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Monotone §2-Sup-Fuzzy Relations:
Converse and Complementation

Ignacio Bellas Acosta and John G. Ste]][0000—0001—9644-1908]

University of Leeds, Leeds LS2 9JT, U.K.
{sciba,j.g.stell}@leeds.ac.uk

Abstract. L-fuzzy relations on a set X are functions from X x X to the
lattice L and act on the L-fuzzy subsets of X. When L is the lattice of
sup-preserving endomaps on a complete lattice {2, the relations act also
on the 2-fuzzy subsets of X. We call these relations equipped with this
action, {2-sup-fuzzy relations. When X is a preorder, monotone relations
of this form act on the lattice of monotone functions from X to 2. The
motivation comes from mathematical morphology in image processing.
Grey-scale images are modelled as functions on sets of pixels with {2 as
the set of grey levels. More generally, graphs and hypergraphs labelled by
grey levels can be handled. Enriching the lattice of {2-sup-fuzzy relations
with a multiplication operation provides a unital quantale that acts on
the lattice of grey-scale images via the morphological operations of dila-
tion and erosion. We study the quantale of 2-sup-fuzzy relations, with
particular attention to the concepts of converse and complementation for
these relations.

Keywords: Fuzzy relations - Quantales - Sup-preserving endomorphisms.

1 Context and Background

1.1 Fuzzy Relations

The notion of a fuzzy relation on a set X as a function from X x X to a suitable
lattice L, goes back to Goguen [9, p161]. Such relations are there just called ‘L-
relations’ although the terminology ‘L-fuzzy relations’ is widely used now, for
example in [25]. The category-theoretic properties of L-fuzzy relations, where
L is a complete Heyting algebra are studied by Winter [25] in the context of
Goguen categories.

The converse, which we will denote by R, of an L-fuzzy relation R is de-
fined [25, p43] by R(x,y) = R(y,x). This is a widely used definition, but we
contend that converses of L-fuzzy relations are not as straightforward as this
might suggest. We argue below, using motivation from mathematical morphol-
ogy, that fuzzy relations acting on L-fuzzy subsets for a complete lattice L,
‘should’ correspond to the sup-preserving mappings on the lattice of all L-fuzzy
subsets. This means we need to deal with relations R where R(x,y) is no longer
an element of L, but a sup-preserving mapping from L to itself. We also argue
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below, again with motivation from mathematical morphology, that there is a
need to account not only for relations which act on L-fuzzy subsets, but for
relations which act on monotone functions from a preorder to L. The L-fuzzy
subsets are the special case of this where the preorder is discrete, i.e. x < y iff
T =y.

Recent work by Santocanale [19] has investigated involutive quantaloids, and
in particular the quantale Q(L) of sup-preserving (also called join-continuous)
endomorphisms of L. This work shows that when L is completely distributive,
there is essentially a unique involution (of some special form) on Q(L). The con-
nection between the involution identified in [19] and the work presented here is,
to use an informal analogy rather than to claim a completely general correspon-
dence, that the involution corresponds to a converse-complement operation on
relations. That is, an operation consisting of taking converse and then taking
the complement of that converse relation. This is certainly the case for Boolean-
valued relations on a preorder S, that is monotone functions from S°P x S to
the 2-element Boolean algebra. We return to the connection between converse-
complement and the involution defined by [19] in Section 1.4 after establishing
some background context on the converse operation.

1.2 The need for the converse

The operation of converse on discrete Boolean relations, that is, on subsets of
sets of the form X x X is clearly important as evidenced by its presence as one
of the operations in a relation algebra. The converse is a key example in several
more abstract settings including dagger categories and allegories [8].

The relational converse appears in the semantics of modal logic. Let R C
X XY be a relation between sets and use _ @ R to denote the direct image
operation defined on 2% by A+~ {y € Y | 3z ; R(z,y)}. If R is the accessibility
relation in a Kripke structure and we write [¢] for the set of states where ¢
holds in a model, then [O¢] = [¢] ® R. The box is given by [O¢] = RS [¢]
where R © _ is the right adjoint to _ @ R. In a tense logic, the two further
modalities will need R for the box and R itself for the diamond.

In mathematical morphology in image processing the operations _ & R and
RS _ are known respectively as the dilation and the erosion. They are used to
transform black and white images by modelling all the pixels of one colour as a
subset of all the pixels. The underlying reason for this relationship also surfaces
in the logical equivalence in classical modal logic between (¢ and —O-¢p, and
also more generally in the quantale-theoretic setting where Mulvey and Pelletier
define a converse operation (they say ‘inverse’) on the lattice of sup-preserving
endomorphisms of an orthocomplemented lattice [15].

1.3 Converse for relations in an extended sense

The converse for discrete Boolean relations, where we have discrete sets X and
Y and relations mapping X x Y to 2, is very well understood. The converse
interacts with the actions of such relation on subsets X — 2 and ¥ — 2 as
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seen above. We consider next a generalization of this in two ways at once. One
way is the replacement of discrete sets X and Y by preorders. The other way is
the replacement of the lattice of two truth values, 2, by an arbitrary complete
lattice.

One of these ways on its own, that is Boolean-valued relations on preorders,
has already been studied [20]. Such relations on a preorder, S will be monotone
functions from S°P x S to 2. The basic converse operation on such a relation
R will provide R : S x S — 2 where é(s,t) = R(t,s), so clearly R and
R have different types. One motivation for these monotone Boolean relations
is that they allow mathematical morphology on graphs [5] to be treated in a
generalization of the algebraic setting for morphology on discrete sets of pixels.
This arises by taking the preorder to be the incidence relation between edges and
nodes. This automatically provides a generalization to hypergraphs. Monotone
Boolean relations are already well known in the semantics of intuitionistic modal
logic [17], but the introduction in [20] of a left converse operation, where \»R :
S°P x S — 2 as opposed to R:S xS — 2, allowed the development of a novel
bi-intuitionistic modal logic [24] where the left converse plays an essential role
in the semantics.

Generalizing from discrete sets to preorders is one way to generalize relations.
The other is to generalize the lattice of truth values. For a framework that de-
scribes mathematical morphology on fuzzy sets, or more generally fuzzy graphs,
the relations need to correspond to sup-preserving mappings on the lattice of
fuzzy graphs. When (2 is the lattice of truth-values, the relations which corre-
spond in this way will be monotone relations S x S — [§2, 2]y, where [£2, 2]y is
the lattice of sup-preserving endomorphisms of {2. Another motivation for such
a generalization is to ask whether a multi-valued modal logic can be obtained in
the style of [24].

1.4 Involutive Quantaloids

For a Boolean-valued relation, R, on a set X, the converse R and the complement

R satisfy R = R. This combination of the two operations is called the converse-
complement. In the case of Boolean-valued relations on a preorder S, that is
monotone functions from S°P x § to 2, the converse-complement of the identity
monotone relation is a cyclic dualizing element providing a Girard quantale
structure. This follows from [23, Prop 21, p449]. In [19] an order-reversing
involution is constructed generalizing this converse-complement for Q(L) the
quantale of sup-preserving endomorphisms of any completely distributive lattice
L. This fits the above setting by taking L to be the lattice of down sets of S, or
in a more specific case the lattice of subgraphs of a graph.

In the paper below we study relations of the form R : S°? x T — [£2,?]y.
To work with the motivating situations of mathematical morphology and modal
logic we ultimately need a converse of R that has type that is T°? xS — [, £2],,.
In other words, between the same structures but in the opposite direction. By
considering the example of monotone Boolean relations, it is clear that such a
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converse is not the converse part of a converse-complement. This would have
type T x S°P — [WP (2°P],, in other words: between the opposite structures
and in the opposite direction. A complete analysis of the relationship between
our converse (left converse) in Definition 8 and the involutive structure in [19]
remains to be carried out.

1.5 Structure of the paper

In Section 2 we introduce the basic definitions and notation that will be used
throughout the paper. In Section 3 we introduce (2-sup-fuzzy relations. We ob-
serve that these relations carry a quantale structure, acting on the collection of
2-fuzzy suborders in a Goguen style generating two isomorphisms. The main ob-
servation of this section is that the collection of sup-preserving and inf-preserving
endomorphisms on the lattice of {2-fuzzy suborders is isomorphic to the collec-
tion of §2-sup-fuzzy relations. We conclude this section showing the significance
of these observations in the case of mathematical morphology.

In Section 4 we consider the general setting where sup-fuzzy relations are
defined over different preorders and lattices. Defining sup-fuzzy relations in terms
of quantaloids provides a more holistic perspective while still preserving the
properties obtained in Section 3. Based on the techniques defined by Mulvey et
al. [15] we propose a formalisation of the complement operation and the converse
relation in the context of sup-fuzzy relations.

Finally, we provide a summary in Section 5 with the main results obtained
throughout this paper as well as some open questions that arise from the con-
tributions obtained.

2 Preliminaries

This section provides some of the basic notation and terminology used through-
out the paper.

We use S to denote a set with a preorder <s. The opposite preorder is denoted
by S°P. The collection of all monotone functions from S to T will be denoted
[S,T].

For any two monotone functions f : S — T and g : T — S such that f(s) <t
if and only if s < g(t) for every s € S and t € T, we say that f is a left adjoint
to g. We use the notation f 4 g meaning that f is the left adjoint of g.

A lattice (£2,V,A) is said to be complete if the join and meet of arbitrary
subsets of {2 exist. Note that complete lattices are bounded, the upper bound

Q

of the complete lattice {2, usually denoted Ty, is defined by \/ 2, while the
0

bottom element L is defined by \/ @. To simplify notation, the superscripts
and subscripts that appear in the join and meet operations, as well as in the top
and bottom elements will be dropped when it does not lead to confusion.

The opposite of a lattice (2, also denoted 2°P is the lattice where the join
operation VP is the meet operation A in {2. Similarly, the meet operation over
02°P namely A, is defined to be the join operation V over (2.
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Given two lattices 2 and ¥, the collection of sup-lattice homomorphisms
from {2 to ¥ will be denoted [2,?],,. Dually, the collection of inf-lattice ho-
momorphisms from {2 to ¥ will be denoted [£2, ¥],. We now recall some basic
properties of lattices:

Property 1. For any preorder S and any complete lattices {2 and ¥ the following
properties hold:

1. [S,¥],[2,¥]y and [2,¥], are complete lattices,
2. ([S, )P = [SP, £2°P],
3. ([22,¥]y)°P = [Q°P,W°P],.

Any sup-lattice morphism f : 2 — ¥ is a left adjoint to the inf-lattice morphism
fr 1 ¥ — 2 defined by fi-(r) = V{p € 2| f(p) < r}. Dually, every inf-
lattice morphism g : ¥ — (2 is a right adjoint to the sup-lattice homomorphism
g+ £2 — ¥ defined by: g+(p) = A\{r € ¥ | g(r) < p}.

Therefore, the function (=) : [£2,¥]y — [, 2], that sends every sup-lattice
homomorphism to its right adjoint forms a bijection with respect to the function
(=)4: [@, 2] — [£2,¥]y that maps every inf-lattice homomorphism g : ¥ — 2
to its left adjoint g4 : 2 — V.

A quantale is a tuple (Q,®) where @ is a complete lattice and ® is a binary
operation over (), called multiplication, that satisfies the following conditions for

any Q' C Q.
go\/Q =\ (@eoq) and \/Qeoq=\ (¢ =q).

eQ’ qeQ’

A quantale (Q,®) is unital if there exists an element e € @ such that p ® e =
p=e®p for every p € Q.

A quantale homomorphism f : (Q,®q) — (P,®p) is a sup-lattice homomor-
phism f : @ — P that preserves the multiplication. A quantale homomorphism
that preserves the unit will be called a unital quantale homomorphism. A quan-
tale homomorphism that has an inverse is a quantale isomorphism.

Given a unital quantale (@, ®,e), a sup lattice M is a right module if there
exists a binary operation * : M x Q — M such that the following three axioms
hold:

L mx(geq)=(mx*q)*q,
M

Q M M
2.mx\Q =V (mxq)and \VAxqg= \ (mx*p),
qeQ’ meA
3. mxe=m

for every ¢,¢' € Q,Q" € Q,m € M and A C M. One can dually define left
modules in the usual way.

Since the scalar multiplication * preserves joins in both arguments, there
exists two residual operations \ and / such that m+x ¢ <n < g <m\n<m <
n/q for every m,n € M and g € Q. The operation —/q is usually called the
right residual of x and the operation m\— is called the left residual of * and are
defined by n/g=\/{m e M | mx*q<n} and m\n=\{ge€ Q| mx*qg<n}.
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3 (2-sup-fuzzy-relations

L-fuzzy sets have been widely studied in the context of mathematical morphol-
ogy as a formalisation of colour based images [13,10,2]. A principle that has
been discussed in the mathematical morphology community asserts that digital
objects need to be formalised, not as collection of pixels, but as structures that,
in addition, carry skeletal information regarding the different pixels [3,4]. This
can be achieved by modelling digital images as graphs. While positive results
have been obtained in the binary case [6,5,1,12], no solution has been provided
for more general contexts such as grey-scale or coloured digital images.

In this section we propose a formalisation of fuzzy mathematical morphology
over graphs using the theory of quantales. We start by introducing the concepts
of £2-fuzzy suborder and {2-sup-fuzzy relations, a generalisation of the concepts
of H-subgraphs and H-relations discussed in [22]. In Lemma 1 we observe that
£2-sup-fuzzy relations act over the lattice of £2-fuzzy suborders in terms of a quan-
tale action. Furthermore, we show that the quantale action described induces an
isomorphism between (2-sup-fuzzy relations and the quantale of sup-preserving
endofunctions on the {2-fuzzy suborders.

In Section 3.2 we apply the results obtained in Section 3.1 to mathemati-
cal morphology. We observe that fuzzy images over graphs (as in the case of
grey-scale or colour based graphical images) can be represented in terms of (2-
fuzzy suborders. Moreover, we observe that the quantale action described in
Proposition 1 corresponds to the morphological operation of dilation, while the
adjoint quantale action described in formula 2 corresponds to the morphological
operation of erosion. From Lemma 1 and Corollary 2 we conclude that dila-
tions/erosions over suborders can be fully characterised in terms of £2-sup-fuzzy
relations.

3.1 Sup-fuzzy relations

2-fuzzy suborders represent a generalisation of (2-fuzzy subsets. Given a {2-
fuzzy suborder (X, f : X — (2), the crisp set X is equipped with a crisp preorder
relation <x and the condition of monotonicity is imposed over the fuzzy function
fe [(X7 SX)? “Q]

Definition 1. Given a preorder S and a complete lattice 2, an 2-fuzzy subor-
der! is an element f €[S, §2].

One might think that sup-preserving endofunctions over {2-fuzzy suborders would
correspond to monotone relations of the form S°? x § — (2, based on the case
when (2 is 2. However, this approach fails even in the case when (2 is the three
element chain. Therefore, we introduce (2-sup-fuzzy relations, a generalisation

! The naming £2-fuzzy-suborder has been chosen following the mathematical morphol-
ogy tradition where binary images are subsets of a set and binary graphic images
are subgraphs of a graph. Thus the name suborder is a shortening of the longer word
sub-preorder.
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of fuzzy relations that, as we will see throughout this section fully characterises
the collection of sup-lattice homomorphisms on {2-fuzzy suborders.

Definition 2. Given a preorder S and a complete lattice §2, we define the unital
quantale of 2-sup-fuzzy relations to be the triple ([S°P x S, [£2, 2]v],;,e) where
[SP xS, [£2, £2]y] is the sup-lattice of monotone functions from the preorder S°P xS
to the complete lattice [2, 2], .

The multiplication operation ; is the diagrammatic relation composition de-
fined by (R ; S)(s,8") := \,e55(2,5") o R(s,2). The identity element is the
02-sup-fuzzy relation e defined pointwise by:

( ,) idgo s<g s
e(s,s):= )
Lo, otherwise,

where idg : 2 — (2 is the identity function and Lo o) : 2 — (2 is the function
that sends every element in {2 to the bottom element.

The collection of {2-sup-fuzzy relations act on the complete lattice of (2-fuzzy
suborders defining a right quantale module:

Proposition 1. Given a preorder S and a complete lattice {2, the lattice of §2-
fuzzy suborders is a right module of the unital quantale of 2-sup-fuzzy relations.
The scalar multiplication & is defined by:

(f®R)(s) ==\ R(s',9)(f(5)) (1)

s’eS

where [ is an (2-fuzzy suborder, R is an 2-sup-fuzzy relation and s € S.

Proof. Consider any 2-fuzzy suborder f and any {2-sup-fuzzy relation R. That
f @ R is monotone follows immediately as R(s’, —)(p) is monotone for every
s’ € S and p € (2. Hence — @ R is a well defined endofunction on the lattice of
(2-fuzzy suborders. That & is preserves joins in the left argument follows from
the fact that for every s,s’ € S | the map R(s’,s)(—) is sup-preserving. That
the operation @ preserves joins on the right follows from the following set of
equalities:

(feVR)s) =V VR 9)(fs) =\ (V R, 8)(f5)

s'es s’eS RER
=\/ V R, s)(fs") =\ (foR)(s).
ReR s'€S RER

That f@e = f can be easily verified by unfolding the definition of the operation
@, recalling the monotonicity of the function f and the definition of the identity
e. We conclude this proof by showing that f @ (R; S) = (f @ R) @ S. Consider
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any s € S, then:

(f@ (R:9)(s) =\ (B;: S)(ss)(fs") =\ \/ S(t,9)(R(s',0)(f5))

s'es s’eStesS
= \/ S(t.9)(\/ R(s'.0)(Fs) = \/ S(t.9)(f & R)(®))
tes s’'esS tes

= ((f @ R) ® 5)(s).
O

In [7, Prop 3.1.5], the authors observe that the collection of right actions of a
quantale @@ over a sup-lattice M is bijective with the quantale homomorphisms
from the transpose quantale Q?, i.e. the quantale @ where the multiplication ® is
reversed, to the quantale of sup-preserving endomorphisms on M. The following
result extends this observation in the context of 2-sup-fuzzy relations and shows
that the quantale morphism induced by @ is an isomorphism.

Lemma 1. Given a preorder S and a complete lattice £2, the quantale of £2-sup-
fuzzy relations is isomorphic to the quantale of sup-preserving endofunctions over
[S, 2] with respect to the transpose composition operation.

Proof. By [7, Prop 3.1.5] the quantale action @ induces a quantale morphism
from §2-sup-fuzzy relations to the quantale of sup-preserving endofunctions on
S, 2]. The inverse morphism @©~! is defined pointwise as @~1(F)(s,t)(p) =
F(sp)(t) where s, is the 2-fuzzy suborder sending elements above s to p and
everything else to L. It can be easily verified that @~ is a well defined quantale
homomorphism that preserves the unit. Moreover, it can be easily verified that
@~ ! is the inverse of @. 0

Furthermore, in [7, Prop 3.1.1.a] it is shown that any right quantale module  :
M x @@ — M induces a left quantale module over the opposite lattice Q@ x M°P —
Me°P. Such operation corresponds to the action of the right residual operation /.
In the particular context of (2-sup-fuzzy relations, the right residual of &, that
we will denote © is defined by:

(RO f)(s):== /\ R(s',8)-(f5) (2)
s’eS

where f € [S,£2], s € S and R(s',s) 4 R(¢, )

Corollary 1. Given a preorder S and a complete lattice {2, the complete lattice
([S, £2])°P is a left module of the quantale of 2-sup-fuzzy relations. The scalar
multiplication corresponds to the operation ©.

Proof. Follows immediately from [7, Prop 3.1.1.a]. O

We conclude this section, observing that the quantale of {2-sup-fuzzy relations
is isomorphic to the quantale of sup-preserving endofunctions on [S, £2]°?. Note
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that by [7, Prop 3.1.3] the left action © induces a quantale homomorphism
from (2-sup-fuzzy relations to the quantale of sup-preserving endofunctions of
([S, £2])°P. Combining the fact that the quantale of sup-preserving morphisms on
[S, 2] equipped with the transpose composition is isomorphic to the quantale of
sup-preserving endofunctions on ([S, 2])°? and Lemma 1 we obtain the following
result.

Corollary 2. Given any preorder S and any complete lattice {2, the quantale of
2-sup-fuzzy relations is isomorphic to the quantale of sup-preserving endofunc-
tions on ([S, 2])°F equipped with the usual function composition.

Proof. Note that by Lemma 1 the quantale of 2-sup-fuzzy relations is isomor-
phic to the quantale of sup-preserving endofunctions on [S, 2] equipped with
the transpose function composition operation. Moreover, the quantale of sup-
preserving morphisms on [S, £2] equipped with the transposed composition is
isomorphic to the quantale of sup-preserving endofunctions on [S, £2]°P equipped
with the usual function composition operation. This can be easily verified as the
operation of taking adjoints lifts to be a quantale morphisms. Combining both
results we conclude that the quantale of {2-sup-fuzzy relations is isomorphic to
the quantale of sup-preserving endofunctions on (S, £2])°P. O

3.2 Sup-fuzzy relations in mathematical morphology

In this subsection we provide a guide that summarises our analysis of graph-
ical fuzzy mathematical morphology in terms of 2-fuzzy graphs [14]. Given a
complete lattice {2, an 2-fuzzy graph is a triple (X, u, ) where X is a set,
pw: X — §2is a function and p : X x X — (2 is a bi-function satisfying the
property o(z,y) < pu(x) A u(y) for every z,y € X.

In the context of graphical fuzzy mathematical morphology, the complete
lattice {2 describes a colour palette. For example, the 8-bit grey-scale can be for-
malised as the chain of 256 elements while the 24-bit colour palette is represented
as the 3-fold cartesian product of the chain of 256 elements.

Fixing a set of pixels X, any graphical image valued in {2 can be represented
as an §2-fuzzy graph, where the function p : X — 2 represents the colouring
function of the image and the bi-function ¢ : X x X — {2 displays the gluing
information between the different pixels as mentioned at the beginning of the
current section.

An equivalent definition of graphical fuzzy mathematical morphology images
can be achieved in terms of {2-fuzzy suborders following a similar construction
as the one displayed in [21,22]. For any {2-fuzzy graph (X, y, 0), that, as we have
seen, represents a graphical image valued in {2, we define the {2-fuzzy suborder
[+ S — 2 where the preorder S = (S, <g) is the set XU{{z,y} € X xX |z # y}
equipped with the relation <g defined by s <g & if and only if s’ € s or s = ¢'.
The function f maps those elements x that act as vertices to their colouring
(f(x) = p(zx)), while it will map those elements that act as edges {x, y} to their
gluing information (f({z,y}) = o(x,y)).
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Therefore, given a set of pixels X and a colour palette {2, the collection of all
graphical images is represented by the sup-lattice of 2-fuzzy suborders [S, £2].
It is well-known [16, p61] that erosion and dilation on sets of pixels can be
parameterized by binary relations on the set of pixels, and that the structuring
elements widely used in mathematical morphology are essentially a means of
presenting such relations. This result has been extended to the scenario in which
binary images are formalised as crisp graphs via the introduction of H-stable
relations [22].

(2-sup-fuzzy relations generalise H-stable relations for arbitrary fuzzy scenar-
ios. The scalar multiplication @ introduced in Proposition 1 acts on the collection
of graphical images over a set X defining a join preserving endomorphism. In
the mathematical morphology context, this operation corresponds to the dilation
operation [11, p259]. Furthermore by Lemma 1 we observe that the collection of
dilations over the collection of graphical images are fully described by the lat-
tice of §2-sup-fuzzy relations, extending the results in [22] for arbitrary complete
lattices.

The residual operation © induces an inf-lattice homomorphism on the col-
lection of graphical images. Again, in the context of mathematical morphology,
this action corresponds to the erosion operation [11, p259]. As we observed in
Corollary 2, the action & draws an isomorphism between the collection of {2-sup-
fuzzy relations and the collection of erosions acting on the collection of graphical
images. Thus, concluding that the collection of erosions acting on grey-scale im-
ages are fully characterised by the collection of {2-sup-fuzzy relations. Again,
this extends the results obtained in [22] for arbitrary complete lattices.

4 Converse relations

In this section we discuss the notion of converse for {2-sup-fuzzy relations.
Recall from the introduction, that in the case of monotone relations R : S°? xS —
2, the operation of reversing the arguments R(s, s') = R(s’, s) yields a monotone
relation in the opposite order, i.e. R :S x S°? — 2. However, in [22, Def 6, p334]
the author introduces two weaker notions of converse, namely the right ~~R and
left \»R converse that are monotone in the original order S°? x § — 2.

It is natural to ask what happens to these converse operations when we
generalize from 2-valued S-relations to relations in [S°? x T, [£2,¥]y]. Given the
way that the left and right converse arise from the ordinary converse in the 2-
valued case, we first consider a generalization of the ordinary converse that will
produce a relation in [T x S, [&, 2]y].

In [15] Mulvey and Pelletier discuss the quantale of sup-lattice endomor-
phisms of an orthocomplemented lattice £. One contribution of that paper is
that the orthocomplement operation induces an involution on the collection of
sup-lattice endomorphisms. The overall construction discussed is that given a
lattice £ equipped with an orthocomplementation operation f : £ — L£° and
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a sup-lattice endomorphism ¢ : £ — L, we can define an operation (—)* :
(L, L]y — [£, L]y defined by the following diagram:

*

LBy L

op - op
c —— L

where ¢ is the right adjoint of ¢, i.e. ¢ 4 . As the authors show, this con-
struction induces an involution over the collection of sup-lattice endomorphisms
on the orthocomplemented lattice £, defining a Gelfand quantale [15, p3]. In
the context of Gelfand quantales the involution operation acts as a converse
operation over the right sided elements.

In this section we introduce a series of constructions based on the work
by Mulvey et al [15] to define the right converse operation of an {2-sup-fuzzy
relation.

4.1 Relations and Dilations

Recall that a category C enriched in the category of sup-lattices and sup-
preserving morphisms has objects and arrows as in an ordinary category, but
instead of hom-sets each C(X,Y) is a sup-lattice and composition preserves
sups in both arguments. Such sup-enriched categories are also known as quan-
taloids [18].

Definition 3. We denote by SF-REL the quantaloid where:
Objects are pairs (S, §2) where S is a preorder and §2 a complete lattice,
A morphism R : (S, 2) — (T,¥) is a sup-fuzzy relation R € [S°?xT, [2,¥]y],

Fach SF-REL(R, S) carries the usual sup-lattice structure in [S°?xT, [£2,¥]y].

The composition of (S, (2) LN (T, %) and (T, W) 5, (U, A), denoted R ; S :

(S, 2) — (U, A), extends the composition operation defined in Definition 2 by:

(R; S)(s,u) := \/ S(t,u) o R(s,t).

teT

In SF-REL a relation R : (S, 2) — (T,¥) provides for each (s,t) € S°? x T
a sup-lattice morphism R(s,t) : {2 — W. The right adjoint of each R(s,t) is a
sup-lattice morphism from ¥°P to §2°P. This construction yields a quantaloid
homomorphism (in other words a sup-lattice enriched functor) from SF-REL to
SF-REL®? where the op indicates reversal of the direction of the morphisms but
keeping the sup-lattice order that provides the 2-cells.

Proposition 2. The map F : SF-REL — SF-REL? defined by:
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F (S, 2) = (S°P, Q°P) for every 0-cell (S, £2),
F(R) : (TP, woP) — (S°P, 2°P) where
F(R)(t,s) = (R(s,t))r
for every 1-cell R : (S, $2) — (T, ¥) and (s,t) € S x TP,
is a quantaloid homomorphism.

Proof. 1t suffices to show that for any SF-REL hom object R : (S, 2) — (T, ¥),
the function F(R) : (T°P,W°P) — (S°, 2°P) preserves joins. However, this fol-
lows immediately as F(R)(t,s) = (R(s,t))r is an inf-preserving function from ¥
to {2 or, equivalently a sup-preserving function from WP to (2°P. a

The following definition generalises quantales of sup-preserving endofunctions
over {2-fuzzy suborders to he quantaloid setting. Furthermore we provide a gen-
eralisation of Lemma 1 in this new setting:

Definition 4. We denote by F-DIL the quantaloid where:

Objects are lattices [S, 2] where S is a preorder and 2 a complete lattice,
A morphism F : [S, 2] — [T, ¥] is a sup-lattice homomorphism F € [[S, 2], [T, ¥]]v,

Each F-DIL(F,G) carries the usual sup-lattice structure [[S, 2], [T, ¥]]v.

The composition of F : [S,§2] — [T,¥] and G : [T, ¥] — [U, 4] denoted G o F is

the usual composition of functions.

Proposition 3. The map @ : SF-REL — F-DIL where:
@ (S,02) =S, 2] for every 0-cell (S, £2),
@ R:[S, 2] — [T,¥] where:

(foR)(t)=\/ R(s,t)(f(s))

s€eS
for every 1-cell R: (S,2) — (T,¥), f€[S,2] andt € T.
is a quantaloid isomorphism

Proof. This result is a direct generalisation of Lemma 1 and the same result can
be achieved following an identical strategy.

The previous result shows that for any SF-REL relation R : (S, 2) — (T, ¥), the
action of the morphism @ on R, defines a sup-lattice function @ R : [S, 2] —
[T, ¥]. Therefore, the right adjoint of this function, namely (& R)y is a sup-lattice
homomorphism from ([T, ¥])° to ([S, £2])°P. The following result characterises
the operation (@ —)i and therefore extends Corollary 1 to the quantaloid sce-
nario. Note that in the following proposition the superscript op indicates, as
before, the reversal of the direction of the 1-cells but keeping the sup-lattice
structure.
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Proposition 4. The function © : SF-REL — F-DIL? where:
O (S, 2) = [S°P, 2°P] for every 0-cell (S, 2),
R &: [T°P,WoP] — [S°P, 2°P] where:

(Reg)(s) = /\ R(s,0)-(9(1))

for every 1-cell R : (S, 2) — (T,¥), g € [T,¥] and s € S.

is a quantaloid isomorphism. Moreover, (®R) + (RO) for every 1l-cell R :
(S,82) — (T, ¥).

We now remark some observations regarding the previous results obtained.
Proposition 5. For every 1-cell R : (S, 2) — (T,¥) in SF-REL:

1. (F(R)e f) = (f ®R) for every f €[S, £2],

2. (g@°? F(R)) = (RO g) for every g € [T°P,W°P].

where S°P and @°P are the opposite functor of & and & respectively.

Proof. We only prove the first statement. The second follows immediately since
@® R R ©. Consider any t € T, then:

(F(R) & f)(t) = \ F(R)(t,9)-(fs) = \/ (R(s,)r)-(fs)
s€ES s€ES
=\ R(s,t)(fs) = (f & R)(1)
sES

O

From the last observation and considering that the morphisms @& and © are
isomorphisms, one can easily verify that F°P is the opposite morphism of F.

Corollary 3. The inverse of the quantaloid morphism F : SF-REL — SF-REL?
18 its opposite F°P : SF-REL’? — SF-REL.

4.2 Complement of sup-fuzzy relations

In the context of binary graph mathematical morphology [22], the complement
operation — : 2 — 2 induces the pseudocomplement and dual pseudocomple-
ment operations in the bi-Heyting algebra [S, 2] [22, p333]. Furthermore, these
operations allowed Stell to define the left converse relation \»R [22, p339] in
terms of the dilation and erosion operation. In this section we consider complete
lattices equipped with an anti-isomorphism and show, that these conditions are
sufficient to define two pseudocomplement and dual pseudocomplement type of
operations that will allow us to generalise the concept of left converse in the
context of sup-fuzzy relations.
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Definition 5. Let {2 be a complete lattice, an anti-isomorphism is a complete
lattice isomorphism ¢ : {2 — (2°P.

Composing an anti-isomorphism ¢ : {2 — 2°P with an {2-fuzzy suborder f : S —
2 produces a 2°P-fuzzy suborder ¢ f : S — 2°P. Therefore, the anti-isomorphism
¢ lifts to define a complete lattice morphism @ : [S, 2] — [S, £2°P] that reverses
the order of the complete lattice {2 but fixes the order of the preorder S.

Proposition 6. Let 2 be a complete lattice equipped with an anti-isomorphism,
w: 82— 02° and let S be a preorder. The function P : [S, 2] — [S, 2°P] defined

by (Bf)(s) = o(fs) is a complete lattice isomorphism and B+ = o~ 1.

Proof. Clearly the functions @ and p~1 are complete lattice morphisms as joins
and meets in [S, 2] and [S, £2°P] are computed pointwise. Moreover, since ¢! is

the inverse of ¢, one can easily see that ¢! is the inverse of . O

The following result allows us to define a pair of complementation type opera-
tions that resemble the pseudocomplement and dual-pseudocomplement opera-
tions in bi-Heyting algebras.

Proposition 7. For any preorder S and any complete lattice 2, let [S, 2] be
the lattice of functions from the underlying set S in S to the complete lattice §2,
then the inclusion map ¢ : [S, 2] < [S, £2] has a left adjoint int : [S, 2] — [S, 2]
and a right adjoint ext : [S, 2] — [S, £2] defined by:

int(h) = \/{f € (8.2 | f <s.01 1) (3)
ext(h) = \{f € [5.2] | h <is.0 f} )

Proof. Consider any f € [S,§2] and any h € [S,2]. Then «(f) <[5, h if and
only if f <(g,¢ h if and only if f <[5 ¢ int(h). Similarly h <[s ¢ +(f) if and
only if h <[5 o f if and only if ext(h) <[5 o] f O

Since the maps @ and ¢ preserve joins and meets, the two routes described in the
following diagram define a sup and inf preserving morphism [S, 2] — [S°P, £2°P]:

ext

_ /\
[S, 2] —F—— [S, 2] ———— [S, 2] [SoP, 207
int
Definition 6. Given a preorder S and a complete lattice §2 equipped with an
anti-isomorphism ¢ : 2 — 2 we let =% : [S,02] — [S°P, 2°P] and ¥ :
[S°P, 2°P] — [S, §2] be the two sup-preserving functions defined by:
[S,02]
~#f = (e)()@)(f) = \/ {f € 8.2 | f' 5.0 2}
8,92]

o f = (i) (@) () = N €[S, 219f <is.01 '}
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Proposition 8. Given a preorder S and a complete lattice {2 equipped with
an anti-isomorphism ¢ : 2 — °P. The sup-lattice morphisms =% : [S, 2] —
[S°P, 2°P] and ¥ : [S°P,2°P] — [S, 2] are self adjoint, i.e. =¥ = (=®)°P and
P (¥)op

Proof. We only show that =¥ + (=¥)°. The other case can be proved using a
similar argument. Note that by Proposition 7 =¥ = (ext)(¢)(®) 4 (¢~1)(int)(¢).
By unfolding the definition of int and since ¢! is an isomorphism one can easily

show that (p=1)(int)(¢)(f) = ~*f. O

Observe that the newly defined functions =¥ and —¥ preserve joins. Therefore,
by Proposition 3 we can characterise these two sup-lattice morphisms in terms
of SF-REL relations.

Definition 7. For any complete lattice §2 equipped with an anti-isomorphism
©: 2 = Q° and any preorder S we let E® : (S, 2) — (S°P, 2°P) be the unique
SF-REL relation such that ® E¥ = —%. Similarly, we let I¥ : (S°P, 2°P) — (S, (2)
be the unique SF-REL relation such that ® I¥ = L%,

With the mechanisms defined in Proposition 2 and Definition 7 we have all
the ingredients to define the converse operation for SF-REL relations.

N B ——
R

TAd EY
(S, 02°) 4 (T°%, ¥°))

Definition 8. For any complete lattices 2 and ¥ that are equipped with anti-
isomorphisms ¢ @ 2 — 2°P and ¢ : W — VP and for any fuzzy relation R :
(S,92) — (T,¥) we define the left converse SF-REL relation R : (T,¥) —
(S,02) as v R=FEY; F(R); I¢.

We conclude this section by showing some of the properties of the newly defined
SF-REL converse relation.

Lemma 2. For any complete lattices {2 and ¥ that are equipped with anti-
isomorphisms ¢ : 2 — 2° and ¥ : ¥ — WP and for any SF-REL relation
R:(S,02)— (T,¥) the following two equalities hold:

1. (g@® UR) = #(Ro —%g) for every g € [T,¥],
2. (VRO f) = (=¥)P((=#)?f @ R) for every f €[S, 2].

Proof. Point 1 follows immediately from 5 and the fact that & (R ; S) = (&
R) @ S for any SF-REL relations R and S. Point 2 follows from Definition 8,
Proposition 5 and the fact (R ; S)4 = S4 ; R4 for any SF-REL relations R and
S.
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5 Conclusion and Future Work

In this paper we have introduced f2-sup-fuzzy relations and 2-fuzzy suborders,
a generalisation of the concept of stable relations and hypergraphs discussed
in [22]. We have provided a connection between these two constructions in terms
of a quantale action. Such action has been shown to lift to an isomorphism
between (2-sup-fuzzy relations and the quantale of sup-preserving functions over
(2-fuzzy suborders.

In Section 3.2 we analyse {2-sup-fuzzy relations and {2-suborders in the con-
text of mathematical morphology. Firstly, we observe that graphical images over
complete lattices (such as 8-bit grey-scale or 24-bit colour) are particular cases
of f2-suborders for a particular complete lattice {2. Moreover, based on [11]
we identify the morphological operations of dilation in this setting as sup and
inf-preserving morphisms, respectively. Based on the results obtained in the pre-
vious section we are able to characterise the collection of dilations and erosions
as {2-sup-fuzzy relations.

The main contribution of this paper is presented in Section 4, where we
re-define sup-fuzzy relations in the context of quantaloids. Abstracting from
quantales to quantaloids allows us to generalise the concept of left converse \»R
that appears in the literature [22,24]. This is achieved by considering complete
lattices equipped with an anti-isomorphism. As we observe in Definition 6, anti-
isomorphism lift to define two operations that, up to certain degree, act as the
pseudocomplement and dual-pseudocomplement operations in bi-Heyting alge-
bras. With the help of these two operations we propose a definition of the left
converse that by Lemma 2 coincides with the correct generalisation of left con-
verse proposed in [22, p339)].

From the results exposed throughout this paper, we contend that sup-fuzzy
relations are an appropriate generalisation of the relational approach to graph
based mathematical morphology developed in [21,22]. Further work to charac-
terise some morphological operations should be done.

To define the appropriate left converse of a relation in SF-REL, we require the
existence of an anti-isomorphism on a lattice. While this allows us to define the
appropriate left converse operation for some symmetric non-distributive lattices
(as the diamond lattice M3), we believe this requirement could be weakened to
account for other complete lattices.
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