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Effect of non-parallel mean flow on the Green’s function for 

predicting the low frequency sound from turbulent air jets 

 

                           By  M. E. GOLDSTEIN1, ADRIAN SESCU2* and M. Z. AFSAR1 

1
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135, USA 

2
University of Toledo, Department of Mechanical Industrial & Manufacturing Engineering, Toledo, OH 43606, USA 

*Current Address Johns Hopkins University, Department of mechanical Engineering, Baltimore 

MD,21218, USA 

It is now well known that the far-field jet noise spectrum can be expressed as the convolution 

product of a propagator (that accounts for the mean flow interactions) and a generalized Reynolds 

stress auto-covariance tensor (that accounts for the turbulence fluctuations). The propagator 

depends only on the mean flow and an adjoint vector Green’s function for a particular form of the 

linearized Euler equations. Recent numerical calculations (Karabasov, Bogey & Hynes 2011) for a 

Mach 0.9 jet show that use of the adjoint Green’s function for the true non-parallel flow rather than 

the more conventional locally parallel flow Green’s function leads to  a significant increase in the 

predicted low frequency sound radiation at observation angles close to the downstream jet axis.. But 

the non-parallel flow appears to have little effect on the sound radiated at 90o  to the downstream 

axis.  

The present paper is concerned with the effects of non-parallel mean flows on the adjoint vector 

Green’s function. We obtain a low frequency asymptotic solution for that function by solving a very 

simple second order hyperbolic equation for a dependent variable which is directly proportional to 

pressure-like component of the adjoint Green’s function (and roughly corresponds to the strength 

of a monopole source within the jet). Our numerical calculations show that this quantity remains 

fairly close to the corresponding parallel flow result at low Mach numbers and that, as expected, it 

converges to that result when an appropriately scaled frequency parameter is increased. But the 

convergence occurs at progressively higher frequencies as the Mach number increases and  the 

supersonic solution never actually converges to the parallel flow result in the vicinity of a critical 

layer singularity that occurs in that solution. 

The dominant contribution to the propagator comes from the radial derivative of a certain 

component of the adjoint vector Green’s function. The nonparallel flow has a large effect on this 

quantity—causing it (and, therefore, the radiated sound) to increase at subsonic speeds and decrease 

at supersonic speeds. The effects of acoustic source location can be visualized by plotting the 

magnitude of this quantity, as function of position. These “altitude plots” (which represent the 

intensity of the radiated sound as a function of source location) show that while the parallel flow 

solutions exhibit a single peak at subsonic speeds (when the source point is centered on the initial 

shear layer), the non-parallel solutions exhibit a double peak structure --with the second peak 
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occurring about two potential core lengths downstream of the nozzle. These results are qualitatively 

consistent with the numerical calculations reported in Karabasov et al (2011). 

INTRODUCTION 

There is now a large body of research devoted to jet noise modeling --most of which is based on the 

acoustic analogy approach developed by Lighthill (1952, 1954, 1963) over 60 years ago.  The 

improved understanding of jet turbulence obtained from experiments and computational studies 

(e.g. Freund 2003, Harper-Bourne 2003, Pokora & McGuirk 2008, Tam et al 2008, McMullen et al, 

2008, Bodony & Lele 2008; Bogey & Bailly 2010 etc) has resulted in a considerable number of recent 

developments of Lighthill’s original approach. Early developments, such as that of Lilley (1972), 

which explicitly account for the interaction of the sound with a simplified model of the mean flow, 

still form the basis of current state-of-the-art jet noise prediction codes (such as the JeNo code; 

Khavaran, Bridges and Georgiadis 2005, which uses Lilley’s formulation along with empirical 

models for the source terms and Reynolds-averaged Navier-Stokes (RANS) solutions to obtain the 

mean flow and turbulent kinetic energy).  

Goldstein and Leib (hereafter referred to as G&L, see also Goldstein 2003, 201 ) recently used a 

generalization of  the acoustic analogy approach to obtain an exact equation that expresses the far 

field acoustic spectrum as the product of a propagator (that accounts for the mean flow interactions) 

and a generalized Reynolds stress auto-covariance tensor (that accounts for the turbulent 

fluctuations). The propagator only depends on the mean flow and a vector Green’s function for a 

particular form of the linearized Euler equations. But (for reasons given in section 2 below) the 

present study uses reciprocity to replace the vector Green’s function with the corresponding adjoint 

vector Green’s function. G&L used this result to develop an acoustic analogy approach for 

predicting high-speed jet noise from supersonic jets. They introduced a number of modeling 

approximations about the mean flow and turbulence in order to reduce the general formula to a 

form that can be used for practical noise predictions. They assumed --among other things-- that the 

Strouhal number is ( )1O  and the mean flow is weakly non-parallel. Then the non-parallel effects 

only come into play at supersonic speeds and only affect the solution within a critical layer where the 

adjoint vector Green’s function and, therefore, the propagator become singular. G&L constructed a 

uniformly valid composite solution for the adjoint Green’s function which eliminates the critical-

layer singularity that occurs when the observation angle is close to the downstream jet axis.  

But it is now realized that non-parallel flow effects can be important at all Mach numbers 

(Karabasov, Bogey and Hynes, 2011). Karabasov et al (2011) show that the non-parallel flow can 

increase the low frequency radiation from a Mach 0.9 jet  by as much as 8 Decibels at small angles to 

the jet axis but has only an insignificant effect on the sound radiated at 90o  to the downstream axis 

at all frequencies (see their  figure 16 parts (a) and(b)). Order of magnitude considerations show that 

the non parallel flow will have an ( )1O effect on the acoustic spectrum at all Mach numbers when 

the Strouhal number is of the order of the jet spread rate. The resulting adjoint vector Green’s 

function (and, therefore, the propagator) will then differ from the parallel flow result everywhere 
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within the jet and not just in the critical layer (as in G&L). It is therefore appropriate to develop an 

asymptotic formula for the adjoint vector Green’s function that is valid in the limit as the spread rate 

goes to zero while the ratio of the Strouhal number to spread rate remains ( )1O . The present paper 

shows that this problem can be transformed into one of the two standard boundary value problems 

for a very simple second order hyperbolic equation (Sokolnikoff & Redheffer, 1958, pp. 504 - 519) 

for a composite variable, which is denoted by the symbol v and roughly corresponds to the strength 

of a monopole source within the jet. This remarkably simple result shows, among other things, that 

1) the non-parallel flow effects can be lumped into a single coefficient that is related to the mean 

flow advection vector, that 2) the composite variable v    is fairly close to the corresponding parallel 

flow result at low Mach numbers and that 3) it converges to this solution as an appropriate scaled 

frequency parameter increases. But it also shows that the convergence occurs at progressively higher 

frequencies as the Mach number increases and that the supersonic solution never converges to this 

result in the vicinity of a critical layer singularity that occurs in the parallel flow solution (see G & L).  

At supersonic speeds, the primary nonparallel flow effect is the elimination of a critical layer 

singularity that occurs in the parallel flow model, which results in reduction in the predicted level of 

acoustic radiation. The present analysis shows that the nonparallel effects increase the low frequency 

sound at subsonic Mach numbers, as found by Karabasov et al (2011) and Karabasov et al (2010), 

but, as noted above,  have the opposite effect at supersonic speeds. And while the effects are much 

larger at supersonic Mach numbers, they are still quite significant at subsonic speeds. The dominant 

contribution to the propagator comes from the radial derivative of a certain component of the 

Fourier transformed adjoint vector Green’s function. The nonparallel effects cause this quantity 

(and, therefore, the radiated sound) to increase at subsonic speeds and decrease at supersonic 

speeds. The effects of source location can be visualized by plotting the magnitude of this quantity as 

function of position. These “altitude plots” (which represent the intensity of the radiated sound as a 

function of source location) show that while the parallel flow solutions exhibit a single peak at 

subsonic speeds (when the acoustic source is centered on the initial shear layer), the non-parallel 

solutions exhibit a double peak structure with the second peak occurring on the nozzle lip line about 

two potential core lengths downstream (where the turbulence level is still relatively high). The 

resulting acoustic waves are probably of the conventional spherically spreading type and may differ 

from the lateral head waves considered by Howe (1970) in the low frequency limit and by Suzuki 

and Lele (2003) in the high frequency limit. 

The calculations show that the deviations between the parallel and non-parallel flow results are 

much larger for the radial derivative of the streamwise component of the Green’s function than they 

are for composite dependent variable v that was introduced to simplify the equations. These results 

are consistent with the Karabasov et al (2011) numerical computations, which show that the largest 

increase in low frequency sound occurs when the source is about two potential core lengths 

downstream from the nozzle. The present asymptotic approach provides considerable insight into 

the relevant physics and is expected to be complimentary to the numerical computations of 

Karabasov et al (2010, 2011). The results are also of interest from the point of view of classical 
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acoustics. They show, among other things, how vortical disturbances in the vicinity of the physical 

source point y  evolve into irrotational acoustic wave as they propagate into the far field.  

The role played by the adjoint vector Green’s function in the exact formula for the acoustic 

radiation from a turbulent air jet is set out in section 2. The asymptotic representation for the slowly 

diverging mean flow is discussed in section 3. Appropriate far field boundary conditions are derived 

for the adjoint Green’s function in section 4.1 and its low frequency limit is described in section 4.2. 

The general results of that section are applied to a round jet in section 5 where the boundary value 

problem for the low frequency solution is transformed into a much simpler problem for a second 

order hyperbolic partial differential equation--which is then solved by the numerical procedure 

described in section 6. The results are presented and analyzed in section 7. 

 
2. Basic Context 
 
The pressure p , densityρ , enthalpy h  and speed of sound c  are assumed to satisfy the ideal gas law 

equation of state 

                                             ( )2 2/ , / 1p c h c= = −ρ γ γ                                                  (2.1) 

where γ  denotes the specific heat ratio. It is customary to express the Fourier transform  

                                     ( ) ( ) ( ), ,
1

,
2

t t
i

p pI de
∞

ω
−∞

+ τωτ ′ ′≡ τ
π ∫ x xx          (2.2) 

of the far-field pressure autocovariance ( ) ( ), ,t tp p +′ ′x x τ -- usually referred to as the acoustic 

spectrum at  the observation point { }1 2 3, ,x x xx =  in terms of ( )Iω |x y , the acoustic spectrum at 

x due to a unit volume of turbulence at { }1 2 3, ,y y yy = , by   

                                                            ( ) ( ) ,

V

I I dω ω= ∫x x y y                                                      (2.3) 

where the integration volume, V , is the entire source region, p p p′ ≡ −  and over-bars are being 

used to denote time averages. G & L show that this latter quantity is given by  

                         ( ) ( ) ( ) ( ) ( )2 *
2 ; ; , ,

j lj l

V

I dλ κω λ κπ ω ω ω= Γ Γ +∫x y x y x y yHη η η            (2.4)   

where the asterisk denotes complex conjugates, the the Einstein summation convention is being 
used with the Greek indices ranging from one to four and the Latin indices from one to three.    

                         ( ) ( ) ( ) ( )4

;
; 1 ;k

j k

j j

G v
G

y y

λ
λ λ

∂ ω ∂
Γ ω ≡ − γ − δ ω

∂ ∂

y x
x y y x


                    (2.5) 

is a “propagator” that depends on the mean flow and the Fourier transform  
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                                 ( ) ( ) ( ) ( )4

1
; , ,

2

ati
G g t d teλ λ

−τω
∞

−∞
ω ≡ τ − τ

π ∫y x y x                                 (2.6) 

 

of the 4th fourth component adjoint vector Green’s function
 

( )4   1 2 5a
g , ,t , , ,...,ν τ ν =y x  for the  

linearized Euler operators that appear on the left sides of the five Generalized acoustic analogy 
equations (See equations (2.18)-(2.20) and equations (3.1)-(3.3) of G & L and pp. 878-886 of Morse 
and Feshbach, 1953).  It is related to the 4th component of the ordinary vector Green’s function 

( )4g ,t ,ν τx y
  
by the reciprocity relation   

               ( ) ( )4 4
a

g , ,t g ,t ,ν ντ = τy x x y                                         (2.7) 

and satisfies the adjoint equations (See equations (4.8)-(2.10) of G & L)   
 

                            ( )24 44 54
4 441 0

a a a
ja ai

j i

i i i

vDg g g
g c X g

D y y y

∂ ∂ ∂
− + − + − − =

∂ ∂ ∂

 
γ

τ
                                  (2.8) 

                           ( ) ( ) ( )44 4
441

a a
jai

i j

vDg g
g t

D y y
γ δ δ τ

τ
∂∂

− − + − = − −
∂ ∂

x y
 

                                     (2.9) 

                                          54
4 0

a
a

i i

Dg
X g

D
− + =

τ

                                                           (2.10) 

where the tilde denotes the Favre-average 

                                                                   ( )≡ ρ ρ                                                            (2.11) 

 

of any flow quantity k
v denotes the flow velocity,                                                          

                                                           2c p≡ γ ρ                                                                    (2.12) 

denotes the mean flow sound speed squared, 

                                                     ( ),
i

i

D
v

D y

∂ ∂
≡ +
∂ ∂

y


 τ

τ τ
                                                        (2.13) 

denotes the mean flow convective derivative and  

                                                
i i

D
X v

D
≡

τ


                                                                            (2.14) 

denotes the mean flow advection vector. 
           

          As usual, the first two arguments of the Green’s functions ( )4g ,t ,ν τx y
 
and ( )4

a
g , ,tν τy x  

refer to the independent variables in the relevant Green’s function equations and the second two 
arguments correspond to the space/time source point. The subscript ν  is associated with the 
components of the linearized Euler operators that appear on the left side of the generalized acoustic 
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analogy equations (equations (2.18)-(2.20) of G & L).  The reciprocity relation (2.7) shows that the 

dependent variable y in the adjoint Green’s function ( )4
a

g , ,tν τy x corresponds to the actual 

physical source point while the source variable x  corresponds to the actual “observation point”.  
Equation (2.7) and the physical equations (equations (2.18)-(2.20) of G & L) also show  that  the 

( )44
a

g , ,tτy x component of  4
a

g ν  can be associated with the pressure fluctuations but the 

remaining components have no direct physical significance-though (2.10) suggests that 

( )54
a

g , ,tτy x can be associated with the convected component of the motion since 0
i

X = in a 

strictly parallel flow.  The adjoint linearized Euler equations (A 6)-(A 8) of Tam and Auriault (1998) 
can be transformed into equations (2.8)-(2.10) by using the steady (non-linear) Euler equations to re-
arrange their coefficients. But these equations can only be compatible with the exact generalized 
acoustic analogy equations (equations (2.18)-(2.20) of G & L) when they are written in the form (2.8)
-(2.10).  
 
      Tam and Auriault (1998) argue that the adjoint Green’s function is preferable to the direct 
Green’s function because it simplifies the numerical computations. But we use it here because it 
allows the far field expansion to be carried out before the governing equations are solved and, 
thereby, greatly simplifies the analysis (by removing the delta function from the right hand side of 
the governing equations).   It also greatly reduces the number of equations that have to be solved 
(the direct Green’s function can only be found by solving 25=5×5 equations) and simplifies the 
formulation of the far field boundary conditions (see section 3. below). These technical 
considerations have no effect on the final results because the 4-4 pressure like components of the 
two Green’s functions are simply related the reciprocity relation (2.7) 
,      

The tensor ,  j,l=1,2,3: , 1, 2,3, 4
ljλ κ λ κ =H accounts for the turbulent velocity and enthalpy 

fluctuations in the jet and has to be modeled in the acoustic analogy approach.It is related (by the 
simple linear transformation (5.13) of G & L) to the spectrum of a generalized Reynolds stress 
autocovariance tensor given explicitly by equation (5.12) of G & L in the absence of viscous effects. 
But these formulas are irrelevant for the purposes of this paper which focuses on the mean flow 
interaction effects.                                   
       Equation (2.4)and (2.5)  provide an (essentially) exact relation between the quantities that are 
typically measured in Aeroacoustics experiments, namely the far-field acoustic spectrum and the 
generalized Reynolds stress autocovariance tensor (equation (5.12) of G & L).  They are identical to 
equations (5.13) and (5.14) of G & L rewritten in  terms of the fixed frame separation vector, i.e. 

with the artificially introduced convection velocity 
c

U set equal to zero in equations (5.10) and (5.14) 

of G & L--so  that =ξ η in (5.14). They are completely general and apply to any localized turbulent 

flow, even in the presence of fixed solid surfaces, say ( )S S= y , as long as ( )4
a

g , ,tλ τy x is assumed 

to satisfy 

                                                                         

                                                   ( )4
ˆ , , 0   for ona

i i
n g t S=y x y   τ  (2.15) 

where ˆ
i

n denotes the unit normal to S . 

3. The mean flow  expansion 
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As usual we suppose that all lengths have been scaled with a characteristic nozzle radius 
J

r , all 

velocities by the mean jet exit velocity 
J

U  etc.. The mean flow is assumed to have small spread rate, 

sayε , and to vary on the slow streamwise length scale 

                                                                1Y y≡ ε                                                               (3.1) 

It is, therefore, expected to expand like (see equations 5.1 & 5.2 of G & L) 

                ( ) ( ){ } ( ) ( ) ( ) ( ){ }1 1
, , , , , , ....

T T T T T T
U Y Y U Y Y+ +v = y V y y V y ε ε ε                              (3.2) 

    
( ) ( ) ( )   ( ) ( )( ) ( )

( ) ( )

1
1 2 2 2

1

, , .....,    , , ......,  

                                                                      constsnt+ , .........

T T T T

T

Y Y c c Y c Y

p p Y

= + + = +

= +

y y y y

y

ρ ρ ερ ε

ε
                (3.3) 

                                      

                                      { } ( ) ( ){ }1 12 2

1 1, , ....
T T

X X= + +X X Xε ε ε ε ε                                           (3.4) 

 in an inner region, where the magnitude  

                                                                       2 2

2 3T
r y y≡ = +y                                             (3.5) 

of the transverse coordinate { }2 3,
T

y y=y is ( )1O .This expansion  will break down in an outer 

region where  the scaled transverse coordinate  

 R r≡ ε        (3.6) 

is ( )1O when the scaled transverse velocity { }2 3,
T

V V=V    decays like 
1

T

−
y  as { }2 3,

T
y y= →∞y . 

However, the mean flow velocity will then be ( )2
O ε in this region and will not affect the Green’s 

function solution to the order of approximation of the analysis.   

       But the higher order terms in the expansion (3.2)-(3.4) will produce inhomogeneous terms in 

the n=1 Green’s function equations (5.9)-(5.13) derived in section section 5 below. However, the 

resulting inhomogeneous solution to these equations will, for reasons given in that section, only 

make a higher order contribution to the inner expansion (5.5) and (5.6) of the adjoint vector Green’s 

function. These higher order terms will, therefore, be omitted since their inclusion would 

significantly complicate the equations.  

4. The Green’s function Solution  

4.1 The Far Field 

In order to take advantage of the simplification that occurs when the observation point x  is in the 
far field, we begin by considering the far field region where , →∞x y . Then 

0
k

v → , 2 2 constantc c∞→ = and equations (2.8)- (2.10) become  
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                                                     24 44 0
a a

i

i

g g
c

y
∞

∂ ∂
− − =
∂ ∂τ

                                                               (4.1) 

                                                 ( ) ( )44 4

a a

i

i

g g
t

y

∂ ∂
− − = − −
∂ ∂

x yδ δ τ
τ

                                              (4.2)  

                                                      54 0
a

g∂
− =
∂τ

                                                                             (4.3) 

to within an error of ( )2
O ε . It, therefore, follows that 

44

a
g satisfies the inhomogeneous wave 

equation  

                                       ( ) ( )
2 2

244 44

2

a a

i i

g g
c t

y y
∞

∂ ∂ ∂
− + = − −
∂ ∂ ∂ ∂

x yδ δ τ
τ τ

                                         (4.4) 

The relevant solution satisfies the causality condition 

                                                ( )44 , , 0 fora
g t tτ τ= <y x                                                         (4.5)           

and is given by (Goldstein, 2006, Appendix A) 

                              ( )44 2

1
, ,

4

a
g t t

c c
τ δ τ

π τ∞ ∞

 −− ∂
= − + − ∂  

x y
y x

x y
                                        (4.6) 

plus reflected and scattered waves generated by the mean flow and solid surface interactions.  It 

follows that 

                                   44 2

1

4

a x
g t

xc xc c
δ τ

π τ∞ ∞ ∞

 − ∂ ⋅
→ − − + ∂  

x y
                                               (4.7) 

when x ≡ →∞x  which becomes  

                                    ( )
( )4 22

;  
2

/
G

x c

i x c i ci x
e

∞

ω → −
π

ω − ω∞ ∞ω
y x

y x
                              (4.8) 

upon taking the Fourier transform ( )4 ;G ωy x defined by 
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                              ( ) ( ) ( ) ( )4 , ,,     1, 2,3, 4
i i

ti
tG g d t ie τ−ω τ

∞

−∞
ω ≡ τ− =∫ y xy                         (4.9) 

 

It, therefore, follows from equations(2.15), (4.1) and (4.4) that  

     

  

( )
( )

( )4 22
;

2

                                                                                    for   and   1

/
/

G
x c

i x c i ci
x

x
e e

∞

 
ω → − +Φ ω 

π   

→∞

ω − ω∞ ∞ω
y x y,

x y

y x
x





                   (4.10)      

 when the jet and nozzle are explicitly accounted for . The function Φ  represents an outgoing 
disturbance that satisfies the Fourier transformed wave equation  

                                                
2

2 2 0
i i

c
y y

∞
∂ Φ

Φ + =
∂ ∂

ω                                                           (4.11) 

together with the boundary condition 

  
( )/

ˆ ˆ 0      on 
/

i i

i i

x
n n S

y y

i cx
e

∂Φ ω∂
+ =

∂ ∂

− ω ∞ y, x
y

y x
                                   (4.12) 

on the nozzle surface S . 

4.2 Low Frequency Solution (Distinguished limit) 

As noted in the introduction, G & L showed that the nonparallel flow can only have an ( )1O effect 

on the Green’s function solution within a narrow critical layer at ( )1O frequencies. But the present 

analysis will show that it can change the leading order behavior of the Green’s function everywhere 
in the flow at sufficiently low frequencies or equivalently when the variations in time are sufficiently 
slow. This occurs when the time variations are of the same order as the streamwise variations in the 
mean flow, i.e. when they take place on the slow time scale 

                                                                   T ≡ ετ
                                                               (4.13) 

 
or equivalently when the scaled frequency ω  (or Strouhal number) is of the order of the jet spread 
rate ε . The distinguished scaling corresponds to the limit where the mean flow spread rate ε  goes 
to zero with the scaled frequency 

                                                          ( ) / 1OΩ ≡ ω ε =                                                        (4.14) 
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held fixed. Then the  Green’s function solution, like the steady flow solution described in section 

4.1,   will divide into an inner solution in the region where the transverse 
T

r ≡ y given  by equation 

(3.5) is of ( )1O and an outer solution in the region where  the scaled transverse coordinate R  

defined by equation (3.6) is ( )1O and the Fourier transformed Green’s function is given by (4.10) 

when the observation point x  is in the far field.  
 
The outer boundary condition for the inner solution is obtained by requiring that it match onto the 
inner expansion of the outer solution(4.10) (Van Dyke, 1975, Chapter III). So rewriting(4.10) in 

terms of the outer variables ( ),Y R shows that  4G  must satisfy the boundary condition  

 

( )
( )

( )

4 2
0

/cos sin cos

; inner exp.
2 2

                                                          , ,           
T

as R

i cY R

G
x c

Y

i x ci e e
    

   

∞

∞

→

− Ω θ+ θ ϕ−ϕ
ω → − 

π 

+Φ Ω ε θ ϕ−ϕ 


ω ∞ω
y x

,Y ,



 

              (4.15)  

                                                                                              as 
T

r ≡ →∞y with 0Y ≥   

where “inner exp.” denotes the inner expansion of the term in curly brackets, Y  is defined by (3.1) , 
1

1cos /x x
−θ ≡ denotes the polar observation angle measured from the downstream jet axis, ϕ and 

                                                         ( )1

2 3tan /y y
−ϕ =                                                   (4.16) 

denote azimuthal angles of the observation and source points respectively, { }2 3,
T T

Y Y ε= ≡Y y and 

( ), ,  
T

YΦ Ω ε θ ϕ−ϕ ,Y ,  denotes the outgoing disturbance ( )/ xΦ ωy, x  rewritten in terms of the 

outer variables.  
 

Rewriting the boundary condition (4.12) in terms of the inner variables ( ),Y R shows that 

 

                
( )/

ˆ ˆ 0    

sin cos /

i i

i i

x
n n

Y y

i R c

e

 
 
 
  
  ∂Φ ω∂

ε + =
∂ ∂

− Ω θ ϕ−ϕ ∞ y, x


 

                

                                                                            for 0,   on solid surface,
T

Y < y                      (4.17) 
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where ( )ˆ ˆ=n n y denotes the outward drawn normal to the upstream nozzle surface, which will 

have ( )J
O r transverse dimensions and which is assumed, for simplicity, to be parallel to the 

1y -

direction. These results can be made more explicit by restricting them to the important case of a 
(non-swirling) round jet for which the mean flow is independent of ϕ  and the circumferential 

velocity is zero. 
 
5. Round Jet 

The outgoing wave Φ  in(4.15) can then be written more explicitly as 
                                                              

                 ( ) ( ) ( ) , ,   , ,
T n

n

in
Y Y Re

ϕ ϕε θ ϕ ϕ ε θ
∞

=−∞

−
Φ Ω − = Φ Ω∑  ,Y , ,                                     (5.1) 

where 

                      ( ) ( ) ( ) ( )21 2, , , , /iKY

n n n
Y R e C K H R K c dKε θ ε θ

∞
−

∞
−∞

 Φ Ω ≡ Ω − Ω 
 ∫,                 (5.2) 

and ( )1

n
H denotes the Hankel function in the usual notation(Abramowitz & Stegun,1965, p.360). 

Then since (Abramowitz & Stegun,1965, pp.375 & 376) 

        ( ) /2
sin cos

2 sin ,
n

in
i c in

d J r
c

r
ee

   
   
   

∞

∞ − πεΩ θ ϕ−ϕ + ϕ−ϕ  Ω
ϕ−ϕ = π ε θ 

 

π

π−
∫

 
                         (5.3) 

where 
n

J  denotes the Bessel function in the usual notation, it follows from (4.15), (5.1) and the 

series expansion for the Bessel function that 

( ) ( ) ( )( )

4

2/2

 

1
sin / 1

!

cos /
n

n

in in

G

i r c O r
n

i Y c
e e

∞

∞
=−∞

ϕ−ϕ − π

→


− Ω ε Ω θ + ε



− Ω θ ∞∑


 

       

  

( )           

                                                                                         as 

inner expansion of , , re-expessed in terms of inner variable 

    with  0

n

r

Y R r

Y

+ Φ Ω ε θ 

→∞ ≥

,

           (5.4)    
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And  since the inner solution, is induced by the incoming waves represented by the leading terms in 

the square brackets, while the
n

Φ  represent the outgoing waves generated by (i.e., forced by) that 

solution , and  since this equation  and the mean flow equations (3.2)--(3.4) both depend on 
1y  only 

through the slow streamwise variable Y , the dominant balance  in the inner region, ( )1
T

O=y , 

must be (Van Dyke, 1975, p.30) 
          

          ( ) ( ) ( ) ( ) ( )0 1

4 4 4, , , , , , , , , , ....,     1, 4,5a

i i i
g t g Y r T T g Y r T T iτ = ϕ + ε ϕ + =  y x X X               (5.5) 

           ( ) { } ( ) ( ) ( ) ( )0 11

4 4 4 4 4, , , , , , , , , , , ....a a a

T r T T
t g g Y r T T Y r T T

−
ϕτ = = ε ϕ + ϕ +

  g y x g X g X           (5.6) 

where the slow time variable T is defined by (4.13) and ,r ϕ  are the cylindrical coordinates defined 

in  (3.5) and (4.16). Since it follows from (5.2) that (see Abramowitz & Stegun, 1965, p.360) 
  

                                         ( ) ( )0 , ,0 , ln   as 0Y R f Y R Rθ θΦ Ω → Ω →, ,                             (5.7) 

 
the expansion (5.5) and (5.6) would also contain logarithmic terms if  the function f were not equal 

to zero, but these terms are omitted since 0Φ is induced by the inner solution and would only be 

non-zero if ( )0

4i
g  were to behave like ln   as r r →∞ , which, as shown below, would not be 

consistent with the governing equations.  
 
Substituting  these expansions into (2.8)-(2.10) and (4.15) rewritten in terms of the cylindrical 
coordinates  (3.5) and (4.16) (See equations (21 a)-(21 b) of Tam and Auriault, 1998) and noting that 

the result depends on T and T only in the combination T T−    shows that the scaled Fourier 
transforms 
    

( )
( ) ( ) ( ) ( ) ( ) ( )0

04 02
, , ,

1
, , ,  

22 2

                                                                                     0,1:   1, 4,5, ,

T

n n

T

T Ti X c i
Y T TG Y g d T T

x c

n r

e eκ κ

∞

−Ω ∞ Ω
∞

−∞

ε
Ω ≡ −

πεπ

= κ = ϕ

∫



y Xy

             (5.8)      

satisfy   

      ( ) ( ) ( )  ( )
( ) ( )

( )
2 4 5

0 1 1 1 41 0
n n

n n n nr
r

U V G G
D G G G c X G

Y Y Y Y

∂ ∂ ∂ ∂
− + + − + − − =

∂ ∂ ∂ ∂
γ                              (5.9) 

                                  ( ) ( ) ( )  ( ) ( )
2 4 5

0 1 0
n n

n n n r
r r

U V G G
D G G G c

r r r r

∂ ∂ ∂ ∂
− + + − − =

∂ ∂ ∂ ∂
                            (5.10) 
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                                ( )
( )

 ( ) ( )
2 54

0

1 1
0

n nn
n r

G V GG
D G c

r r r

ϕ
ϕ ϕ ϕ

∂∂
− − − − =

∂ ∂


  
                                        (5.11) 

                                                  
( ) ( )

0

nn

r
GrG

r

ϕ

ϕ
∂∂

+ =
∂ ∂




                                                            (5.12) 

                                                ( ) ( ) ( )
0 5 1 1 0

n n n

r r
D G X G X G− + + =                                         (5.13) 

where 0,1n = , 

                                              
0 r

D i U V
Y r

∂ ∂
≡ Ω + +

∂ ∂
                                                              (5.14) 

and 

                    
1 ,    

r r r r
X U V U X U V V

Y r Y r

∂ ∂ ∂ ∂   ≡ + ≡ +   ∂ ∂ ∂ ∂   
                                           (5.15)    

Then since, as noted above, the 
n

Φ  represent the outgoing waves generated by (i.e., forced by) the 

inner solution, which is induced by  the incoming waves represented by the leading terms in the 

square brackets of (5.2), the ( )0

i
G  must be axisymmetric and (5.5),(5.8)and (5.4), therefore, imply that 

(see (Abramowitz & Stegun,1965, p.360) 

       

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 0 1

0 1 0 1

..... , cos , ...,    1, , 4,5

..... , sin , ...

i i i i
G G G r Y G r Y i r

G G G r Y G r Yϕ ϕ ϕ ϕ

+ ε + = − ε ϕ−ϕ + =

+ ε + = + ε ϕ−ϕ +  



 
                          (5.16) 

So equations (5.11) and (5.12) with 0n = show that  

                                                                ( ) ( )0 0
0

r
G Gϕ= =                                                      (5.17) 

since ( )0

r
G must be finite and ( )0

Gϕ must be zero at 0r = , and equations (5.9), (5.10),and (5.13) 

become 

                       ( ) ( )  ( )
( ) ( )

( )0 0
0 0 02 4 5

0 1 1 1 41 0
U G G

D G G c X G
Y Y Y

∂ ∂ ∂
− + − + − − =

∂ ∂ ∂
γ                            (5.18) 

                                              ( )  ( ) ( )0 0
0 2 4 5

1 0
U G G

G c
r r r

∂ ∂ ∂
− − =

∂ ∂ ∂
                                                  (5.19) 

                                                ( ) ( )0 0

0 5 1 1 0D G X G− + =                                                                 (5.20)    

Page 13 of 46



[14] 
 

Since equations,(5.8) and (5.17) show that the lowest order ( )0

4T
g -term is zero in (5.6) while the 

expansion (5.16) implies that the ( )1

4T
g -term (which is of the same order as the ( )0

4i
g terms in (5.5)) will 

be non-zero, the contribution of the higher order non-axysymmetric ( )1
,   ,G rκ κ = ϕ  terms to the 

total Green’s function will, be ( )1O , i.e. of the same order as the lower order ( )0

i
G terms. Retention 

of the higher order terms in the mean flow expansion (3.2)- (3.4) would, as noted above, have 
produced inhomogeneous terms in the 1n =  equations (5.9)-(5.13). But these terms would be 

proportional to ( ) ( )0
,G rκ Ω  and would, therefore, be axysymmetric (i.e. independentϕ ), which 

means that their net effect would be to produce an ( )O ε axysymmetric contribution to the 

expansion(5.16), and, therefore, an ( )O ε correction to the ( )1O terms in the expansions (5.5) and 

(5.6) . These terms can, therefore, be neglected and the omission of the higher order terms in the 
mean flow expansion (3.2)-(3.4) is, therefore, justified.  

But the calculations of Karabasov et al (2011) and Karabasov et al (2010) show that the non parallel 
flow effects only come into play at relatively small observation angles where (as shown by Goldstein 
(1975) and Afsar (2010) for a strictly parallel mean flow and by Karabasov et al (2007, see figure 
(14a)) for a non-parallel flow) the axisymmetric term makes the dominant contribution. It is, 
therefore, appropriate to only consider the 0n = solution.  

Equations (5.18)-(5.20) can be greatly simplified by taking U and Y  to be the independent variables 
and using the chain rule along with (5.15) to rewrite equation (5.14) as 

                                                   

( )0

0 0 1 1i i i r i
D G D X G i U X G i U V G

U Y U Y r

∂ ∂ ∂ ∂ ∂     ≡ + = Ω + + = Ω + +     ∂ ∂ ∂ ∂ ∂     
                     (5.21) 

where 
0D  is defined by the second member of this equation and ( ),

i i
G G U Y=  is defined implicitly 

in terms of ( ) ( )0
,

i
G r Y by 

                                             ( )( ) ( ) ( )0
, , ,

i i
G U r Y Y G r Y=                                                      (5.22) 

The partial derivative with respect to Y is at constant U in the third member and at constant r  in 

the last member. It then follows from (5.19) that 

                                                      2 4 5
1

G G
G c

U U

∂ ∂
= +

∂ ∂

                                                               (5.23) 

Applying the chain rule to (5.18), therefore, shows that 

                                         ( )2 4 5
0 1 1 41 0

G G
D G c X G

Y Y

∂ ∂
− − − + − =

∂ ∂

  γ                                        (5.24) 
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and equation (5.20) can be written as                                          
 

                                                   2 4
0 5 1 0

G
D G X c

U

∂
− + =

∂

                                                          (5.25)      

which means that                                           

                                                         2
0 0 4D v c D G=                                                                    (5.26)     

and 

                                                     
2

1 4

c v
G G

U U

∂ ∂
= − +

∂ ∂
                                                               (5.27) 

where  

                                                2
4 5v c G G≡ +                                                                         (5.28) 

and 
0D is implicitly defined by (5.21). Equation (5.24) then becomes  

                         
  ( )

2
2 4 5

0 4 1 41 0
v c G G

D G c X G
U U Y Y

 ∂ ∂ ∂ ∂
− − − − + − =  ∂ ∂ ∂ ∂ 

  γ                                  (5.29) 

which can be written as 

                    


( )
2 2 2 2

0 1 0 4 1 42 2
1 0

v c c
D v X D G X G

U U U U

 ∂ ∂ ∂ ∂
− − + + − + = 
∂ ∂ ∂ ∂  

 γ                              (5.30) 

when ( )2
c f U=  where f is, at this point,  an arbitrary function. Equation(5.26) shows that this 

reduces to the very simple result                                         

                                            
2

2

0 1 22

1
0

v
c D v X

U Uc

∂ ∂  + = ∂ ∂ 
                                                        (5.31) 

that only depends on the specific mean flow field through the streamwise component  

                                          ( ) ( )( )1 1, , ,X U Y X r U Y Y=                                                         (5.32) 

of the advection vector when 2c is assumed to satisfy the Crocco relation (Crocco,1932) 

                                                            ( )2 2 21

2
c c U∞

−
= −

γ
                                                        (5.33) 
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Equation (5.32), which is a consequence of the implicit function theorem, merely indicates that 

( )1 ,X r Y becomes a function of ,U Y when r  is expressed as a function of ,U Y . Since equation 

(A.5) shows that 

                                       
( )

 V     as  
2

                                                                                  

r

E Y
r

r
→ →∞


                (5.34) 

where 

                           ( )




22
2

222 ln 2

c c

cc

U Uc b d
E Y h h

Y dY cc

 − ∂  ≡ + −  ∂    
                                              (5.35) 

it follows from equations (5.15), (A.1), (A.2) and (A.4) that 

                                             ( ) ( )1 ,   as  0X U Y E Y U U→ →                                                  (5.36) 

where 

                                       ( )

 ( )

2

2 2

ln 2
c

c

c U
E Y E Y

c b

−
≡ −                                                              (5.37) 

and ( ),b h are parameters that appear in the mean flow model described in appendix A. It therefore 

follows from(5.21) (5.31) and (5.33) that v satisfies  

                            ( )( ) ( ) 0
v v

i E Y v U E Y
U U Y

 ∂ ∂ ∂ Ω− + + =  ∂ ∂ ∂  
                                       (5.38) 

as 0U → , which means that 

 ( )v v
U E E v H Y

U Y

∂ ∂ + + = ∂ ∂ 
                                            (5.39) 

where ( )H Y is an arbitrary function of Y . So (as can be verified by direct substitution) v posses the 

asymptotic solution 

 ( ) ( ) ( ) ( )ln / 2

0 1 ln ,   as 0i U G
v V Y V Y U Y Ue O U U U

− Ω= + +Γ + →                        (5.40) 

where ( )YΓ is an arbitrary function of Y and  

 ( ) ( ) ( )0i E V Y H YΩ− =                                                        (5.41) 
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 ( ) ( )1 0 0i V Y V Y′Ω + =                                                           (5.42) 

It follows that v cannot behave like ( ) 1/2

ln ln ln 1/r U   as 0U → and (see equation(6.1)) 

therefore, as anticipated, cannot match (5.7) unless ( ) ( )0, , ,0 0f Y Y R θΦ Ω =, . It now follows 

from (4.1), (4.9), (5.4), (5.5) and (5.8) that ( ) ( )0 0

1 4,G G must satisfy the boundary conditions 

                                  ( )0

4 , 
cos /

G i
i Y c

e→− Ω
− Ω θ ∞

                                                           (5.43) 

                                                   

                    ( )
( )

( )
0

0 02 4
1 4  as cos      with  0r

G
i G c i c G Y

Y
∞ ∞

∂
Ω → − = Ω θ →∞ ≥

∂
                             (5.44)     

As expected (5.40)-(5.42) involve two arbitrary functions that can be specified as boundary 

conditions along the non-characteristic surface 0U =  and, since (5.15),(5.20),(A.1),(A.2)and (A.3)  

show that ( )0

5G is exponentially small as r →∞ , it follows that  

                                                          2
cos /i Y c

v i c e∞
− Ω θ ∞→− Ω                                              (5.45) 

And equations (5.40) and (5.41) show that this boundary condition will be satisfied if we take 

                                        ( ) ( )2
cos /i Y c

H Y i c i E e∞

− Ω ∞= − Ω Ω−
θ

                                           (5.46) 

Differentiating (5.40) with respect to U and using (5.42)shows that  

                                         
( ) ( )0 ln /  as 0i U G

V Yv i
Y e U

U i E

− Ω′∂ Ω
→ − − Γ →

∂ Ω
                                 (5.47) 

It, therefore, follows from (5.45) and(5.27) that  

                                
cos

,   cos   with 0
/i Y cv

i c Y
U

e∞

− Ω θ ∞∂
→ Ω θ ≥

∂
                                     (5.48) 

and, therefore, that (5.44) will be satisfied if we set  the arbitrary function Γ to zero. 

Equation (5.31) is hyperbolic (Garabedian, 1964, p.57 and ff.) with characteristics 

                                                          
1

,
dY U

dU X
=                                                                (5.49) 

or, equivalently 
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                                      1constnt,  
dU X

Y
dY U

= =


                                                                  (5.50)   

This means that it is not necessary to impose a downstream boundary condition, which greatly 
simplifies the computation. Figure 1 shows the characteristic directions in the ( , )Y U  plane 

(obtained using the difference equation ( )1 1, 1 1 1/ ( )
j j j j j j

U U X U Y Y− − − −= + −  with j  being the grid 

index along the Y  coordinate) for a subsonic and a supersonic Mach number. Both results suggest 
that information propagates to the left and to the right from the 0U =  boundary and that no 
boundary conditions are required on the 0Y = and Y →∞  boundaries. 
 
The solution is now uniquely determined by the two boundary conditions (5.45) and (5.48)
(Garabedian, 1964, p.105) on the non-characteristic curve 0U = .  
      

a)  b)  

                         Figure 1 Second family of characteristic curves a) for 0.5M∞ = b) for 1.4M∞ =  

4G  can be determined by solving equation (5.26)  subject to the initial condition 

( )0

4

cos /
G i

i Y c
e= − Ω
− Ω θ ∞

 on 0,  with 0U Y= ≥  and  
1G  can then be calculate from(5.23) . This 

is most easily done by introducing the characteristic coordinates ( ),U Yξ and Y where 

constantξ = is the 2nd characteristic curve of (5.31). Then ξ is an integral of (5.50) and satisfies the 

partial differential equation (Garabedian, 1964, p.57 and ff.) 

                                                  
1 0U X

Y U

∂ξ ∂ξ
+ =

∂ ∂
                                                              (5.51) 

So (5.21) becomes                             
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                                                    0D i U
Y

∂ = Ω +  ∂ ξ
                                                               (5.52) 

and equation (5.26) can be written as 

                                       
( ) ( )2 2

0 4 1/ /D G v c X v c
U

∂
− = −

∂


                                                     (5.53)   

It, then, follows from equation (5.51) that       

                                           ( ) ( )2 2

0 4 / /D G v c U v c
Y

 ∂ ∂
− =  ∂ ∂ 

 ξ
ξ

                                            (5.54) 

which can be integrated along the characteristic onstantcξ = to obtain 

( )( ) ( ) ( )
( ) ( )

0

4 exp
ˆ ,

, , , ,
ˆ,

Y

Y
Y

i

Y
YdY

G U Y Y Y Y dY
U Y

Ω
  ∂Γ
 = Γ + Λ

∂  
∫∫
 

    ξ
ξ ξ ξ

ξξ
                                 (5.55) 

where 

     

( )  ( ) ( )( ) ( ) ( )

( ) ( )( )

2, / ,   , , , ,    , , / ,     

                                                                , , ,  

U Y v c Y U Y Y U Y U Y Y

Y U Y Y

ξ ξ ξ

ξ ξ

Γ ≡ Γ ≡ Γ Λ ≡ ∂ ∂

Λ ≡ Λ



 
                      (5.56) 

and 
0Y , which is defined by 

                                                         ( )0 0, ,Y =ξ ξ                                                                (5.57) 

is the streamwise coordinate of the point where the onstantcξ =  characteristic crosses the non-

characteristic line 0U = . 
 
6. Numerical Procedure 

Since the general solution to equation (5.31) behaves like (5.40) as 0U → , the derivative 

/v U∂ ∂ will undergo rapid oscillation in the vicinity of 0U =  unless the second term is completely 

eliminated by the 2nd boundary condition(5.48). The numerical procedure, therefore, has to be quite 

accurate in this region. 

Equation (5.31) was solved numerically by rewriting it as a set of two 1st order partial differential 

equations and mapping the ( , )Y U  domain into the rectangular ( , )Yη domain where /
c

U Uη ≡ . 
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The derivatives were approximated with second order finite difference schemes.  And since the 

focus of this paper is on the analytical results, we decided to employ a simple and robust numerical 

scheme to carry out the computations and use a large number of grid points along with grid 

convergence studies to make sure that the dissipative character of the scheme did not affect the 

accuracy of the solution.  We were able to use a Lax-Friedrichs scheme (Hirsch, 2001) to solve the 

resulting set of equations by marching in a pseudo-time direction, since there are no preferential 

directions along the characteristics (see figure 1). The 2
L -error was used to check the convergence 

of both v  and /v U∂ ∂  and the solution was considered to be converged when the error was 

reduced by approximately 5 orders of magnitude.  Figure 2 shows a typical plot of convergence 

history for 0.5M∞ = . Optimizations of the numerical algorithm can certainly be developed by 

employing one of the high-accurate, non-dissipative schemes that appear in literature. 

 

Figure 2. Convergence history for 0.5M∞ =  

 

 

1G  was calculated from (5.27) and 4G  was calculated by solving equation (5.26) numerically instead 

of from the analytical formula (5.55). The results were mapped into the original radial coordinate 
system by using the equation 

                                                ( )
  ( )2 2ln /

,
ln 2

c
c c Y

r Y h b
η

η
 
 → +                  (6.1) 

7. Results and Discussion 

All computations are based on the compressible mean flow model given in Appendix A and the 

shear layer parameters ( )b Y , ( )h Y  and 
c

U shown in figures A-1, A-2 and A-3, which together 
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satisfy the momentum conservation relation (A.9). The shear layer inner boundary h  is set equal to 

1 at 0Y =  since all lengths are normalized by the jet radius 
J

r  and the centerline velocity 
c

U is 

assumed to be constant in the potential core region. The thickness parameter ( )b Y  is assumed to 

have a constant slope which is adjusted to make the h  value computed from (A.9) goe to zero when 

1Y y= ε  is close to 1, since 
J

r divided by the potential core length is a reasonable measure of the jet 

spread rate ε . The jet centerline velocity 
c

U  shown in figure A-3 is computed from (A.11) in the 

downstream region where 0h = .  

The resulting mean velocity profiles for 0.9M∞ =  are shown in figure 3. They are nearly identical to 

the 0.5M∞ =  and 1.4M∞ =  results (not shown here). 

                                    

                                         Figure 3 mean velocity profiles for 0.9M∞ =   

 

      Since the boundary conditions (5.45) and the equation obtained by equating the first term in 

(5.31) to zero are identically satisfied by the locally parallel flow solution 

                                                      


( )
2

   
1 / cos

cos /i c
v

U c

i Y c
e

θ

θ

∞

− Ω
=

−

− Ω ∞
                            (7.1) 

the second term in (5.31) must account for the nonparallel flow effects. Introducing the scaled 

streamwise coordinate Y Y≡ Ω  into (5.31) shows that the first term is proportional to Ω  and 

therefore becomes dominant as Ω  becomes large, which confirms that the solution reduces to the 

locally parallel flow result when  the scaled frequency becomes large. Inserting (7.1) into (5.26) and 

using the result in (5.27) shows that  
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                                                    ( )


( )

2
0

1 2

cos

1 / cos

cos /
i c

G
c U c

i Y c
eθ

θ

θ

∞ ∞

− Ω
=

 − 

− Ω ∞
                                     (7.2) 

when the mean flow is parallel. These results show that ( )0

1G and therefore ( )0

1 /G r∂ ∂ (which, as 

noted below makes the dominant contribution to the propagator(2.5)) are identically zero at 90oθ =  

when the mean flow is parallel. We, therefore, expect ( )0

1G and  ( )0

1 /G r∂ ∂ to  be small at 90oθ = in 

the non-parallel case. The non-axysymmetric 1n ==  contribution to the adjoint Green’s function 

expansion (5.5) and (5.6) should, therefore, be dominant at this angle. But Goldstein (1975, 1976) 

shows that the 0n = contribution becomes dominant at small angles when the mean flow is parallel 

and the Mach number is reasonably large. We expect this to be true in the nonparallel case as well.  

 Since Karabosov et al (2011) show that the nonparallel mean flow effects are insignificant at 090  

but can be as large 8 Decibels at 030  to the downstream axis, we focus on the small angle radiation 

where the axisymmetric contribution to the low frequency Green’s function is dominant. It is , 

therefore, only necessary to consider the 0n = contribution to the expansion (5.5) and (5.6) which is 

determined by the very simple hyperbolic equation (5.31).Its solution is, as noted in section 5, only 

affected by the mean flow through streamwise component 
1X  of the mean flow advection vector.       

           This quantity is plotted in figure 4 for 0.5M∞ =  and 1.4M∞ = . Notice that the results are 

nearly identical. The curves in parts a) and b) start from the edge of the potential core when 

1Y < and from the jet centerline, 0r = , when 1Y > . The curves in parts c) and d) of the figure show 

that 
1X  changes very rapidly in the zone between the end of the potential core and the transition 

region.  The effective spread rate is, therefore, expected to be very large when the source point is 

located in this region, which suggests the non-parallel effects will continue to be important at larger 

values of the Strouhal number.  But this could also cause the asymptotic solution to break down at 

relatively small values of the expansion parameter ε , which means that the full numerical solution 

would have to be invoked for relatively small values of this parameter.  
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a) b)      

c) d)  

      Figure 4.  Streamwise component of the mean flow advection vector profiles a) as a function of 

r for fixed Y and  0.5M∞ = , b) as a function of r for fixed Y  and 1.4M∞ =  c) as a function of 

Y for fixed /
c

U U  and  0.5M∞ = , d) as a function of Y for fixed /
c

U U  and  1.4M∞ =  

Figures 5-7 are plots of the intermediate variable v  calculated from (5.31) and (5.45) as a function 

of the mean streamwise velocity U at various values of the streamwise coordinateY for three 

different Mach numbers. These plots show that this quantity is fairly close to the corresponding 

parallel flow solution at low Mach numbers and that, as expected, it converges to that solution as Ω  

increases. But they also  show that the convergence occurs at progressively higher frequencies as the 

Mach number increases and  that the supersonic result never converges to this result in the vicinity 

of the critical layer (which lies at U =0.8247 in the figure) where the denominator of (7.1) vanishes. 
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This is because the parallel flow solution has a singularity at the critical layer and, therefore, becomes 

invalid in that region for any finite value of Ω . This occurs because the non-parallel flow effects will 

always be important in a sufficiently small region surrounding the critical layer no matter how small 

the mean flow divergence rate ε becomes.       

a) b)  

 

 

                                                    c)  

Figure 5. Plots of intermediate dependent variable v vs. U at constant Y  for 030 ; 0.5;Mθ ∞= =      

a) 2;Ω =  b) 5Ω = c) 20Ω =   

Page 24 of 46



[25] 
 

a)  b)  

 

                                             c)   

   Figure 6. Plots of intermediate dependent variable v vs. U at constant Y  for 

030 ; 0.9;M∞= =θ      a) 2;Ω =  b) 5Ω = c) 20Ω =   
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a) b)  

   

                                               c)  

 Figure 7.  Plots of intermediate dependent variable v vs. U at constant Y  for 030 ; 1.4;M∞= =θ      

a) 2;Ω =  b) 5Ω = c) 15Ω =   

 

It follows from equations   (2.4) and (2.5) that the largest contribution to the far field spectra comes 

from the streamwise ( )0

1G component of the Fourier transformed Green’s function. This quantity 

can be obtained from equations(5.22) and (5.55) by quadratures but the results shown for three 

different acoustic Mach numbers in figures 8-10 are obtained from the v  solutions by integrating  
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the first order differential equation (5.26) numerically. The results show that, while ( )0

1G again 

converge to the locally parallel flow result (now given by (7.2)) as Ω  becomes large, the deviation 

between these results is now considerably larger and the convergence is much slower than it was for 

v . This is probably because the derivatives that appear in equation (5.23) tend to amplify these 

differences.  

a) b)  

  

                                                    c)   

 

 Figure 8. Comparison of parallel and nonparallel solutions for ( )0

1G  vs. U at constant Y  for 

030 ; 0.5;Mθ ∞= =  a) 2Ω = , b) 5Ω = , c) 20Ω =   
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a) b)  

   
 

                                             c)    

Figure 9. Comparison of parallel and nonparallel solutions for ( )0

1G  vs. U at constant Y  for 

030θ =  ; 0.9;M∞ =   a) 2Ω = , b) 5Ω = , c) 20Ω =  
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a) b)  

 

                                           c)  

Figure 10. Comparison of parallel and nonparallel solutions for ( )0

1G  vs. U at constant Y  for 

030θ =  ; 1.4;M∞ =   a) 2;Ω = b) 5Ω = c) 15Ω =   

          

The dominant contribution to the propagator(2.5)  comes from the radial derivative of ( )0

1G . Figures 

11-22 show ( )0

1 /G r∂ ∂ for 0.5,0.9,1.4M∞ = . Since the dependent variable y  corresponds the 

actual physical source point in the adjoint problem while the source variable x  

corresponds to the actual “observation point, these altitude plots represent the intensity of the 

radiated sound as a function of source location. They show, among other things, that the parallel 
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flow solutions exhibit a single peak (centered on the initial shear layer at subsonic speeds), while the 

non-parallel solutions exhibit a double peak structure with the second peak is centered on the nozzle 

lip line about two potential core lengths downstream. This causes a large increase in the magnitude 

of ( )0

1 /G r∂ ∂  at subsonic Mach numbers, which decreases with increasing Mach number. The 

primary nonparallel flow effect at supersonic speeds is to prevent ( )0

1 /G r∂ ∂ from becoming infinite 

in the critical layer (i.e., to eliminate the critical layer singularity that occurs in the parallel flow 

solution). These  results highlight the importance of non-parallel flow effects in identifying apparent 

source locations at low frequencies, since they show that the parallel flow Green’s function 

incorrectly predicts the source location by a significant amount--as was first a pointed out by 

Karabasov (2010).     

a)  b)  

Figure 11.  Plots of ( )0

1 /G r∂ ∂  vs.  r at various values of Y for 02; 30 ; 0.5;M∞Ω = = =θ  a)  

nonparallel, b) parallel mean flow 
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a) b)  

Figure 12.  Contour plots of ( )0

1 /G r∂ ∂  for 02; 30 ; 0.5;M∞Ω = = =θ  a) nonparallel, b) parallel 

mean flow 

 

a) b)  

Figure 13.  Plots of ( )0

1 /G r∂ ∂  vs.  r at various values of Y for 05; 30 ; 0.5;Mθ ∞Ω = = =  a)  

nonparallel, b) parallel mean flow 
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a) b)  

Figure 14. Contour plots of ( )0

1 /G r∂ ∂  for 05; 30 ; 0.5;Mθ ∞Ω = = =  a) nonparallel, b) parallel 

mean flow 

 

a) b)  

Figure 15.  Plots of ( )0

1 /G r∂ ∂  vs.  r at various values of Y for 02; 30 ; 0.9;M∞Ω = = =θ  a)  

nonparallel, b) parallel mean flow 
 

Page 32 of 46



[33] 
 

a) b)  

Figure 16.  Contour plots of ( )0

1 /G r∂ ∂  for 02; 30 ; 0.9;M∞Ω = = =θ  a) nonparallel, b) parallel 

mean flow 

 

 

a) b)  

Figure 17.  Plots of ( )0

1 /G r∂ ∂  vs. r at various values of Y for 05; 30 ; 0.9;M∞Ω = = =θ  a) 

nonparallel, b) parallel mean flow 
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a)  b)  

Figure 18.  Contour plots of ( )0

1 /G r∂ ∂  for 05; 30 ; 0.9;M∞Ω = = =θ  a) nonparallel, b) parallel 

mean flow 

a) b)  

Figure 19.  Plots of ( )0

1 /G r∂ ∂  vs. r at various values of Y for 02; 30 ; 1.4;Mθ ∞Ω = = =  a) 

nonparallel, b) parallel mean flow 
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  a) b)  

Figure 20. Contour plots of ( )0

1 /G r∂ ∂  for 02; 30 ; 1.4;Mθ ∞Ω = = =  a) nonparallel, b) parallel 

mean flow 

a) b)  

Figure 21. Plots of ( )0

1 /G r∂ ∂  vs. r at various values of Y for 05; 30 ; 1.4;M∞Ω = = =θ  a) 

nonparallel, b) parallel mean flow 
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a) b)  

Figure 22. Contour plots of ( )0

1 /G r∂ ∂  for 05; 30 ; 1.4;Mθ ∞Ω = = =  a) nonparallel, b) parallel 

mean flow 

The downstream peak appears to be associated with the positive peak in the mean flow advection 

vector 
1X  which, as shown in parts c) and d) of figure 4, lies in a region where the mean velocity 

gradient /U r∂ ∂  is still fairly large. The larger negative values tend to lie in a region where /U r∂ ∂  

is small. These effects only occur at small angles to the downstream axis and decrease with 

increasing Ω . The nonparallel effects are completely opposite at supersonic and subsonic speeds. 

Comparison of parts a) and b) of figures 11-20 shows that the deviations between the parallel and 

non-parallel flow results are much larger than they were for v . This can probably be attributed to 

the fact that the /r U∂ ∂ derivative becomes very large in some regions of the flow. 

           The double peaked structure occurs at all Mach numbers but the upstream peak increases in 

magnitude and dominates over the downstream peak at supersonic speeds as shown in figure (23). 

 

 

 

 

 

 

 

Strong downstream peak Weak downstream peakStrong downstream peak Weak downstream peak
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                (24a). M = 0.5                                                (24b). M = 0.9                                                               (24c).M = 1.4 

Figure 23.  Change in the “two-peak” structure with Mach number for . 

Equation (2.4)  shows that the actual acoustic spectrum is determined by the product of the Fourier 

transformed propagator with a large number components of a tensor ,
ljλ κH j,l=1,2,3:  

 , 1, 2,3, 4λ κ =  that characterizes the acoustic source and that a number of these will appear in the 

formula even when the propagator is approximated by the single 
1 /G r∂ ∂  term. But G & L and 

Afsar (2011) show that only the single 
1 1r r

H component appears when some plausible assumptions 

are made about the tensorial structure of the turbulence.  

   These results are consistent with the Karabasov et al (2011) numerical results, which show that 
nonparallel flow increases the low frequency sound radiated at small angles to the jet axis in a Mach 
0.9 jet (their Figure 16(b)) and that the largest effect occurs when the source is about nine diameters 
(or about two potential core lengths) downstream from the nozzle (see figure 9 of Karabasov et al, 

2011).  Their results also show that the nonparallel flow does not affect the sound radiated at 90o to 
the downstream axis at any frequency.  

( );Gλ ωy x  is the Fourier transform of the 4th component ( )4 , ,a
g tλ τy x of the adjoint vector 

Green’s function of a specific form of the linearized Euler equations. These equations can be written 

in a number of different ways by using the Steady Euler equations to change the way their 

coefficients depend on the base flow variables. But the only form corresponding to the adjoint 

equations (2.8)-(2.10) is compatible with the generalized acoustic analogy and, therefore with the 

acoustic formula(2.4).. Tam and Auriault (1998) use a different form of the adjoint Green’s function 

equation to compute the acoustic radiation from a point source at a particular location in a non-

parallel mean flow. Their results shown in their figures 11-13 suggest that the low frequency sound 

will be relatively insensitive to nonparallel mean flow effects at subsonic Mach numbers. But their 

computations are based on the 4th component 
44

a
g of the adjoint vector Green’s function while the 

present analysis shows that it is the radial derivative of the 
14

a
g  component that makes the dominant 

contribution to the propagator (2.5) that appears in the acoustic formula (2.4) and is, therefore,  the 

dominant source of the low frequency sound radiation at small angles to the downstream axis. The 

calculations displayed in figures 5-7 show that the derived function v , which roughly corresponds 

to
44

a
g , is relatively insensitive to non-parallel flow effects except where critical layer effects come 

into play  in supersonic flows--as predicted by Tam and Auriault (1998).  But figures 11-19 show 

that the 
14 /a

g r∂ ∂ term can be strongly affected by nonparallel mean flow effects for certain source 

locations that lie in regions where the turbulence intensity is likely to be fairly high--suggesting that 

the low frequency sound will be strongly affected by nonparallel mean flow effects as found by 

Karabosov et al (2011). 

8. Concluding Remarks 
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The far field acoustic spectrum can be expressed as the product of a propagator (that accounts for 

the mean flow interactions) and a generalized Reynolds stress auto-covariance tensor (that accounts 

for the turbulent fluctuations). The propagator only depends on the mean flow and the adjoint 

vector Green’s function for a particular form of the linearized Rayleigh equations for that flow. This 

paper is concerned with the effects of the nonparallel mean flow on the low frequency limit of that 

Green’s function. It is shown that this quantity can be calculated by solving a very simple second 

order hyperbolic equation of a derived function v . The numerical results show that this quantity is 

fairly close to the corresponding parallel flow result at low Mach numbers and that, as expected, it 

converges to this solution as the scaled frequency parameter Ω  increases. But they also show that 

the at progressively higher frequencies as the Mach number increases and that the supersonic result 

never converges to this solution in the vicinity of its critical layer.  

The dominant contribution to the propagator (2.5)comes from the radial derivative ( )0

1 /G r∂ ∂ of 

streamwise component, ( )0

1G , of the Fourier transform of the adjoint vector Green’s function. 

Altitude plots of ( )0

1 /G r∂ ∂ as a function of source location ( ),r Y  show that while the parallel flow 

solutions exhibit a single peak centered on the initial shear layer, the non-parallel solutions exhibit a 

double peak structure with the second peak occurring in a region centered on the nozzle lip line 

about two potential core lengths downstream. This causes a large increase in the magnitude of 

( )0

1 /G r∂ ∂  at subsonic Mach numbers, which decreases with increasing Mach number. The primary 

nonparallel flow effect at supersonic speeds is to prevent ( )0

1 /G r∂ ∂ from becoming infinite in the 

critical layer (i.e., to eliminate the critical layer singularity that occurs in the parallel flow solution). 

The nonparallel effects, therefore, produce completely opposite changes in ( )0

1 /G r∂ ∂ at supersonic 

and subsonic speeds. The figures show that the deviations between the parallel and non-parallel flow 

results for ( )0

1 /G r∂ ∂ are now much larger than they are for v .  These results appear to be 

consistent with the Karabasov et al (2011) numerical computations, which show that the nonparallel 

flow increases the low frequency sound radiated at small angles to the jet axis in a Mach 0.9 jet (their 

Figure 16(b)). Figure (9b) of this reference shows that the largest non-parallel flow effects occur 

when the source is located about two potential core lengths downstream of the nozzle. Figure 24 

shows the qualitative similarity of this figure with our figure (18a).  
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                                          Figure 24.  Comparison with Karabasov et al (2011) 

The Karabasov et al (2011) results also show that the nonparallel flow doesn’t affect the 90o sound 

field at any frequency.         

     The present asymptotic approach provides considerable insight into the relevant physics ofd the 

non-parallel mean flow interactions and is expected to be complimentary to the numerical 

computations of Karabasov et al (2010, 2011). G &L found that the numerical computation of the 

weakly non-parallel Green’s function becomes particularly difficult at low frequencies. The present 

results can be used to alleviate that problem because the Fourier transforms(5.8) of the terms in  the 

Green’s function expansions (5.5) and (5.6) can be used as a direct replacement for the Fourier 

transformed Green’s functions that appear in their noise prediction code—or, for that matter, in any 

similar RANS based noise prediction code. The Fourier transforms (5.8) can be calculated by solving 

the boundary value problem (5.31), (5.45), (5.48) and substituting the results into (5.27) and (5.55). 

The mean flow parameters , ,
c

b h U can be determined from the RANS solution..  

Tam and Auriault (1998) use a different form of the adjoint Green’s function equation to compute 

the acoustic radiation from a point source at a particular location in a non-parallel mean flow. Their 

results suggest that the low frequency sound will be relatively insensitive to nonparallel mean flow 

effects at subsonic Mach numbers. But their computations are based on the 4th component 
44

a
g of 

the adjoint vector Green’s function while the present analysis shows that it is the radial derivative of 

the axial component that makes the dominant contribution to the propagator  in the acoustic 

formula (2.4) and therefore, corresponds to  the dominant source of the low frequency sound 

radiation at small angles to the downstream axis. The present calculations also show that the derived 

“Two-peak” structure “Two-peak” structure 

ASYMPTOTIC NUMERICAL (Karabasov et al, 2010)

“Two-peak” structure “Two-peak” structure 

ASYMPTOTIC NUMERICAL (Karabasov et al, 2010)
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function v , which roughly corresponds to
44

a
g , is relatively insensitive to non-parallel flow effects 

except where critical layer effects come into play at the supersonic Mach numbers--as predicted by 

Tam and Auriault (1998). But the present calculations also show that the radial derivative 
14 /a

g r∂ ∂ of 

the axial component of the Green’s function can be strongly affected by nonparallel mean flow 

effects for certain source locations that lie in regions where the turbulence intensity is likely to be 

fairly high-suggesting that the low frequency sound will be strongly affected by nonparallel mean 

flow effects as found by Karabosov et al (2011). 
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APPENDIX A  Possible Mean Flow     

 In this appendix we generalize the incompressible mean flow model given in Tam and Burton 

(1984) to a compressible flow with 2c determined from Crocco’s Relation (5.33) by putting  
                                           

                                                   ( ) ( ) ( ) ( )2 ,ln2

c c

Y r
U Y U Y eρ ρ

− Θ
=                                          (A.1) 

where 

                                   ( ) ( )
( ) ( ) ( )

0,    
, ,

/ ,     

r h Y
Y r

r h Y b Y r h Y

<Θ =  − ≥  
                                      (A.2) 

( )b Y denotes the width of the shear layer (or the jet radius) and ( )h Y is the radial location of its 

inner boundary. It, then follows from the compressible continuity equation that 

      

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

ln 2

2

1
 V = 1 ln 2

2 ln 2 ln 2 /

                                                                                  

r c c

c c

b Y h Y b Y
Y U Y e erf

r Y

d
Y U Y h Y

dY

− Θ  − ∂ − + Θ  ∂  

+ 


ρ
ρ π

ρ

          (A.3) 

 
But  

                                                                     2 2
c c∞ ∞=ρ ρ                                                            (A.4) 

since the pressure is constant and (A.3)becomes 
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 ( )
 ( )

( ) ( )( ) ( ) ( )
( )

( )( )

( )
( ) ( )

2
22

1/2ln 2

1/22

2

2

 V = 1 ln 2
2 ln 2 ln 2 /

                                                                                  

c

r

c

c

c

U Y b Y h Y b Yc
e erf

r Y c Y

U Y d
h Y

c Y dY

− Θ
  − ∂ − + Θ ∂    

+ 


π

                

     (A.5) 

where  ( )2

c
c Y can be determined from the Crocco relation (5.33). 

   Solving(5.33),(A.1) and (A.4)forU shows that  

 

                                              

( )

( ) ( )2
2

2

2

ln2

ln2

2

1 1 2 1

U
e

e

−

−

Θ

Θ
=

+ + −

α

γ α
                                        (A.6)   

 where            

                                                         2/
c c

U c≡α                                                                   (A.7) 

      And since conservation of momentum implies that 

                                                         2

0

constantU rdr =

∞

∫ ρ                                                  (A.8) 

this shows that  

               

( )

( ) ( )2
2

2

2 2 2 2

1/2
2 ln 2

2

1 2 1

ln2

0

2 1
 

21
h

U rdr rdr h

e

e
−

−

Θ
+ −

Θ

= +
 +  

∞ ∞

∫ ∫
γ α

ρ α α       

( )

( )

( ) ( )

2
2 2

2 2 2

2
2

2

2

2

ln2

ln2
0

2 2 1
  

ln 2 21 1 2 1
1 1 2 1

  

1

h

b z
dz h dr h

z

e

e

α α α
γ α γ α

−

−

Θ

Θ
= + +

+ + −
+ + −

∞

∫ ∫      
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=
( )

( )
( ) ( )

3/ 2
22 2

2 2

2
2

2

2

0

2 1 1 1 2 1
1   

1 ln 2 3 1 22ln 2 1 1 2 1

z

z

b hb
dz h

e

e

−

−

  − + −   − + + 
− −  + + − 

∞

∫
γ α α α

γ γ α γ α
 

                                                                                                                         constant =     (A.9) 

   So 

      
( )

( )
( )

3/ 2
22

2

2 1 1 1
1 constant 

1 ln 2 3 1

b
  − + −   − = 

− −  

γ α

γ γ α
                                                       (A.10) 

in the self similar region where 0h = ,  

or 

                ( ) ( ) ( ) 2
3/ 2

2 2

2

3 1
2 1 1 1 3 1 constant  

b

−
   − + − + − =   

γ α
γ α γ α                               (A.11) 

These results depend on the three shear layer parameters ( )b Y , ( )h Y  and 
c

U and all  computations 

in this paper  are based on the distributions shown in figures A-1, A-2  and A-3.  

                                  

                              Figure A-1. Shear layer thickness parameter b  as a function of Y  
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  Figure A-2 Shear layer centerline location h computed from (A.9) for 0.5,0.9,1.4M∞ = . 

                           

Figure A-3. Jet centerline velocity 
c

U with the downstream portion computed from (A.11) for 

0.5,0.9,1.4M∞ =  
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