UNIVERSITY OF LEEDS

This is a repository copy of Multi-level Graph Representations of Melanoma Whole Slide
Images for Identifying Immune Subgroups.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214306/

Version: Accepted Version

Proceedings Paper:

Godson, L., Alemi, N., Nsengimana, J. et al. (6 more authors) (2024) Multi-level Graph
Representations of Melanoma Whole Slide Images for Identifying Immune Subgroups. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Atrtificial
Intelligence and Lecture Notes in Bioinformatics). International Conference on Medical
Image Computing and Computer-Assisted Intervention, 08/10/2023 - 12/10/2023,
Vancouver, Canada. Springer Nature , pp. 85-96. ISBN 978-3-031-55087-4

https://doi.org/10.1007/978-3-031-55088-1_8

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG. This is
an author produced version of a conference paper published in Lecture Notes in Computer
Science. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/




Multi-level Graph Representations of Melanoma
Whole Slide Images for Identifying Immune
Subgroups

Lucy Godson!®), Navid Alemi', Jérémie Nsengimana®, Graham P. Cook?,
Emily L. Clarke?>*, Darren Treanor?#, D. Timothy Bishop?, Julia
Newton-Bishop?, and Derek Magee!

1 School of Computing, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
sclg@leeds.ac.uk
2 Division of Pathology and Data Analytics, Leeds Institute of Cancer and
Pathology, University of Leeds, Beckett Street, Leeds, LS9 7TF, UK
3 Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, LS2

9JT, UK
4 Department of Histopathology, Leeds Teaching Hospitals Trust, Leeds, LS2 9JT,
UK
5 Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne,
NE1 7RU, UK

Abstract. Stratifying melanoma patients into immune subgroups is im-
portant for understanding patient outcomes and treatment options. Cur-
rent weakly supervised classification methods often involve dividing digi-
tised whole slide images into patches, which leads to the loss of important
contextual diagnostic information. Here, we propose using graph atten-
tion neural networks, which utilise graph representations of whole slide
images, to introduce context to classifications. In addition, we present
a novel hierarchical graph approach, which leverages histopathological
features from multiple resolutions to improve on state-of-the-art (SOTA)
multiple instance learning (MIL) methods. We achieve a mean test area
under the curve metric of 0.80 for classifying low and high immune
melanoma subtypes, using multi-level and 20x patch graph represen-
tations of whole slide images, compared to 0.77 when using SOTA MIL
methods. Our experimental results comprehensively show how our whole
slide image graph representation is a valuable improvement on the MIL
paradigm and could help to determine early-stage prognostic markers
and stratify melanoma patients for effective treatments. Code is avail-
able at https://github.com/lucy0Cg/graph_mil_project/.

Keywords: Computational pathology - graph neural networks - melanoma.

1 Introduction

Melanoma is the most aggressive form of skin cancer [1], however, immunother-
apy has revolutionised the treatment of patients [8]. Yet, the most effective and
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well tolerated drug, PD-1 blockade only benefits around 35% of patients [23]. In-
creasing our understanding of the interaction between immune and tumour cells
and being able to identify disease subtypes is vital for stratifying patients into
effective treatment groups and improving outcomes. Through consensus cluster-
ing of patient transcriptomes, previous studies have found distinct immunological
subgroups within a population ascertained cohort (the Leeds Melanoma Cohort
[LMC]), with differing clinical outcomes and potential treatment targets [20,22].

While tumour transcriptome data analysis is not routinely carried out for
melanoma patients, haematoxylin and eosin (H&E) histopathology slides are
well established in the diagnostic workflow of patients. Moreover, convolutional
neural networks (CNNs), have been shown to identify molecular immune cell
signatures from morphological patterns in digitised WSIs [26]. Analysis of these
whole slide images (WSIs) can be challenging, as they are multi-resolution and
multi-gigabyte, so current classification methods such as multiple instance learn-
ing (MIL) divide these images into patches, which are processed individually, but
this leads to a loss of contextual information.

Here we propose a novel patch-based graph method, that exploits the intrinsic
spatial positioning of all patches within a WSI and is also memory efficient, us-
ing patch-level feature embeddings from a CNN. In addition, we take inspiration
from hierarchical cell-graphs [16,18,21,28|, developing a multi-level approach,
which exploits the inherent hierarchical relationships between features extracted
from patches at different resolutions. We believe that the addition of graph fea-
tures increases the contextual information learned by the models for classifying
melanomas into immune subgroups and demonstrate how this leads to improved
performance over state-of-the-art MIL methods for our novel application.

1. Segmentation of tissue from background 5 Feature extraction 3. Graph construction 4. Graph embedding and pooling
and patch extraction from three resolutions aggregation mechanism
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Fig. 1. Experimental framework for classifying the WSIs, using graph representations.

ResNet for

feature
extraction

2 Related works

WSIs are multi-resolution gigapixel images, which means they can be computa-
tionally and memory intensive to process, especially on GPUs. Moreover, most
WSIs will only have slide-level labels, as pixel-wise labelling can be time consum-
ing for a pathologist. MIL frameworks, where an image is treated as a bag with
instances which inherit the bag or slide-level label [9], have been applied with
high accuracy in computational pathology tasks for classifying WSIs [4,17,25].
In this method, a histopathology image can be subdivided into smaller patches,
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which can be further processed, using convolution neural networks (CNNs), to
create feature representations. Following this, different pooling functions, such
as maximum or mean operators [15], can be applied to the features to estimate
the slide-level label classification.

While weakly supervised methods like MIL address problems such as the
lack of annotation within WSIs and the aggregation of patch instances within
an image, they also lead to a loss of contextual information. Each patch-instance
or patch-feature is treated individually as it is passed through a network, with
the focus being on the local visual and morphological patterns within the patch
region. This means we lose global information about the tumour architecture,
which can be important when evaluating the role of immune cells within the
tumour microenvironment (TME), as they can differ depending on their spatial
arrangement, locations and interactions with other cell types within the TME.

One way to resolve this, is through representing histopathological features
in a graph structure and using a graph pooling mechanism. Recent works show
how graph neural networks (GNN) can be a powerful tool for WSI analysis
and subtyping [5,18,21]. However, these methods require sampling techniques
to select patches due to memory constraints and therefore lose the overall WSI
structure. Moreover, previous works by [16,18,21,28], who use hierarchical cell
graphs show how the combination of multi-level features can improve model
performance by providing additional cellular context.

As early as 2011, [24] showed how multi-scale WSI analysis could be use-
ful in segmentation tasks, demonstrating that lower resolution levels could be
used for removing the background from a WSI and how higher resolution levels
could be used to detect tumour and classify mitotic figures within the tissue.
A more recent study by [13], showed how GNNs using multi-scale WSI graph
representations using embeddings from “Thumbnail”, x5, x10 scales as nodes,
could be used for grading and subtyping esophageal cancer and kidney cancer
TCGA datasets. Here we build on this idea, but also look at how one-hot en-
codings for node and edge features can be used to generate novel patch-based
graph representations, which have a global hierarchical “multi-level" structure.

3 Dataset

The dataset used for our work was from the LMC [19]. This is a population
ascertained cohort, including 667 digitised WSIs of primary melanoma tumours.
The labels for the images were delineated by clustering transcriptomes, based
on the inferred abundance of 27 immune cell types [22]. The three subgroups are
the “high immune” class (22.5%), which corresponds to greater inferred immune
cell infiltration in the primary tumour and better associated patient survival
outcomes, the “intermediate immune” class (39.1%), which corresponds to less
inferred immune cell infiltrate in the primary tumour and the “low immune”
class (38.4%), which has the least inferred immune cell infiltrate in the tumour
and worst survival response of patients. We worked under the assumption that
each group with a distinct immune genetic signature would have a distinct his-
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Table 1. Summary data of the clinical and clinicohistological features of the three
LMC immune subgroups found in the paper published by [22].

Low Intermediate High

Number of tumours 256 261 150
Melanoma death (%) 36 27 21
Age at diagnosis (median, years) 58 58 60
Sex (% males) 43 45 49
Breslow thickness (median, mm) 2.45 2.29 2.00
Ulcerated (%) 30 34 35
AJCC stage (%) Low Intermediate High
I 30 36 39
1II 50 50 47
IIT 18 13 14
Unknown 2 2 1
TIL classification (%) Low Intermediate High
Brisk 12 8 13
Non-brisk 44 50 49
Absent 14 11 10
Unclassified 30 31 28

tological pattern. Initial experiments were carried out by training models using
the three subgroups, but we also examined model performance when training
and testing the models using only the “high” and “low immune” as these groups
are more well defined compared to the “intermediate” subgroup which is highly
heterogeneous. Furthermore the “high” and “low immune” are more informative
for immunotherapy options, so it is valuable to predict these classes.

All slides come from Formalin-Fixed Paraffin-Embedded (FFPE) blocks and
were scanned in batches using a Leica Biosystems Aperio Digital Pathology
Slide Scanner, at 0.25 micrometers-per-pixel (m.p.p.). The tumour transcrip-
tomic data that was used to develop the immune subgroup labels was produced
from the archived FFPE tumour blocks, using Illumina array DASL HT12.4 and
normalised using standard methods as described in the study by [20].

We show the clinical and prognostic features for the different subgroups in
Table 1. Breslow thickness describes how deep the tumour has grown into of the
skin (epidermis) and is measured in millimetres (mm). Depth has been shown to
have a continuous association with patient prognosis [2|. Microscopic ulceration
(shown as “Ulcerated” in Table 2) is characterised by a lack of intact epidermis
and have reactive changes within the skin. Ulceration has also been shown to be a
strong independent predictor of melanoma death [12]. Studies have also demon-
strated that brisk TILs, where there is robust infiltration of TILs throughout
the entire tumour or surrounding the tumour base, are associated with improved
patient prognosis [11]. However, due to inter-observer variation and lack of stan-
dardisation in grading they are currently not included in the current AJCC
staging systems. Where the TIL classification is stated as “Unclassified”, it in-
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dicates that the pathologists assessing the tumour are undecided between brisk
and non-brisk, but TILs are definitely present.

The LMC study was conducted as a population-based cohort study, draw-
ing its participants from the North of England. Consequently, it is important to
recognize that the findings we present may not be readily applicable to popula-
tions beyond the scope of this study. Additionally, while the LMC study aimed
to include patients from diverse ethnic backgrounds, it is worth noting that an
overwhelming 99% of the participants were of Caucasian ethnicity. Although
melanoma is typically more prevalent among individuals with lighter skin tones,
it is imperative to emphasise that melanoma, as a type of skin cancer, can af-
fect individuals of all racial and ethnic backgrounds [1]. As a result of this, the
predictive models developed in this study may exhibit a bias towards classifying
patients with lighter skin and may not be easily generalised to other ethnicities.
In addition because the study was carried out before the new AJCC staging 8"
edition was established, in Table 1 we show the 7*" edition staging for patients.

4 Methods

4.1 Segmentation and feature extraction

The H&E stained tissue in the WSI was segmented from the background using
thresholding and morphological operations described by [17]. The segmented
tissue was then split into 256 pixel x 256 pixel non-overlapping patches at three
different resolutions (10x, 20x and 40x). A ResNet18, which had been pretrained
by self-supervised learning on 57 multi-organ, multi-resolution histopathology
datasets by [6], was used to extract 512-dimensional feature embeddings from
the patches.

4.2 Graph construction

We constructed global graph representations G = (V,E) of the WSIs, where G
is the graph, V = {1,...,n} is the set of n vertices or nodes, which correspond to
the n patch instances in a WSI. EC V x Vis the set of edges, where (i,5) C F
is an edge that connects node 4 to node j. Node features for the graphs consisted
of the 512-dimensional feature embeddings extracted from the patches. For ex-
periments using single-resolution graph features, edge connections were defined
as being between any neighbouring patches that are to the left, right, above,
or below each other (diagonal edges were not included). To represent uniform
edges between adjacent patches in single-resolution graph representations, edge
features were set to 1. We also wanted to build what we term “multi-level” graph
representations, where node features consisted of the extracted features from
each of the three resolutions, and edges included those between adjacent patches
within a single resolution and between patches from different resolutions. This
involved defining edge connections between 10x patch nodes and the 4 poten-
tial corresponding 20x patch nodes in the higher resolution level. Then defining
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edge connections between the 20x patch nodes to the 4 potential corresponding
40x patch nodes to create hierarchical multi-level patch graphs. We also exper-
imented with adding one-hot encodings to the node embeddings to distinguish
between nodes of different resolutions (10x: [1,0,0], 20x: [0,1,0] and 40x: [0,0,1]).
These encodings were concatenated to the node feature embeddings giving a
515-dimensional embedding. All nodes were connected in both directions, and
self-loops were included. To distinguish between edges that connect patches from
different resolutions and edges that connect adjacent patches within the same
resolution, edge features were encoded using a one-hot encoding scheme (Fig. 2).

Single-resolution patch graph structure Multi-resolution patch graph structure Edge feature encodings
10x Edge feature One-hot
s ol ”
<o ST 10x o 10x [1,0,0,0,00,0]
S - 10x — 20x [0,1,0,0,0,0,0]
» . \, 20x 10x — 20x [0,0,1,0,0,0,0]
Segmented WS Patch embedding encoded 200520 0,00,1,0,00]
as graphs 20x — 40x [0,0,0,0,1,0,0]
20x — 40x [0.0.0,0,0,1,0]
40x > 40x [0,0,0,0,0,0,1]

— — = :10x — 20x & 10x « 20x "
patch connections Node feature encodings

1 20X — 40x & 20x « 40X 40x : mbestin o One-hot
patch connections FrecoRaion encoded vector

: Adjacent single resolution
patch connections [1,0,0]

@ : Node feature, 512-vector patch
embedding

[0,1,0]

0,0,1]

Fig. 2. Single and multi-resolution patch graph representation construction and edge
feature encodings used for multi-resolution graphs. Self-loops are not visualised.

4.3 Model architecture

When implementing the GNNs, we used GATv2 graph attention layers with one
attention head [3]. Edge indices, node and edge features were passed through
the GATV2 layers. A scoring function e : R4 x R* — R was used to evaluate the
importance of each edge (j,7) and the importance between the features of the
neighbour node j to node i. The attention coefficients were formulated using;:

e(hi, hj, ;) = LeakyReLU ((a © W)"[h;||h;]|e;]) (1)

Where h; is a node representation, h; is a neighbouring node and e;; rep-
resents the edge features between them. W represents the weights matrix, a
represents learnable attention weights, ® denotes element-wise multiplication
and || denotes vector concatenation. The attention scores are then scaled for
all nodes within an image j € A;, using a softmaz function in the attention
mechanism:

exp(e(hi, hj, e;j))

t j\Qij) =
sof max; (a J) ZkeNi emp(e(hi, hy, eik))

(2)
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Where N; represents the set of neighbours of node ¢ and a;; is the attention
coefficient between node ¢ and node j. k represents a node index from the set
of all neighbors A; of node . The output of the GATv2 layer is represented by:

hy=o | Y e(hi hie;)- (W @a)h; (3)
JEN;

Where h/ is the updated representation of node ¢ after the GATv2 layer
operation. o represents the Exponential Linear Unit (FLU) activation function
[7], which was followed by a global mean pooling operation. The number of
GATv2 layers was varied to assess their impact on performance. The outputs
from each global mean pooling operation, when experimenting with multiple
GATv2 layers, were then concatenated together and passed through two fully
connected layers and a softmax activation function to give the classification
output (the Network architecture is shown in Supplementary material Figure
1). We compared the GNNs, to four weakly supervised MIL methods, including
a max-pooling MIL model, a gated-attention MIL model (gated AttMIL) [15], an
attention MIL (AttMIL) [15] and a clustering-constrained attention MIL model
(CLAM) [17].

4.4 Model training

The networks were trained using a cross-entropy loss function, comparing the
ground truth immune subtype slide label with the predicted slide-level label. A
learning rate of 0.0002 and weight decay of 1 x 10e~® were applied. Dropout
with a probability of 0.5 was used after each global mean pooling layer. During
training, to mitigate class imbalances, a slide was sampled proportionally to
the inverse of the frequency of its ground truth class. Model performance was
evaluated using a 10-fold Monte Carlo cross validation approach to calculate
the mean area under the curve (AUC) with 95% confidence intervals (CI). For
each fold the data was split with 80% of the data being used for training data
and 10% being kept for both the test and validation datasets. When calculating
performance for the three immune subgroups, the AUC scores were calculated
for individual classes by binarising classifications, then averaging the AUCs for
the three classes. The models were trained for a minimum of 50 epochs, with
early stopping if the validation loss did not improve for 20 epochs continuously.

Graph models were implemented using PyTorch 1.13.1, PyTorch geometric
version 2.2.0 with CUDA 11.6, using one Nvidia V100 32GB GPU from the
JADE2 HPC facility. Segmentation, feature extraction and MIL models were
implemented using PyTorch version 1.7.1 with CUDA version 11.0, using one
Tesla V100 32G NVLink 2.0 GPU from the Bede N8 HPC facility.

5 Results

For classifying the three immune subtypes, the combination of graph and visual
features led to improved performance, when using single resolution and multi-
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resolution graphs with one-hot encoded node embeddings as input (Table 2).
With the best performing network achieving a mean AUC of 0.63 (95% CI 0.61
to 0.65), using a 10x resolution input patch to get node and edge embeddings.

Table 2. Mean test AUC for classification of three immune subtypes with 10 fold cross
validation with 95% CI (mean £+ 95% CI), for different MIL models compared to our
proposed GNN models using single and multi-resolution graph respresentations. The
GNN models here are implemented with 3 GATv2 layers. “One-hot node” indicates
multi-resolution graphs with one-hot encodings added to the node patch embeddings.

Resolution |[Max-pooling MIL|Gated AttMIL| AttMIL CLAM [Proposed GNN
10x 0.57+0.022 0.60+0.026 |0.6140.039{0.60+0.028| 0.63+0.023
20x 0.55+0.026 0.574+0.035 [0.59+0.027|0.57+£0.034| 0.62+0.021
40x 0.484+0.023 0.554+0.036 |0.54+0.023|0.55+0.035| 0.61+0.027

10x+20x+40x - - - - 0.61+0.025
One-hot node - - - - 0.62+0.017

When examining model performance for classifying “high” and “low” immune
subtypes, we found using models trained with both 10x and 20x single resolution
graphs and multi-resolution graphs outperformed current SOTA MIL models
(Table 3). We found that the best performing GNN models both achieved a
mean AUC of 0.80 and were trained using 20x patch WSI graph representations,
or multi-resolution WSI graph representations which included one-hot encodings
to represent different resolution patches in the embeddings.

Table 3. Mean test AUC for high v.s. low classification with 10 fold cross validation
with 95% CI (mean £+ 95% CI), for different MIL models compared to our proposed
GNN models. Models were tested at different using single and multi-resolution graph
representations. “one-hot node” indicates multi-resolution graphs with one-hot encod-
ings added to the node patch embeddings. The 10x and 20x use three GATV2 layers,
the 10x+20x+40x use two GATv2 layers and the GNNs with “one-hot node” and 40x
embeddings use four GATv2 layers.

Resolution |Max-pooling MIL|Gated AttMIL| AttMIL CLAM |Proposed GNN
10x 0.5140.069 0.774+0.042 |0.75+0.043|0.73+£0.055| 0.78+0.033
20x 0.57%+0.090 0.75+0.072 |0.7440.048(0.75+0.053| 0.80+0.052
40x 0.4840.049 0.70+£0.048 |0.76+0.029|0.67+0.073| 0.77+0.056

10x+20x-+40x - - - - 0.7840.042
One-hot node - - - - 0.80+0.048

Moreover, we tested how increasing the number of GATv2 layers affected

model performance. We also explored using only the 10x and 20x patch and
graph features together, to test whether 40x features were leading to a decrease
in performance (Table 4). We found that overall, three GATv2 layers produced
the best performance for the single and two resolution GNN models. However,
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when implementing four GATv2 layers, the models trained with multi-resolution
one-hot encoded node embeddings achieved the equally highest mean test AUC
score of 0.80 (95% CI 0.75 to 0.85). We examined the effect of adding five GATv2
layers for this input, but found this did not further increase performance, as the
AUC was 0.79 (95% CI 0.71 to 0.87) (Supplementary material Table 1).

Table 4. Mean test AUC for high v.s. low classification with 10 fold cross validation
with 95% CI (mean + 95% CI), for GNNs when increasing the number of GATv2
layers in the network. “One-hot node” indicates multi-resolution graphs with one-hot
encodings added to the node patch embeddings.

Resolution |1 GATv2 layer|2 GATv2 layers|3 GATv2 layers|4 GATv2 layers

10x 0.7610.050 0.7610.041 0.7840.033 0.7840.038
20x 0.73£0.061 0.78£0.045 0.80+0.052 0.78+0.068
40x 0.68+0.061 0.7510.050 0.75+0.084 0.77+0.056

10x+-20x 0.7340.056 0.761+0.042 0.7940.033 0.77+0.044
10x+20x+40x| 0.77+0.091 | 0.78+0.042 0.77£0.088 0.77£0.088
One-hot node| 0.7340.065 0.75+0.077 0.784+0.076 0.80+0.048

Notably, for the three and two immune subtype classification tasks, the types
of graph representations that generated the best performance were not consis-
tent (Table 3 & 4). For the three immune subtype classification task, the 10x
patch graph (test mean AUC of 0.63 [95% CI CI 0.61 to 0.65]), followed by the
20x and one-hot node encoded graph representations generated the best test
mean AUC performances of 0.62 (Table 3). We believe this could be due to 10x
patch feature nodes containing a balance of cellular and structural detail, but
also due to 10x graphs containing less nodes. As melanoma whole slide images
contain highly heterogeneous tissues, this can lead to increased node heterero-
geneity and increased noise being introduced to classifications leading to errors.
This heterogeneity is also increased when including the “intermediate” subtype
to the classification task, as this subgroup is less defined than the “high” and
“low immune” subtypes. Therefore, lower resolution graph representations will
contain less noisy or heterogeneous nodes and may generate better classification
performance. Meanwhile, for the “high” v.s. “low immune” subtyping task, the
20x and one-hot node graph representations generated the highest AUC perfor-
mance (Table 4). We believe this may be the case, as for this task the presence
of immune cells in the TME is important for classification of the “high immune”
class, therefore, cellular and spatial detail is important. As graph representations
provide spatial context and higher resolution patches provide cellular detail, a
trade-off between enough cellular detail and less uninformative patch node em-
beddings, which introduce noise due to classifications, is required. Hence, in
Table 4 for single-resolution graphs, it appears that 20x patch graphs generate
the best performance as they provide more cellular detail than 10x patches for
“high” v.s. “low immune” task, without being adversely affected by the noise
seen with the 40x patch graph performance. Conversely, the one-hot node graph
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representations, while having the disadvantage of more noisy and heterogeneous
nodes, also have additional structural information from the edge and node one-
hot encodings, which may be the reason that they generate the joint highest
mean AUC when used as an input (0.80).

6 Discussion and Conclusion

Recent studies [20,22] have shown that melanoma patients can be stratified into
subgroups, with added prognostic value compared to AJCC melanoma staging
systems [12]. However, these studies are carried out using transcriptomic data,
which can be expensive and time consuming to analyse. In this paper we show
that routinely used H&E images can be used to develop models that classify
patients into these immune subgroups. We show how GNNs with graph repre-
sentations of WSIs can improve performance over current state-of-the-art MIL
methods for classifying melanoma WSIs into immune subgroups. While perfor-
mance does not increase beyond a mean test AUC of 0.63, for classifying the
three immune subtypes, we show that GNN models lead to improved perfor-
mance. However, in order to improve performance further, we will need to deci-
pher tumour heterogeneity and complexity within the “intermediate” subgroup.
To tackle this problem, we may need to look at further dividing this subgroup,
as a previous study by [20] found two distinct subgroups which overlap with this
“intermediate” group, or look at different techniques to learn more discriminant
representations of the images.

Moreover, for the task of classifying “high immune” and “low immune” sub-
types we show that 20x graph representations and the one-hot node encoded
multi-level graph representation generate the superior performance, with a mean
test AUC performance of 0.80. In agreement with findings by [28], our study also
demonstrates that increasing the number of GATv2 message passing layers in
models appears to enhance information transfer through the network, leading
to increased performance when using one-hot encoded node embeddings (Table
4). We also see this trend with 40x resolution graphs, suggesting these larger
graph structures, containing 40x node embeddings, benefit more from increased
message passing layers for information transfer.

We have also identified a limitation in the performance of our multi-level
graph approach due to the graph mean pooling mechanism, where all node em-
beddings are averaged together and equally contribute to the final slide-level
prediction. The graph representations we have constructed utilise every patch
extracted from the segmented image tissue. However, it is important to ac-
knowledge that these representations may include patches that do not contribute
meaningful information and can consequently result in misclassifications. This
issue becomes particularly challenging for our task due to high levels of tumoural
heterogeneity and because the ground truth labels are derived from small 0.6-
mm regions of the tumours. As a result, the multi-level graph representations
are more likely to contain noisy instances due to the increased number of patch
inputs from all three resolutions, further exacerbating the potential for misclas-
sifications. To address this concern, we propose the incorporation of a learned
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attention mechanism, which can emphasise the contributions of the most infor-
mative node embeddings and enhance both the performance and interpretability
of the model. A study by [14], demonstrated how applying an attention mecha-
nism to highlight significant nodes can improve hierarchical representations for
graph classification. This may help to avoid errors due to node heterogeneity and
bias due to imbalance in the number of nodes within different resolution levels.

Recent studies have also shown how elements of both graph and vision trans-
former models can be combined to classify WSIs, retaining positional encodings
with detailed patch level features. In 2022, [29] demonstrated how 20x patches
from WSIs could be used to generate WSI representations, creating 8-adjacency
subgraphs of patches that are adjacent to one another. These representations
were then used as inputs for their GPT model, which combined GCN layers
with Transformer layers to classifying lung cancer subtypes. Here they found
their model outperformed TransMIL [27] and AttPool [14] baseline models. Fol-
lowing this, in 2023, [10] developed a model, which utilised two independent “Ef-
ficient Graph-based Transformer” branches, which processed both low-resolution
and high-resolution patch embeddings. They used an attention matrix of self-
attention to adaptively generate the adjacency matrix which is used to learn
the whole slide image graph representation during training. [10], also leveraged
a multi-scale fusion model, which uses cross attention to share information be-
tween the different scale branches, to exploit detail at multiple resolutions. We
believe that implementing transformer layers in our own GNNs, may be another
way of improving model performance, by introducing self-attention and posi-
tional encodings that may help reduce errors caused by non-informative patch
embeddings.

Overall, we present a comprehensive study highlighting the superiority of
graph-based methods over MIL in the novel task of classifying melanoma WSIs
into immune subgroups. These findings strongly suggest that graph-based tech-
niques could be applied to a wide variety of other problems where MIL is regarded
as the gold standard. Furthermore, we showcase the clinical utility of graph-based
methods in stratifying patients into prognostic immune groups, suggesting these
methods are superior when modelling spatial relationships within the TME.
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