perpetuum owned by Hitachi Rail who 

has experience of instrumenting in-service trains. The vehicle was instrumented by 

accelerometers and potentiometers on all four wheelsets and two bogies. The left and 

right axleboxes of the wheelsets were instrumented with 3-axis Dytran 7533A4 

accelerometers. They were fitted on the axlebox on a modified keeper plate in a 3D 

printed housing (Figure 2). 



 
 
 
 
 
 
 

Modified 
keeper plate 

 
Axlebox 
accelerometer 
in 3D printed 
housing 

 
 
 
 
 
 
 
 
 
 
Figure 2. One of the eight axlebox accelerometers fitted on a modified keeper plate 

 
The data acquisition system used a National Instruments cDAQ-9185 chassis, and an 

industrial computer in the front enclosure recording onto a solid-state hard disk. Data 

was sampled at 5120 Hz. More details on the tests and procedures are reported in [46]. 

 
Railhead condition 

The railhead at the 400m test site was prepared with four different friction methods to 

obtain different friction levels. Details of these friction conditions are described in Table 

1 below. 

Table 1. Rail head friction modification conditions 
 

Condition Surface Modification Application method Expected friction 
coefficient range 

Dry None N/A 0.4-0.5 

Wet Water spray On-train spray 
equipment 

0.15-0.3 

Detergent 5% detergent in water On-train spray 
equipment 

0.1-0.15 



Friction Modifier Water based friction 
modifier Paint roller (by hand) 0.25-0.4 

 
Paper tape 

 
Wetted paper tape 

On track hand trolley 
– wetted using an on- 
train spray equipment 

0.1 or lower 

 

The wet and 5% detergent conditions used a water spray equipment designed and fitted 

on the vehicle, where premixed detergent/water was supplied to a spray ahead of the wheels on 

both rails at one end of the vehicle from containers on the vehicle deck. The friction modifier 

used was a commercially available product specifically designed to maintain a mid-

range friction coefficient between wheel and rail. 

Paper tape is an established industry method [47] used to create repeatable low 

friction. When the paper tape is mixed with water, it can form a hydrogel, previously 

reported to be a potential mechanism of low friction during leaf fall season [48]. To create 

a paper tape layer, a rail trolley equipped with two rolls of gummed paper tape was pushed 

down the test section (Figure 3). The trolley was fitted with on-board water sprays and 

rollers, which wet and press the tape onto the railhead. The MPV was then rolled over the 

tape section 3 times, with no further water spraying, to condition the tape layer. 



 
 

Figure 3. The tape laying trolley laying paper tape on the railhead 
 

Friction measurement 

To assess the level of friction obtained, two friction measuring devices, the Ontrak and 

the pendulum (Figure 4), were used during for friction measurements. The pendulum skid 

resistance tester was designed for floor health and safety but has seen extensive railway 

use as a simple method for railhead friction measurements [49]. It measures slip resistance 

value (SRV) that can be used estimate the friction coefficient using a relationship 

developed by British Rail that was validated against values from their tribometer train. 

The Ontrak portable railhead tribometer is a newer device that can produce a range of 

slip and angle of attack between an instrumented wheel and the rail enabling more 

controllable contact conditions than the pendulum [50]. 



 
 

Figure 4. The OnTrak tribometer (L) and pendulum slip resistance tester (R) 
 

After modifying the friction levels, the friction coefficients were measured 

immediately following the train passing at two points with a distance of 20 m between 

them and their average taken. This paper focuses on the data from the straight section of 

the test track, where six different friction-modified conditions per speed case are used in 

this study, and the friction measurements for each run are tabulated in Table 2. It can be 

seen that the friction coefficients have some variations even for a same friction 

condition, reflecting the real-world as opposed to lab conditions in which wind, sun 

exposure, and in some paper tape based tests rain, varied during the tests [XX]. Note 

that the measurements are taken up to 2 decimal places, but a value of 0.001 have been 

added to the wet conditions of 16 and 26 mph cases so that they can be differentiated 

later in the data labels. This is also needed when correctly labelling the inputs. 

Table 2. Friction levels achieved on the straight test track 
 
 

Condition 
 

Dry 
 

Wet 
 

Detergent Friction 
modifier 

 
Paper tape 

16 mph 0.31 0.161 0.18 0.14, 0.17 0.16 

26 mph 0.29 0.191 0.21 0.19 0.16, 0.22 

40 mph 0.31, 0.37 0.24 0.22 0.17 0.1 

60 mph 0.3, 0.35 0.27 0.24 0.16 0.11 



For test point listed in Table 2, all data from the sensors specified were recorded 

for off-line processing. 

 
FNN Estimation 

 
By the universal approximation theorem, NNs can approximate any continuous function 

if it has one hidden layer and uses non-linear activation functions. It is decided to use 

FNNs because they are more stable and easier to train than RNNs. 

 
Input selection 

Good selection of NN inputs can greatly improve estimation accuracy without increasing 

size or complexity. Selection of NN inputs depend on the underlying physical relations 

between the inputs and the outputs. Ideally, a single NN should be trained for all speed 

conditions since vehicle speed is a continuous variable. However, this requires linking all 

the data from 24 test runs in Table 2 one after the other into a single input-output set of 

time-series data for training and validation. Due to the high sampling rate in the test data, 

the linked data requires hundreds of GBs of random-access memory (RAM) during 

training. Therefore, for the estimation study in this paper, four different FNNs 

representing four different speed conditions are trained and studied, where each FNN has 

six sets of input-output data linked together. 

The motivation for using wheelset accelerations rather than slip or creep force is 

two-fold. First, as mentioned earlier, calculation of the slip or creep forces require 

accurate measurements of 𝑥̇𝑤 and 𝜔, where 𝑥̇𝑤 is subject to drift when it is obtained from 

integrating 𝑥̈𝑤, which makes 𝑥̇𝑤 and subsequently the slip 𝑠𝑥 also subject to drift without 

a GPS or Doppler speed sensors at the wheelsets. It is also difficult to obtain 𝜔 without 

access to WSP signals. Second, even if the slip is measured without drift, conventional 

slip/adhesion curves produce zero adhesion when the slip is zero and they require 



sufficient non-zero slip to generate the full adhesion curve, which usually only happens 

during braking that leads to large translational slip [41]. This is because the 

slip/adhesion curve is commonly very steep in the beginning for small slip and only 

starts to become more distinct for different friction levels when there is sufficient slip, 

making the y-axis adhesion estimation sensitive to very small slip/creepages in x-axis. 

These two reasons make using wheelset acceleration states 𝑥̈𝑤 and 𝜔̇ more appealing 

than velocity states. Although 𝜔̇ was measured using WSP system, WSP signals are not 

available in general due to the risk of being tampered with, and thus, this paper focuses 

on using 𝑥̈𝑤 for inferring the friction coefficient. It is already shown that 𝑥̈𝑤 have inverse 

relation with 𝜇 from the slip dynamics, and 𝑥𝑤̈ is also simpler to obtain drift-free 

compared to two velocities required to compute slip. In addition, accelerations are better 

suited to detect changes in motion since they can detect larger amplitudes in vibrating 

motion compared to velocities, i.e., acceleration signals have higher signal-to-noise ratio 

when detecting vibrations. 

Although this paper focuses on mapping wheelset acceleration behaviour to 

friction levels, vehicle speed can significantly affect wheelset accelerations because 

higher vehicle speed means higher vehicle movement forces (cornering, response to 

track irregularities), and higher aerodynamic forces indirectly affecting the suspension 

systems, where both factors can increase the wheelset acceleration magnitudes and 

frequency through the increased suspension forces, as shown in the wheelset dynamics. 

This will also be shown by the wheelset acceleration data shortly. Therefore, vehicle 

speed plays an important role in the estimation algorithm. Nevertheless, since the vehicle 

speeds are constant when using four different FNNs, it is not an input at this stage. 

There are three acceleration states that can be used for the NN at each axle: 

longitudinal, lateral and yaw accelerations. Yaw accelerations are obtained by the 



difference between right and left axlebox longitudinal accelerations. Initially, all three 

states from all four wheelsets were used as inputs. Although the NN is capable of building 

an estimator using accelerations from a single wheelset, investigations began by including 

all of the wheelsets with a hypothesis that a better NN estimator could be created because 

all four wheelsets can have unique behaviours at each friction levels due to the overall 

nonlinearities, non-symmetric mass distributions, and driven/undriven conditions of the 

wheelsets. For example, if one wheelset has a weaker relationship between its motion and 𝜇 at a certain friction condition, then other wheelsets may have stronger relationship with 
 𝜇 at this friction condition. In addition, using multiple sensors from multiple wheelsets 

also provide robustness to faults in individual sensors. After some initial training and 

validation studies it was found that not all of the wheelset accelerations are necessary to 

produce similar level of estimation performance, and that at least four states are necessary 

for good estimation. 

Due to a large number of input states, input combinations are made by group 

combinations that are obtained by combining different DOFs of all wheelsets. The input 

combinations from all four wheelsets studied are: (1) 12 states of longitudinal, lateral, 

and yaw accelerations, (2) 8 states of longitudinal and lateral accelerations, (3) 8 states of 

longitudinal and yaw accelerations, (4) 8 states of lateral and yaw accelerations, (5) 8 

states of longitudinal left and right accelerations, (6) 4 states of longitudinal accelerations, 

(7) 4 states of lateral accelerations, and (8) 4 states of yaw accelerations. After some 

training and validation studies using all of these different inputs, it was found that 4-state 

longitudinal or yaw accelerations can provide similar levels of estimation accuracy 

compared to using 8 acceleration states from longitudinal and yaw DOFs. In addition, 

longitudinal and/or yaw accelerations produce slightly better estimations compared to 

lateral accelerations. This can be explained by the wheelset dynamics where longitudinal 



accelerations vary more compared to lateral accelerations since lateral accelerations are 

mainly caused by vehicle guidance due to wheel conicity, and longitudinal slip is 

generally larger than lateral slip, making longitudinal slip and accelerations easier to 

detect. Therefore, the input layer of the FNN chosen here consists of four states of 

longitudinal accelerations from all wheelsets. 

 
Data processing 

The axlebox accelerometers have positive DC offsets at zero accelerations, which 

range from 266 to 272 m/s2 after conversion from volts to m/s2. In order to relate true 

acceleration amplitude to friction coefficient, the DC offsets are removed first by using a 

high-pass filter (HPF) with 0.0001 Hz cut-off frequency. The very low cut-off frequency 

of the HPF helps remove a significant drift in the data that have otherwise led to poor 

estimation results. 

The acceleration measurements also contain high-frequency noise, which is 

generally due to sensor noise and vehicle vibrations. However, it could also contain 

translational slip instances as shown by the slip dynamics. The reason for this is that 

changes in translational slip can be registered as an acceleration by the IMU in 𝑥̈𝑤, which 

leads to translational slip in (2). Even a small slip instance can be registered as high 

magnitude of 𝑥̈𝑤 if it happens in a very short period, which is the case here with a high 

sampling rate. This is shown by the slip dynamics given in (3), where 𝑠̇𝑥 ∝ 𝑥̈𝑤 − 𝜔̇ 𝑟𝑤. 
The high frequency noise from the sensors can lead to fluctuating friction 

estimations, and thus, a low pass filter (LPF) with 1 Hz of cut-off frequency is used to 

flatten the high frequency part of the data. Then, the FNN is mapping the wheelset motion 

in the frequency range of 0 and 1 Hz to different friction levels. 

The high-pass and low-pass filtered signals also contain positive and negative 

amplitudes that are not necessarily equal. This can be due to the combination of overall 



      

      

      

      

      

      

      

      

      

      

      

      

vehicle condition, nonlinearities, conicity and any asymmetries in mass distribution and 

suspension parameters along each axis leading to asymmetric oscillations. Asymmetric 

oscillations can then result in asymmetric magnitudes in the positive and negative cycles 

of the wheelset accelerations. The asymmetric oscillations can also be skewed towards 

the direction of travel, and negatively dominant oscillations can become positively 

dominant when the train is travelling in the opposite direction. Therefore, in order to 

reduce the effect of asymmetries and direction of travel, absolute norms are applied to the 

filtered accelerations. The wheelset longitudinal accelerations after applying HPF, LPF 

and absolute norm are shown below from Figure 5 to Figure 8, where 𝑥̈𝑤𝑖 denote the 

processed longitudinal acceleration of the i-th wheelset. 

 
 

 

 

 

 

 
Figure 5. Wheelset longitudinal accelerations at 16 mph after HPF, LPF and absolute 

norm 



      
      
      
      
      

      
      
      
      
      

      
      
      
      
      

      
      
      
      
      

  
 

 

 

 
Figure 6. Wheelset longitudinal acceleration at 26 mph after HPF, LPF and absolute 

norm 
 
 

 

 

 

 

 

 
Figure 7. Wheelset longitudinal acceleration at 40 mph after HPF, LPF and absolute 

norm 



    

    

    

    

 

    

    

    

    

 

 

  
 

 

 

 

 

 
Figure 8. Wheelset longitudinal acceleration at 60 mph after HPF, LPF and absolute 

norm 
 

Figure 5 to Figure 8 show that the HPF and LPF help remove the drift and render 

the acceleration data smooth. This is helpful for the accuracy of the classification 

algorithm since smooth and drift-free data produce closely packed and separate clusters 

of acceleration data points in the acceleration vs friction level x-y plot. It can also be seen 

that higher speeds lead to larger acceleration amplitudes, as would be expected from 

increased accelerations in response to track imperfections and higher influence of 

aerodynamic forces acting through the suspension at higher speeds. 

In addition to the HPF and LPF, the training data sets were down sampled using 

averaging by factors of 50, 100, 150, and 200 for 60, 40, 26 and 16 mph cases, 

respectively. This means that a single training data sample at 60 mph is an average of 50 

nearby data samples from the original data. The reason for down sampling is because of 

the significant amount of memory required during training due to the high sampling rate 

and longer periods of data, even when the data are trained separately at four different 

    

    

    

    

 

    

    

    

    



speeds. Note that down-sampling is common in classification when there large training 

data. 

Lastly, the NN inputs are also pre-processed by normalizing them to a range 

between [-1,1]. This was achieved by dividing inputs by their maximum and minimum 

values. Input normalization improves NN training process, and has been beneficial in 

reducing minor fluctuations in the NN output since input acceleration magnitudes have 

some variations between the wheelsets as shown from Figure 5 to Figure 8. 

 
Estimation 

The NN friction estimation problem is treated as pattern recognition rather than curve 

fitting because output layers of pattern recognition use activation functions with values 

between 0 and 1, rather than positive and negative values usually found in the regression 

functions in curve fitting. This activation function is more suitable for friction estimation 

because actual friction levels are also between 0 and 1 under any condition. The FNN 

structure is shown below in Figure 9. 

 
Figure 9. Structure of the FNN 

 
In Figure 9, 𝒙 = [𝑥̈𝑤1, 𝑥̈𝑤2, 𝑥̈𝑤3, 𝑥̈𝑤4]𝑇 denote the input vector of processed 

longitudinal wheelset accelerations with size 𝑖 = 4, 𝒘𝟏𝒋 is the j-th vector of j-by-i input 

weight matrix with j as the total number of hidden layer neurons, 𝑔𝑗 is the output of j-th 



hidden layer neuron, 𝑤2𝑗 and 𝑏1𝑗 are the hidden layer weight and bias vectors with size 

j, respectively, 𝑏2 is the output bias, and 𝜇𝑒𝑠𝑡 is the estimated friction coefficient. After 

multiple training and validation studies, around six hidden layer neurons were found to 

be sufficient to produce the estimation accuracy achieved in this study, which gives a 

maximum of six for j. 

The NNs are trained using the first 80% of each test data in Figure 5 to Figure 8, 

and the remaining 20% is used for validation. The FNN performance are assessed using 

the validation data set that the FNN have not seen before during training. During training, 

the processed acceleration inputs and actual measurements of 𝜇 are fed to the training 

process to optimize the NN parameters. During validation, the NN friction estimate is 

given by: 

 1 𝜇𝑒𝑠𝑡 = 1 + 𝑒−𝑤2𝑗𝑔𝑗 + 𝑏2 (4) 

𝑔𝑗 = tanh(𝒘𝟏𝒋𝒙 + 𝑏1𝑗) (5) 
 

where the hidden and output layer activation functions are hyperbolic tangent and logsig 

functions. 

The FNNs’ estimation performances for the validation data set are shown in 

Figure 10 to Figure 13. These are the performances from the best FNNs after training a 

dozen of FNNs for each speed case and selecting the best ones, although different training 

processes yield similar performing FNNs. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Estimation performance of the FNN at 16 mph 

 
 

 

 

 
Figure 11. Estimation performance of the FNN at 26 mph 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Estimation performance of the FNN at 40 mph 

 
 

 

 

 
Figure 13. Estimation performance of the FNN at 60 mph 

 
Note that the discontinuities are due to linking different test runs into the same 

time axis. The FNNs were trained multiple times because the weights and biases are 

initialized randomly in each training instance, and this results in different optimal NNs 

after each training process. The RMSE error between the measured and estimated friction 

coefficients in Figure 10 to Figure 13 are tabulated in Table 3 below, which shows that 

they are small. 

Table 3. RMSE at different speeds 



Speed 16 mph 26 mph 40 mph 60 mph 
RMSE 0.0011 0.0009 0.0016 0.0023 

 

The FNN has a simple structure with only six neurons in a single hidden layer, 

which reduces the training time and also the computational time when implementing. In 

terms of computation time, both the HPF and LPF uses IIR filters, and therefore, 

implementing this algorithm with a decent memory and processor should provide a near 

real-time friction estimation, if not real-time. 

Discussion  
 
 
Conclusion 

This paper has shown that the friction coefficients can be accurately estimated to within 

XXXX using wheelset acceleration measurements and FNNs. Unlike existing methods, 

the FNN estimator does not depend on slip velocities that are difficult to obtain, subject 

to drift, inherent sensitivities in the slip/adhesion curve, or other vehicle/creep force 

model parameters, or model-based force estimation that is subject to error due to linear 

estimates of suspension parameters. The FNNs’ estimation performance has been 

validated by the data obtained from a full-size two-car rail vehicle running on tacks with 

5 different modified and measured friction conditions. To the authors knowledge, this is 

the first time wheelset measurements from full-size vehicle without braking have been 

used for directly estimating the friction or adhesion coefficient at different friction 

conditions. It is also more accurate than swam intelligence based static friction 

coefficient estimator in [43], which was validated by experimental data from roller disc 

tests. 

 
As with any FNN estimator it will only be accurate if it is implemented around 

the speed and friction conditions that are used in the training. The current results 

represent a proof-of-concept, but if implemented for a specific vehicle the method 

would require re-training to match the capabilities of the vehicle. The current results 



span a range of friction conditions as would be experienced by a vehicle in service. 

However, sustained very low friction (<0.05) was challenging to create during the test 

programme so this could be an area in which additional training of the model would be 

required. Alternatively, it might be considered that anything less than 0.1 represents an 

emergency condition below which detailed measurement no longer aids operation. If the 

operating speeds are hugely different to the trained speeds, then the same level of FNN 

estimation accuracy cannot be guaranteed. The different speed cases are similar to 

linearization around the operating points, so the NN estimation is only accurate around 

the trained speeds conditions. This is the same when estimating friction conditions that 

are different to the trained friction conditions. Therefore, one of the future tasks is to 

train five different FNNs for five different friction conditions that creates a variation in 

the vehicle speed. This can show an indication of the performance of the FNN friction 

estimation at varying speeds. 
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