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Outlier detection of vital sign trajectories from COVID-19 patients

Sara Summerton1, Ann Tivey2, Rohan Shotton2, Gavin Brown1, Oliver C. Redfern3, Rachel Oakley2,

John Radford2,4, and David C. Wong1,5

Abstract— In this work, we present a novel trajectory
comparison algorithm to identify abnormal vital sign trends,
independent of outcome. There is growing interest in continuous
wearable vital sign sensors for monitoring patients remotely
at home. These monitors are usually coupled to an alerting
system, which is triggered when vital sign measurements fall
outside a predefined normal range. Trends in vital signs, such
as an increasing heart rate, are often indicative of deteriorating
health, but are rarely incorporated into alerting systems.

We introduce a distance-based measure to compare time
series trajectories. We split each multivariate sign time series
into 180 minute, non-overlapping epochs. We then calculate
a distance between all pairs of epochs using the dynamic time
warp distance. Each epoch is characterized by its mean pairwise
distance (average link distance) to all other epochs, with clusters
forming with nearby epochs.

We demonstrate that this method identifies abnormal epochs,
and clusters those with similar trajectories, in synthetically
generated data. We then apply this method to a pilot dataset
of vital signs from 8 patients who had recently been discharged
from hospital after contracting COVID-19, and show that
outlier epochs correspond well with the abnormal vital signs of
a patient who was subsequently readmitted to hospital.

I. INTRODUCTION

Monitoring vital signs is common in clinical practice to

aid assessment of a patient’s condition. Abnormal vital signs

are known to precede adverse events. [1]. For instance, in

patients with COVID-19, there is strong correlation between

low oxygen saturations (SpO2) and severe cases that require

hospitalization [2].

Traditionally, detection of abnormal vital signs is assessed

using Early Warning Scores (EWS) calculated from intermit-

tent, manually-collected measurements [3]. One key limita-

tion of EWS is that they are typically calculated from only

the most recent set of vital signs [4]. This has traditionally

been the case even for continuous monitoring devices [5].

It is possible that trends in vital signs may enable earlier

detection of deterioration, and yield insights into different

indicators of failing health. Previous studies of hospitalized

patients have attempted to include information about vital
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sign trends. However, these have used relatively simplistic

summaries, such as the difference of current and baseline

values [6][7].

In this exploratory analysis, we assess how trends in the

evolution of vital signs over time, regardless of the absolute

value, could be informative in identifying and distinguishing

between patterns of patient deterioration. We propose an ap-

proach to outlier detection for vital sign trajectories and eval-

uate its performance on synthetically generated multivariate

time series. We then consider its behavior when applied to

continuous vital sign data collected from COVID-19 patients

that had been discharged from hospital to their own home.

We demonstrate that this method correctly identifies outliers

and clusters trajectories on both datasets, illustrating the

potential of this method to identify COVID-19 deterioration.

II. METHODS

In the following section we first introduce our overall

approach for identifying outlier trends. We created synthetic

vital sign data with known abnormalities to study the behav-

ior of this method. We describe the generation process later

in this section. We then describe the clinical vital sign data,

as well as preprocessing steps taken, in more detail.

A. Outlier Detection

We implement an outlier detection approach based on

distance to nearest neighbors. This family of approaches is

described in detail by Pimentel et al. [8]. Consider a sequence

of data A = [a1, a2, ..., am], in which ai ∈ R
n is an n-

dimensional feature vector. We denote the similarity between

two such sequences, A and B, as some function F (A,B).
One way to define similarity is as a distance such as the

Dynamic Time Warp (DTW) distance,

F (A,B) =

√

∑

(i,j)∈π

||ai − bj ||2 ,

with 1 ≤ i, j ≤ m, and where π is the optimal alignment

path, defined as the contiguous path through the matrix of

squared element-wise differences between both sequences

that minimizes the cumulative distance between them [9].

The advantage of DTW over the Euclidean distance is that

it allows nonlinear alignments, so similar but non-aligned

or out of phase sequences can be meaningfully compared.

The DTW distance can accommodate time series of unequal

length, however all sequences in this work were fixed to the

same length.

A hierarchical clustering approach can be taken to assess

the similarity of a fixed length multivariate time series in



TABLE I

PERTURBATIONS ADDED TO SYNTHETIC HR (BLUE) AND RR (ORANGE)

Type Shape (without noise)

1. Step function (HR)

2. Increase HR, RR

3. Increase HR, decrease RR

the context of a set of multiple time series. Agglomerative

clustering calculates the distance between each time series,

then joins the pair of time series with the shortest distance

into a single cluster in an iterative process until the entire

dataset is contained in a single cluster. The distance between

two clusters is defined as

D(U, V ) =
1

|U | · |V |

∑

u∈U

∑

u∈V

F (u, v)

where u and v are elements and |U | and |V | are the cardinal-

ities of clusters U and V , respectively, and D is the average-

linkage distance. U and V can be a cluster of multiple time

series or a single sequence. A maximum average-linkage

distance can be set above which new elements will not be

joined to a cluster, providing a stopping criteria.

Many real-world clinical problems involve detecting ab-

normal physiological signals in an abundance of normal data.

Patients with stable vital signs will comprise the majority of

the time series segments, and we expect these series to have

low average-linkage distances and thus be clustered together

first. The time series most dissimilar to the cluster of normal

data will have the largest average-linkage distance, and it is

these final time series or clusters that may implicate outliers

in the data corresponding to abnormal physiological signals.

B. Data generation, collection, and analysis

Synthetic Data — Synthetic heart rate (HR) and respiration

rate (RR) data were generated for 20 ‘patients’ from a

mixture of two periodic functions with Gaussian noise added.

The modulating function had a period of one day, to which a

second, low amplitude sine wave was added with a period of

four hours. The noise was sampled from a 2D Gaussian with

unit variance and random (positive, symmetric) covariance,

restricted to the range [0.15, 0.6] so as to adhere to a similar

covariance as the wearable sensors data after normalization.

Each synthetic file has a duration of 8 days (3840 hours).

Methods of perturbation and values to which they were

applied are listed in Table I. Perturbations were added to the

last 10% (approx. 19 hours) of six files, two for each type of

perturbation, for a total of 115 hours of ‘abnormal’ data. The

magnitude of each perturbation was scaled to approximately

1.5 standard deviations of the original distribution.

Wearable vital sign pilot data — Vital sign data were

collected from cancer patients who had contracted COVID-

19, been admitted to hospital, and had been subsequently

considered suitable for outpatient care. All participants wore

IsansysTM sensors which recorded their heart rate (HR),

TABLE II

PATIENT-LEVEL OVERVIEW OF AMOUNT OF VITAL SIGN DATA

RECORDED (HOURS) AND CLINICAL EVENTS (HOSPITAL READMISSION)

ID HR RR Temp. Events

1 146 146 154 Hospital

2 2 2 2 None

3 2 2 17 None

4 300 300 107 None

5 28 28 41 Hospital

6 280 280 305 None

7 369 369 402 None

8 156 156 257 None

respiratory rate (RR) and temperature (Temp) each minute

for up to three weeks.

In total, data were recorded from eight patients as part

of the RECAP pilot study. The study is listed on the

ClinicalTrials.gov registry with study ID NCT043977052

(https://clinicaltrials.gov/ct2/show/NCT04397705). All study

participants provided signed written consent.

Data Processing and Analysis — The same pre-processing

was carried out on both the synthetic and the real time series.

First, each channel was normalized on a per-patient basis to

zero mean and unit variance, then low-pass filtered using

a 25-point (i.e. 25 minute) median filter to remove short-

term fluctuations in heart and respiration rate, likely caused

by movement artefacts and sensor noise. Second, the signals

were segmented into 180-minute epochs. Data segments that

were shorter than the epoch length were discarded. The

epoch length was chosen so as not to capture medium-term

variations in vital sign data, such as transitory increases

in heart rate due to short-term physical activity, but still

encapsulate overall changes in physiological condition.

The described outlier detection approach was then applied

to all epochs, ranking each epoch by hierarchical average-

linkage distance using the DTW distance measure. The

maximum intra-cluster distance, and thus the number of

clusters, was chosen based on the step in agglomerative

clustering associated with the greatest increase in average-

linkage distance.

To visualize similarity between epochs, we used multidi-

mensional scaling (MDS), which is a dimensionality reduc-

tion approach that seeks to preserve the distance between

data in the original high-dimensional space, in this case, the

matrix of DTW distances between epochs [10]. We used this

to describe and examine the sequence of contiguous epochs

for representative patients from the dataset.

All data generation and processing was undertaken in

Python using the scipy, sklearn, and tslearn libraries. Code

supporting this article is available at https://github.com/

sara-es/outlier-detection-RECAP-data.

III. RESULTS

A. Synthetic data

We applied our outlier detection approach to the synthetic

data, which resulted in five clusters. Epochs with Type 2

and 3 perturbations, as well as all ‘normal’ epochs, each
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Fig. 1. Distances between epochs are visualized in 2D via MDS maps, on which an individual point represents a 180-minute segment of real (plots A,
B) or synthetic (plots C, D) heart rate and respiratory rate data. (A) Epochs from the outpatient data are shown in colors corresponding to their cluster
membership; the majority of epochs form a central cluster (shown in gray), and one cluster (shown in red) contains only one element. (B) Epochs from
patient 1, who was readmitted to hospital, have been highlighted in red and connected in consecutive order. The initial 180-minute epoch is denoted by the
text ‘start’, and the final epoch is denoted by the text ‘end’. The final two epochs of collected data can be shown to rest outside the central cluster of time
series epochs. (C) Epochs from the synthetic data are shown in colors corresponding to their cluster membership; four clusters have formed, corresponding
to a central ‘normal’ trajectory and the three types of permutations added on generation. (D) Epochs from a single generated file have been highlighted in
blue and connected in consecutive order. The epochs to which a permutation was added, near the end of time series, can be shown to progress outside the
central cluster of time series epochs.

formed distinct clusters. A fourth cluster was composed of

83% (10/12) of the epochs with a Type 1 perturbation; the

remaining two formed their own cluster. We note that the

two epochs in this final cluster were the ‘transitional’ epochs

between the base function and base function with Type 1

perturbation added. Figure 1C shows the MDS map of all

synthetically generated time series epochs color coded by

cluster membership, and Figure 1D shows the progression of

one time series with a Type 2 perturbation of later epochs.

B. Wearable vital sign data

Table II shows the duration of vital sign data recorded for

each patient in the data set, as well as whether the patient

was readmitted to hospital. In total, there were 1561 patient-

hours of data for the 8 patients; the mean length of data

recording was 230 hours (range: 2.3 to 527 hours).

We checked the data quality of HR, RR and Temp

recordings by plotting their distributions. Based on this, we

excluded temperature, as the data contained a high proportion

of physiologically implausible values (20.8% were lower

than 34 C). Poor data quality from skin temperature sensors

in wearable devices is a known issue [11].

We applied our outlier detection approach to the HR and

RR data, which resulted in three clusters, one containing a

single epoch, as shown in Figure 1A. Of the three outliers,

two belong to patient 1, who was readmitted to hospital.

Figure 1B shows the MDS map of time series epochs

from all patients. The sequence of contiguous epochs for

Patient 1 has been highlighted in red. Patient 1’s initial epoch

lies towards the centre of the MDS map, indicating that

it is similar to multiple other epochs. Towards the end of

the monitoring period, the epochs progress away from the

starting location on the map. The final two epochs are far

away from all other points on the MDS map, indicating a

highly unusual trajectory.

The raw time series epochs corresponding to the start and

end points of patient 1, as well as one intermediate epoch,

are shown in Figure 2. We observe that the ‘start’ epoch

contains HR and RR trajectories that are both relatively flat.

In contrast, the ‘end’ epoch contains vital signs that have

deviated from their baseline average, and trajectories for both

increase across the epoch. This trajectory is visually very

different to the start and intermediate epochs in the figure,

confirming the validity of the outlier detection approach.

IV. DISCUSSION

We developed a novel method to identify abnormal multi-

variate vital sign time series. Unlike previous methods, which

use categorical variables or change scores to summarize

a trend, our method considers the entire shape of a time

series epoch via the DTW distance. By clustering based on

this distance, we can determine outlying, unusual epochs.

Furthermore, this method can group distinct patterns, that

is, we observed that different perturbations introduced to the

synthetic data resulted in distinct clusters. We demonstrated

the efficacy of this approach on both synthetically generated

and clinical data, successfully identifying abnormal trajecto-

ries in both cases.

When applied to a small patient cohort, this approach

yielded promising initial results. Of the 1% of most outlying

epochs, 2/3 belonged to a patient who went on to require

hospital admission within 24 hours of the end of monitor-

ing. Furthermore, our per-patient visualization showed how

epochs became progressively more abnormal for a patient

who required readmission to hospital. These results therefore

provide descriptive early evidence suggesting our approach

for assessing vital sign trends may be useful for predicting

COVID-19 deterioration.

While our approach to detect abnormal vital sign trajec-

tories shows promise, there are several limitations. First,



Fig. 2. (i) The raw HR and RR data for patient 1 over the entire duration of monitoring (approximately 7 days). (ii) The start epoch of normalized
and smoothed HR and RR data for patient 1. (iii) An epoch taken from the approximate mid point of monitoring data. (iv) The end epoch for patient 1,
showing visible deviation from previous baseline measurements.

we chose epoch lengths of 180 minutes, based on clinical

judgement. However, there is no guarantee that this epoch

length is optimum. Second, we used DTW distances to

compare epochs, when other distance measures may be more

appropriate or faster to compute. Both the epoch length and

distance measure can be optimized via cross-validation. The

current data set was insufficient to attempt this, as data

comprised only 8 patients and only 2 were readmitted to

hospital (positive events).

Finally, we note that this method did not highlight any

epochs from the second patient to be readmitted (patient 5).

However, only 28 hours of HR and RR data were collected

for this patient at the start of the monitoring period. At this

point the patient withdrew from data collection due to sensor

discomfort and no data were recorded for the three days

before their readmission to hospital. Therefore, it is likely

the decision to readmit was founded on external information

not evident in the available HR and RR data.

In this work, we introduced a trajectory comparison al-

gorithm that is capable of identifying outlying trends in

time series. Furthermore, this method distinguishes between

different abnormal trajectories, forming multiple and distinct

clusters of outliers. By applying this algorithm to outpatient

data, we showed that vital sign trajectories may contain clini-

cally relevant information, predictive of patient deterioration.

Future work should apply our method to larger data sets with

more positive clinical events.
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