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Background: Histological examination of tumor draining lymph nodes (LNs) plays a vital role in cancer staging and

prognostication. However, as soon as a LN is classed as metastasis-free, no further investigation will be performed
and thus, potentially clinically relevant information detectable in tumor-free LNs is currently not captured.
Objective: To systematically study and critically assess methods for the analysis of digitized histological LN images
described in published research.
Methods: A systematic search was conducted in several public databases up to December 2023 using relevant search
terms. Studies using brightfield light microscopy images of hematoxylin and eosin or immunohistochemically stained
LN tissue sections aiming to detect and/or segment LNs, their compartments or metastatic tumor using artificial intel-
ligence (AI)were included. Dataset, AImethodology, cancer type, and studyobjectivewere comparedbetweenarticles.
Results:A total of 7201 articles were collected and 73 articles remained for detailed analyses after article screening. Of
the remaining articles, 86% aimed at LN metastasis identification, 8% aimed at LN compartment segmentation, and
remaining focused on LN contouring. Furthermore, 78% of articles used patch classification and 22% used pixel
segmentation models for analyses. Five out of six studies (83%) of metastasis-free LNs were performed on publicly
unavailable datasets, making quantitative article comparison impossible.
Conclusions: Multi-scale models mimicking multiple microscopy zooms show promise for computational LN analysis.
Large-scale datasets are needed to establish the clinical relevance of analyzing metastasis-free LN in detail. Further
research is needed to identify clinically interpretable metrics for LN compartment characterization.
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Introduction

The histological examination of lymph nodes (LNs) is an essential part
of cancer staging. The LN status (presence or absence of metastasis) is con-
sidered a key prognostic factor in patients with various different cancer
types, including breast, gastric, esophageal, and colorectal.1–4 The number
of regional LNs withmetastases as well as the extent (size) of themetastatic
Fig. 1. Schematic representation of immunologically stimulated lym
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lesion within each LN, which may vary from a macroscopically visible le-
sion to a micro-lesion consisting of a few isolated tumor cells, are the
main characteristics defining the regional spread of the cancer.5

There is evidence accumulating which suggests that metastasis-free LN
microarchitecture rearrangementsmight be clinically important.6–8 The LN
microarchitecture can be divided into distinct layers exhibiting different
compositions and functions, see Fig. 1. The outer layer, named cortex,
ph node with enlisted compartment-specific reactive patterns.
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consists of primary follicles composed of naïve B-cells. Upon immune stim-
ulation, these primary follicles can transform into secondary follicles with
germinal centers where further B-cells proliferate. The next (deeper) LN
layer, named paracortex, typically contains T-cells and dendritic cells
which enter the LN via high endothelial venules (HEVs). The innermost
layer of LN, called medulla, containing plasma cells, B-cells and macro-
phages, opens into hilum and efferent lymphatic vessels. The LN has a con-
duit system (so called sinuses) that transports macrophages and antigens
from outside the LN to the inside. Changes in the LN can manifest as so-
called reactive patterns which are illustrated in Fig. 1. The presence of
structural changes such as sinus histiocytosis has been associated with the
presence of a host anti-tumor response in patients with breast, gastric,
and colorectal cancers.9–11 In the same cancers, the presence of LNs with
follicular hyperplasia were related to a longer patient survival.12–14 It has
been suggested that the presence of a hyperplastic LN paracortex might
be a predictor of better survival in gastric cancer patients.15 It has also
been suggested that HEVs, usually present in the LN paracortex, may un-
dergo morphological remodeling in pre-metastatic LNs and hence could
be a potential morphological biomarker for prediction and prognosis in
cancer patients.16

To validate the clinical importance of reactive LN patterns or reactive
LNs as a whole, large scale investigations need to be performed on suffi-
ciently large cohorts. In order to obtain the measurements of individual
LN compartments, these would need to be segmented manually which is
very time consuming. Thus, in order to generate large-scale evidence,
there is a need for automated LN compartment analysis methods. As LN re-
action patterns can be seen through a microscope (see Fig. 2), digital histo-
logical images containing LNs should be suitable for artificial intelligence
(AI)-assisted analysis.

The launch of the Camelyon16 challenge in 2016 marked the start of a
very productive period for researchers investigating computational
methods for metastatic LN tumor characterization. The Camelyon datasets
consist of 1399 digitized axillary LN slideswith partialmetastatic tumor an-
notations and patient-level pathological lymph node (pN) status.17 The
slides from Camelyon datasets were collected from multiple centers and
thus vary in stain intensities and sample preparation protocols, reflecting
the practical challenges facing AI models such as generalizing across
multi-center data. Since the announcement of the Camelyon challenges,17

there has been a relatively large number of publications proposing different
algorithms to detect LN metastases using the publicly available whole slide
images (WSI) of axillary LNs from breast cancer patients. However, the
computational characterization of metastasis-free LNs seems to be lagging
Fig. 2. Exemplary images taken from H&E stained lymph node from esophageal can
immunologically stimulated (also called reactive) LNs. Figure A shows a lymph no
indicative of follicular hyperplasia; Figure B contains a metastatic lymph node with hyp
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behind, perhaps due to the fact that there are no well-established bench-
marks like the Camelyon challenge and no publicly available annotated
datasets. This review aims to systematically identify and analyze recent
publications that applied some form of AI for LN characterization, focusing
on the identification of AI methodologies in LN analysis, clinical interpret-
ability of the AI-based results, and current shortcomings of AI tools poten-
tially impeding clinical implementation.

Methods

Search strategy

This review was conducted following the proposed reporting items for
systematic reviews and meta-analyses (PRISMA) protocol.18 We searched
for publications across the following databases: PubMed, Scopus, ArXiv,
Web of Science, and Institute of Electrical and Electronics Engineers Xplore,
and the search phrases are listed in the supplementary document S1. The
databases were searched for articles published up to December 1, 2023.

Selection criteria

Studies focusing on lymph node (LN) detection, computational LN char-
acterization, or compartment segmentation in histological whole slide im-
ages (WSI), including hematoxylin and eosin (H&E) and
immunohistochemistry (IHC) staining using AI methods, either deep learn-
ing ormachine learning, were included in our analysis. Studies reporting on
imagingmodalities other than histopathology, such as positron emission to-
mography, computer tomography, ultrasound scans, tissue simulation stud-
ies, and tumor immune microenvironment studies were outside the scope
of this review and were thus excluded, as well as studies published in
other languages than English.

Screening by title and abstract

To select relevant studies eligible for full text screening, the initially
identified studies were filtered based on title and abstract content consider-
ing the above-mentioned inclusion/exclusion criteria.

Full text screening

The full text of eligible articles was further analyzed to identify and ex-
clude out of scope articles. Articles with unretrievable full text, as well as
cer patients. The figure illustrates the visually perceivable differences between
de with a large number of germinal centers (some are highlighted in asterisk),
erplasia of paracortex and a lack of germinal centers.
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conference abstracts were excluded from further processing. Data such as
dataset, AI model, cancer type, and study objective were extracted from
each full text for further article assessment.

Study quality assessment

In order to assess the experimental design of the study and risk of bias,
quality assessment was performed following the Checklist for Artificial In-
telligence in Medical Imaging (CLAIM) protocol.19 For quality assessment,
a detailed description of the AI model used in the study as well as clearly
defined training data were deemed mandatory for the study to be included
in the current review.

Results

Following the inclusion and exclusion criteria, the PRISMA protocol for
systematic reviews, and the CLAIM protocol for study assessment, we
finally identified 73 studies to be included in our systematic review, see
Fig 3 for PRISMA flowchart and Supplementary Table S2 for CLAIM
assessment results.

Datasets

56% (n=41) of the studies included in this review utilized publicly
available datasets (see Supplementary table S3). 36% (n=26) of the studies
used the Camelyon16 dataset,20 consisting of 399 H&E stained breast can-
cer sentinel lymph node (SLN) WSIs with LN status labels (with metastases
versus without metastases) and partial pixel annotations of metastatic
Fig. 3. PRISMA flowchart illustrating the article screening and
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lesions. The second most widely utilized dataset was Patch Camelyon,21

which was used by 8 (11%) studies and which is a derivative patch version
of Camelyon16 (see Table 1). Eight (11%) studies used Camelyon17,17 a
multi-center dataset extending Camelyon16 to 1399 breast cancer SLN
WSI. Two (3%) studies utilized the SLN breast cancer dataset from the can-
cer imaging archive (TCIA) with slide based LN status labels.22 One study
reported results obtained from an axillary LN breast cancer dataset avail-
able from the Analytic Image Diagnostics Arena (AIDA) Data Hub, which
provides slides immunohistochemically stained for cytokeratin (clone
AE1/AE3) instead of manual annotations as ground truth for cancer
metastasis.23 There were two publicly available LN datasets that did not
focus on metastasis detection. The dataset published by Bekkhus et al16

was used for HEV segmentation in immunofluorescently stained LN slides
from breast cancer including metastatic and metastasis-free LNs. Further-
more, Gamez Serna et al published a dataset with their multi-
magnification organ network (MMO-Net) that included rat mandibular
LNs with annotated LN contours.24 More details on each dataset are pro-
vided in Table 1.

32 studies (44%) utilized publicly unavailable in-house datasets. The
use of in-house datasets increased steadily overtime as can be seen in
Fig. 4C.

Lymph node contour detection

From an anatomical perspective, LN contour detection is the most gen-
eral task in computational LN analyses. We identified eight studies propos-
ing automated LN detection solutions. An early adoption of machine
learning techniques was used in a study by Niemisto et al.25 In 2005,
selection process implemented in this systematic search.



Table 1
Summary of publicly available datasets containing LN tissue sections.

Dataset Summary Ground truth Sample size Dimensionality Suitable
applications

Camelyon16 H&E stained slides of breast cancer sentinel
lymph nodes from 2 centers

Patient-level labels: pN stage.
Pixel-level: partial tumor
annotations

399 WSIs WSIs scanned at
20x and 40x
magnifications

Segmentation,
slide-level
classification, MIL

Camelyon17 H&E stained slides of breast cancer sentinel
lymph nodes from 5 centers

Patient-level pN stage label
Pixel-level: partial tumor
annotations

1000 WSIs WSIs scanned at
20x and 40x

Segmentation,
classification, MIL

Patch Camelyon Patches extracted from Camelyon16 dataset Patch-level label: tumor positive or
negative

327,680 patches 96x 95 pixel
patches at 10x

Patch classification

SLN-Breast, TCIA H&E stained slides scanned in one center Patient-level labels: pN stage label 130 slides from 78 patients WSIs scanned at
20x

Slide-level
classification, MIL

Axillary lymph nodes
in breast cancer,
AIDA

H&E slides of breast cancer sentinel lymph
nodes (2 consecutive slices) from multiple
scanners

Patient-level labels: treatment, pN
stage, primary tumor. IHC slides for
cytokeratin AE1/AE3

396 patients WSIs scanned at
20x

Tumor
segmentation,
slide-level
classification, MIL

Breast cancer lymph
nodes for HEV
detection

Immunofluorescently stained HEVs using HEV
markers for peripheral node addressin PNAd
and vascular marker Claudin-5

Immunofluorescence signal for
HEVs

73 patients with invasive,
non-invasive breast
carcinoma, or cancer-free

Not specified HEV segmentation
and diameter
evaluation in LNs

Multi-magnification
organ network
(MMO-Net) dataset

H&E stained slides of rat mandibular lymph
nodes from 3 centers

Manual LN contour annotations 53 WSIs containing lymph
nodes, 267 WSIs from other
organs

Not specified LN contour
segmentation
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where K-means clustering algorithm was used to segment LNs based on a
simplified three-color clustering scheme. Verghese et al26 applied a modi-
fiedOtsu thresholdingmethod to localize LNs in the whole slide breast can-
cer images. In the study by Wang et al,27 a U-Net autoencoder was trained
using 1xmagnification regional gastric cancer LN images to localize the LNs
within the slide. A more sophisticated approach for LN segmentation was
recently reported by Gamez Serna et al,24 where a
DenseNet121-derived MMO-Net model was trained to detect rat mandibu-
lar LNs in a multi-scale fashion accounting for two different image
Fig. 4. Graphs illustrating the usage patterns of the datasets and models in selected st
illustrating the model selection in the included articles. The total number of models is
C: chronological chart of dataset usage focusing on inhouse/public dataset selection. Th
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magnifications in parallel (5 and 1.25). Huang et al28 trained DeepLabv3+
segmentation model for LN detection in gastric cancer patients at 1.25x
magnification, whereas Hu et al29 utilized a pipeline of faster recurrent
CNN (Faster-RCNN) and DeepLabv3+ models for LN bounding box detec-
tion followed by precise LN contour delineation. A two-step LN detection
approach has also been implemented by Beuque et al,30 where a U-Net
model was trained to obtain LN mask from WSI thumbnail, followed by
false-positive prediction filtering by XGBoost model trained on hand-
crafted radiomics features obtained from LN masks. Faster-RCNN model
udies. A: piechart with dataset distribution across the selected papers, B: piechart
larger than the number of studies, as some studies trained more than one model.
e barchart illustrates the steady increase of studies using inhouse datasets.
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was also used for LN detection by Tan et al,31 where a model was trained to
detect LN bounding boxes in colorectal cancer patients at 5x magnification.

Lymph node metastasis detection

Metastatic LN status identification is essential for predicting cancer pa-
tient’s prognosis and determine further treatment. In our systematic review,
63 (86%) out of 73 studies focused on metastatic lesion detection in re-
gional LNs. 48 out of those 62 studies reported results from analyzing me-
tastatic breast cancer regional LNs. This bias towards LN metastasis
detection in breast cancer can be largely explained by the availability of
public datasets, namely Camelyon16 and Camelyon17. Based on the
machine learning paradigm utilized in a study, we grouped the metastasis
detection articles into six groups.

Studies using convolutional neural network models

The use of convolutional neural networks (CNNs) has been widely
adopted in AI-assisted image analysis field. The CNN architecture relies
on convolutional filters called kernels—small matrices with learnable
weights. The convolution process entails a sequential kernel application
across the input image matrix, where a feature map is created via
element-wise multiplication of the kernel and a subset of input matrix.32

There were multiple CNN architectures suggested throughout the years
which have been universally applied in computer vision tasks. In 2014,
Google has introduced their GoogleNet model, also called Inception33—a
CNNmodel that suggested a parallel utilization ofmultiple kernels of differ-
ent size. A year after ResNet50 architecture was suggested,34 solving the
vanishing gradient issue via skip (residual) connections. The original
model contained 50 layers, with alternative ResNet101 (101 layers) and
ResNet152 (152 layers) versions. Vanishing gradient problem was also ad-
dressed by DenseNet model,35 where each layer receives an input from all
prior layers via dense connections.

Out of 63 articles discussingmetastatic LN analysis, 27 papers were ded-
icated to a classic deep learning strategy for computer vision, where one or
multiple CNN architectures were trained and tested on LNmetastasis detec-
tion datasets. The earliest studies included in our review starting in 2016
applied commonly used CNN architectures such as AlexNet, DenseNet,
GoogleNet and Visual Geometry Group CNN (VGG), as well as custom ar-
chitectures like ScanNet on Camelyon 16 dataset.36–41 The Camelyon16
dataset was further utilized to extract metastatic and metastasis-free LN
patches into a dataset called Patch Camelyon, which was applied for
patch classifier models.21 Later Camelyon dataset usecases were adapted
to address practical WSI processing challenges.WSI scanning speedwas ad-
dressed by Zhang et al,40 where authors proposed amultiple spatial context
network and patch feature sharing for faster slide scanning. Shvetsova
et al42 proposed unsupervised anomaly detection in Camelyon16 using an
autoencoder reconstruction of the input image focusing on the evaluation
of the perceptual loss. Alheejawi et al43 proposed a deep learning method
for proliferative index (PI) evaluation in LNs of melanoma cancer in Ki-67
stained WSIs. The authors used a SegNet model to obtain pixel-level seg-
mentation masks. Hu et al29 utilized inhouse gastric cancer dataset to
train DenseNet121 model for metastatic LN detection. Pham et al44 trained
a pipeline of two VGGmodels for germinal center andmetastasis detection,
concluding that additional secondary follicle detection step improved
tumor model specificity. Allam et al45 suggested a novel approach towards
LNmetastasis identification in breast cancer patients—instead of predicting
metastasis directly frommetastatic regions, authors trained a custom archi-
tecture CNN model to detect metastasis from non-metastatic LN regions
(metastatic tumor microenvironment). The authors evaluated LN sinuses,
follicles, and interfollicular lymphocytic areas concluding that
lymphocyte-rich interfollicular regions had the highest positive predictive
power for metastatic LN detection.

13 studies (18%) utilized ResNetmodel architecture to detect LNmetas-
tasis. Out of these studies, five articles utilized Camelyon datasets. Jaiswal
et al46 trained classical patch classifiers such as ResNet, VGG, Inception on
6

Patch Camelyon in semi-supervised fashion using class withmaximum pre-
dicted probability as ground truth labels for unlabeled patches. The authors
used test time augmentation technique to expand the test dataset and eval-
uate model generalizability. Kim et al47 used the Camelyon datasets on the
Inceptionv3, VGG16, and ResNet models as transfer learning for their in-
house dataset of frozen H&E breast cancer LN samples validating that the
features learned on Camelyon datasets were transferable to frozen tissue
samples. In a study by Chen et al,48 the authors used a RRCART model to
distinguish high-accuracymetastasis predictions from low-accuracy predic-
tions obtained using ResNet model. Lee and Paeng et al49 passed a tumor
probability map generated with ResNet101 into a random forest model
for pN prediction, achieving second best-weighted kappa score of 0.9203
within the pool of selected studies leveraging Camelyon17 dataset. Patil
et al50 introduced HistoROI model—a derivative of ResNet architecture
that was designed to keep the diagnostician in the loop via active learning.
Turki et al51 trained multiple models, namely ResNet, DenseNet121,
VGG16, and Xception on the SLN-breast dataset from TCIA, concluding
that DenseNet121 achieved the highest performance for their dataset of
choice.

Wang et al27 used the ResNet50 binary patch classifier for gastric cancer
regional LN segmentation, using germinal center, sinuses, and adipose tis-
sue annotations for the identification of the metastasis-free LN class. This
study also analyzed the spatial distribution of metastatic lesions, specifying
two distinct metastatic dissemination patterns in gastric cancer patients.
Chuang et al52 utilized ResNet50 for metastasis identification in colorectal
LNs from colorectal cancer patients coupled with class activation mapping
to highlight diagnostically important regions for the model. ResNet model
has been utilized for LN metastasis detection in gastric cancer patients by
Huang et al28 and Matsushima et al53 who concluded that utilization of
ResNet model significantly increased the micrometastasis detection sensi-
tivity compared to manual unassisted analysis, however, the automated
slide analysis took longer than time needed by pathologist. In the study
by Kronberg et al,54 authors trained a multi-class model for metastatic LN
detection in pancreatic cancer patients, capable of distinguishing between
healthy pancreas, metastasis-free LN, metastasis, background, and adipose
classes.

When designing an automated diagnostic tool, it is important to mini-
mize the chance of false-negative decision, where a metastatic LN is
assigned to a “healthy”metastasis-free class, which is reflected by sensitiv-
ity metric. Two studies in our analysis proposed ResNet-based solutions
that achieved a perfect 1.00 sensitivity in gastric cancer55 and head and
neck cancer56 datasets consisting of 40 gastric cancer patients and 50
head and neck cancer images, respectively. The proposed metastasis detec-
tion systems reached lower yet still competitive false-positivity (specificity)
scores of 0.9994 in gastric cancer and 0.759 in head and neck cancer stud-
ies, respectively.

Studies using convolutional autoencoders

Autoencoders are a specific type of CNN networks consisting of encoder
and a decoder part aiming to learn a condensed representation of input
image. The encoder part compresses the input image into an embedding
vector in the autoencoder bottleneck, whereas a decoder part is responsible
for input image reconstruction from the embedding latent space. In contrast
to the previously described CNN classifier models, which assign a class to
the input image patch, autoencoders can produce a finer output mask by
classifying each pixel within an input image into a predefined class. In
2015, Ronnenberger et al57 introduced a U-Net—a U-shaped autoencoder
architecture containing skip connections between encoder and decoder
parts to help preserve the spatial information. Two years later Google intro-
duced a DeepLabv3+ model.58 The DeepLabv3+ architecture utilizes
patch classifiermodels such as ResNet50 or DenseNet for feature extraction
followed by dilated (also called atrous) convolutions for a wider receptive
field and contains an atrous spatial pyramidal pooling (ASPP) module de-
signed for multi-scale feature extraction via multiple atrous convolution
rates.
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Eight studies utilized pixel-level segmentation models, namely U-Net,
DeepLabv3+, or their derivatives. Xu et al59 leveraged a U-Net model to
segment metastases in LNs of the Camelyon16 and Camelyon17 datasets
followed by random forest model for pN stage prediction. Jin et al60 intro-
duced ConcatNet model by concatenating four U-Net models each for nu-
cleus, mitosis, epithelium, and tubule segmentation. Jansen et al61

utilized U-Net model with ResNet50 encoder for metastasis identification
in LNs from melanoma patients achieving competitive sensitivity scores
of 91.67 and 95.62 on two datasets. Mainovskaya et al62 used a pixel seg-
mentation approach using DeepLabv3 model for metastasis segmentation
in CRC LNs. The authors also considered the presence of slide artifacts
such as tissue folds and pigment residues, whichwere addressed by training
an additional U-Net model for artifact detection. DeepLabv3+ model was
applied for metastasis identification in breast63 and esophageal64 cancer
studies. Bozdag et al65 addressed the large parameter space of DeepLabv3+
model and introduced a lightweight pyramid-structured segmentation net-
work NonLocalSeg for more time-efficient slide processing in the
Camelyon16 dataset. Wang et al66 utilized a modified DeepLabv3+
model by introducing pyramidal attentional atrous spatial pyramidal
pooling (PA-ASPP) and scale-aware selection to weight multi-scale features
extracted by ASPP using ResNet101 model as feature extractor. To obtain
slide-level metastasis predictions, the authors used density based spatial
clustering model (DBSCAN) to combine patch-level predictions and
XGBoost model for patient-level pN prediction. The proposedmodel frame-
work achievedweighted kappa score of 0.9632whichwas the highest score
among included articles utilizing Camelyon17 dataset in this review.

Multi-scale models

Among the selected study pool, we identified five articles that used
multi-scale models. Multi-scale models, originally proposed by Wang et al
in 2016,67 leverage tissue context information by ingesting two input im-
ages of different magnification at the same time, thus mimicking multiple
microscopic zoom levels. In 2017, Liu et al presented Google’s Lymph
Node Assistant (LYNA) model trained on Camemyon16 patches.68,69 The
LYNA model was built on Inception V3 architecture in multi-scale fashion.
Steiner et al70 reported that the use of the LYNA model as digital assistant
for pathologists significantly reduced the slide screening time needed to
reach a final diagnosis. The authors have also tested the LYNA framework
on their in-house dataset and reported the LYNA model robustness against
slide artifacts such as bubbles and H&E stain variability. In a study by
Schmitz et al,71 the authors investigatedmulti-scaleWSI training strategies,
achieving higher weighted Jaccard coefficient values for the Camelyon16
dataset compared to the use of a single-scale U-Net model. In recently pub-
lished study byWang et al,72 authors have also utilizedCamelyon16 dataset
for their multi-scale model, that was based on ResNet architecture. The au-
thors proposed amodel consisting of low- and highmagnification networks
operating at 10x and 40x magnifications, respectively. The model was de-
signed to first scan the slide at low magnification to identify regions of in-
terest that would further be analyzed at high magnification. The proposed
multi-scale model was compared to LYNAmodel with respect to the testing
FROC metric and processing time, achieving higher FROC performance
with significantly lower slide processing time (33 min per slide for LYNA
model compared to 4.5 min for proposed model).

Generative adversarial networks

To expand a particular given dataset and improve deep learning model
generalizability, image augmentation is often employed, including image
rotation, axis flipping, and/or color saturation variations. Amore advanced
method to augment the dataset is by leveraging generative adversarial net-
works (GANs)—a specific family of deep learning models trained to gener-
ate images from random noise—for synthetic data generation. Four studies
trainedGANs on the Camelyon datasets. Kovalev et al73 employed twoGAN
models, namely deep convolutional GAN and progressive growing GAN to
extract deep features from the synthetic images and trained classic machine
7

learning models for image classification into either metastatic or
metastasis-free image patch. Jiarong et al74 introduced HistoGAN model
for synthetic image generation which was further applied in a study by
Xue et al74 proving that synthetic image generation improves classification
model performance. Due to the usually site-specific sample preparation pro-
tocols, staining intensity variability, tissue thickness variability, and
scanner-specific artifacts, it is challenging to build a generalized model ca-
pable of performing the task equallywell using slides fromdifferent centers.
Wollmann et al75 explored this issue by using a CycleGANmodel for the do-
main adaptation task. The generative model was trained to transfer the
medical center-specific styles to the slides from newmedical centers unseen
by the deep learning model aiming to reduce inter-center image variability.

Multiple instance learning

The development of deep learning systems usually requires large
amounts of data with labeled ground truth, which is a challenge in pathol-
ogy field due to the limited time resources of pathologists that annotate the
data and largeWSI scale. The largeWSI dimensions (on average, 100.000 x
100.000 pixels)76 complicate the annotation process, rendering the fullWSI
manual annotations a barely realistic option. Camelyon datasets are a good
example of annotation sparsity, where only partial pixel annotations are
available accompanied with a patient-level label. The challenges of sparse
data annotations can be facilitated by applying multiple instance learning
(MIL) paradigm.MIL training is a branch of weakly supervisedmodel train-
ing approaches, where the training instances are bagged in batches with a
single label per bag. For our analysis, we identified nine articles imple-
menting this approach, eight of which leveraged Camelyon datasets.
Akbar et al77 implemented aMILmodel for Camelyon16 dataset by training
a variational autoencoder in unsupervised manner and subsequently clus-
tering the learned features into pre-defined labels. A categorical cross-
entropy loss modification was introduced for weak label assignment.
Courtiol et al41 implemented MIL via learning the top instances and nega-
tive evidence. Shao et al78 utilized visual transformer model for transMIL
approach. The same authors produced attention heatmaps to visualize the
image areas deemed important by the AI algorithm, rendering the result
more explainable. Wang et al introduced a second-order MIL relying on
the matrix power normalized covariance pooling, so-called second-order
feature extraction, from LN slides. The authors applied a channel attention
mechanism to identify the most discriminative second order features in the
slide. Wang et al79 introduced a label cleaning MIL approach for sparse
annotation refinement using only single WSI for model training, thus
suggesting an alternative to the regular data-intensive deep learning
training protocols. Kang et al80 used transfer learning technique for their
MIL approach by training the model jointly on Camelyon dataset and
their in-house esophageal cancer dataset. The use of publicly available
dataset reduced the need for high-quality inhouse annotations. Sadafi
et al81 implemented attention-based MIL approach with active learning.
The proposed system evaluated the uncertainty of classification results
submitting the slides with the least certain predictions to the expert for
additional annotations. Yu et al82 proposed vocabulary-based MIL ap-
proach, where the model was trained to discover the structural prototypes
metastatic LNs from breast cancer patients via unsupervised clustering,
thus offering a higher model interpretability. Tan et al31 proposed a
transformer-based MIL model for colorectal cancer cases. The authors
emphasized that the attention map obtained with the transformer model
correctly localized the metastatic LN lesions even if the final prediction
was negative, suggesting the model’s capability of avoiding false negatives.
Transformer model has also been utilized by Qin et al,83 achieving a higher
sensitivity in Camelyon16 dataset compared to pathologist (94.25% and
73.2%, respectively).

Other machine learning methodologies

In the field of computer assisted diagnosis, error rate minimization is of
paramount importance. One way to reduce the variance of predictedmodel
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errors is to use a combination ofmultiple machine learningmodels to reach
the final prediction—a method called model ensembles. In the pool of our
selected papers, there were two papers leveraging this approach for metas-
tasis detection. Abdollahi et al84 and Munappa et al85 ensembled models
such as ResNet, DenseNet, and VGG on Camelyon datasets, Munnappa
et al reported that ensemble model achieved higher precision, recall, and
F1 score compared to single models. The speed of WSI processing was in-
creased using reinforcement learning (RL) as suggested by Zhao et al.86

The authors proposed the RLogist model, which tries to mimic the histopa-
thologist’s real-world approach in finding the regions of interest and ana-
lyzing those regions in multi-scale fashion. Gildenblat et al87 investigated
a self-supervised deep learning model, training a Siamese network. The au-
thors leveraged the spatial continuity, treating adjacent tiles as more simi-
lar than distant ones, yielding a better tumor tile retrieval ratio compared
to ordinary self-supervised models. A teacher–student model paradigm
was investigated in a study by Cheng et al,88 where the spatial distance
was leveraged as tile similarity metric. Shubin et al89 suggested including
the variance error into deep learning model loss function, assuming that
the variance error is included in the bias-variance trade-off. Challa et al90

utilized a commercial software for LN metastasis detection offered by
Visiopharm, achieving 100% sensitivity and relatively low specificity
score of 41.5% in their breast cancer LN datasets.

Finally, there was a small percentage of studies (n=3, 4%) describing
non-deep learning AI methods for metastasis identification. Valkonen
et al91 compared patch classification task performance between a neural
network and classic machine learning algorithms, such as support vector
machine and random forest. Palatnik de Sousa et al92 explored the
explainability of the Camelyon16 dataset classification using locally inter-
pretable model-agnostic explanations technique for Patch Camelyon
patches split into superpixels by the SLIC algorithm. The follow-up study
by the same authors93 proposed genetic algorithm-inspired evolved expla-
nation (EvEx) methodology to contrivemodel explanations and extract seg-
mentation masks based on the explanation results.

Interpretation of LN metastasis misclassification

Only 12 studies (19%) out of 63 studies investigating LNmetastasis pro-
vided a detailed analysis of false-positive predictions in metastatic LN de-
tection. Based on the gathered data, LN sinus histiocytes were the most
common false positively identified region mentioned by six
studies29,31,56,68,90,94 followed by secondary lymphoid follicles (germinal
centers),56,64,94 connective tissue,31,64 out-of-focus areas,68 and slide
artifacts.50 The most common metastatic regions misclassified as negative
were micrometastatic lesions61,64 as well as histiocyte-like tumor cells.53

Wang et al72 identified adipose tissue, out-of-focus regions, and tumor
edges as the areas where their model was struggling the most. To reduce
false-positive rates for metastatic lesions, Pham et al44 used a two-step
deep learning pipeline including a follicle class to the metastasis detection
model pipeline.

Segmentation of lymph node compartments

For this review,we found six (8%) articles focused onmetastasis-free LN
tissue characterization. Bekkhus et al16 proposed a Mask-RCNN model for
HEV segmentation in immunofluorescent stained LN samples called
HEVfinder aiming at identification of dilated HEVs in tumor draining LNs
in breast cancer. One study analyzed the clinical significance of extracellu-
lar matrix remodeling in metastatic LNs. Qaiser et al95 studied tumor prox-
imity to immunohistochemically detected collagen IV fibers in diffuse large
B-cell lymphoma. The study utilized the HydraNet model to detect tumor
cells and k-means clustering to identify the association strength between
tumor cells and collagen regions in metastatic LNs. Kurian et al96 proposed
a U-Net derived models for LN sinus and germinal center segmentation im-
plementing multi-scale and confidence map features into their deep learn-
ing solution. The authors implemented fuzzy boundaries to tackle
imperfect sinus edge segmentations. A recent study by Jin et al97 aimed
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for detailed LN computational representation using 11 classes for LN seg-
mentation. The study reused the patch-based classification approach
using the LYNAmodel. This study aimed at real-time LN compartment pre-
dictions for augmented reality microscopy. The authors raised concerns
about the choice of the optimal magnification for the model, illustrating
this with tumor cell detection differences at 20x and 40x magnification.
Verghese et al26 trainedmulti-scale U-Net autoencoders with atrous convo-
lution layers for LN sinus and germinal center detection in H&E-stained
breast cancer slides. The authors trained the model using WSI crops at
2.5x, 5x and 10x magnifications, concluding that a mixture of different
slidemagnifications during training improved thefinal U-Netmodel perfor-
mance. Song et al98 utilized ResNet model to classify breast cancer LNs into
either obese, metastatic, or metastasis-free achieving 0.67 AUC classifica-
tion score. The slide tiles deemed the most representative by the model
were further processed via rule base filtering to quantify adipocytes, eryth-
rocytes, and lymphoid white space leading to a conclusion that increased
size of all three components was observed in metastasis-free LNs of metas-
tatic patients.

Model selection and experimental design

From 73 studies included in this review, 78% (n=57) were designed as
patch classification experiments, whereas the remaining 22% (n=16) used
pixel-level classification. In total, we found 27 distinct model architectures
with 23 models describing patch classification and the remaining 4 models
describing pixel-level segmentation studies. Among patch classifiers,
ResNet models were utilized most frequently (15 studies),27,46–56,72,84,98

followed by MIL (n=9),31,41,77–82,99 VGG models (n=
8),36,37,44,46,51,84,100,101 and others as shown in Fig. 4B. Amongst pixel-
level classification methods, U-Net was the most commonly used (10
studies)26,27,30,59–62,71,96,102 followed by DeepLabv3 (n=7),28,29,62–66

Mask-RCNN (n=1),16 and proprietary Visiopharm AI metastasis model90

as can be seen in Fig. 4B.

Chronological comparison of data and AI strategy selection

From a chronological perspective, patch-level classifier models pre-date
pixel-level segmentation models, with the latter being increasingly used in
recent years. Due to the popularity of the Camelyon challenges, earlier pub-
lications almost exclusively relied on Camelyon16, Camelyon17, and Patch
Camelyon datasets, whereas publications with in-house datasets are in-
creasingly emerging, see Fig. 4C. With respect to the research topic, studies
focusing on metastasis-free LN compartment analysis emerged later than
studies analyzing LN metastasis. All the studies on metastasis-free LNs use
in-house dataset with the exception of Bekkhus et al, where a publicly avail-
able immunofluorescence dataset was used, and Gamez Serna et al, where
rat mandibular LN dataset was utilized for LN contouring, see Table 1.

Discussion

There is a growing amount of evidence that AI methods are applicable
for digital pathology. The launch of the Camelyon challenges has greatly ac-
celerated the development of metastasis detection algorithms for LNs, with
over 300 studies citing the original publication of the Camelyon17 dataset
to this date. Consequentially, the publications offering deep learning solu-
tions identified during this review of the literature were mostly focusing
on LN metastasis detection. The majority of the published studies using
the Camelyon datasets present novel deep learning model adaptations to
improve metastasis detection without offering some biological interpreta-
tion of the model performance, in particular causes for false-positive or
false-negative predictions. Themodels selected formetastasis identification
in LNs included both patch classifiers and segmentation methods. ResNet
models were most frequently used for patch classifiers, whereas U-Net
models were most frequently selected for segmentation tasks. The majority
of metastasis detection models were designed as patch classifiers (84%),
suggesting that patch classifier output is sufficient to predict the LN status
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(presence or absence of metastasis), and that refined tumor contour predic-
tions obtainedwith segmentationmethodsmay not be necessary for LNme-
tastasis detection. From the selected papers, the bestmodel performance on
the Camelyon17 dataset was reported by Wang et al,66 where a modified
DeepLabv3+ model followed by DBSCAN clustering and XGBoost for pN
stage prediction reached the weighted kappa score of 0.9632. However,
the same study reported lower detection accuracy for ITCs. One of the op-
tions to reduce the difficulties of micrometastasis and ITC detection in
LNs could be the use of AI to help the pathologist by highlighting the suspi-
cious regions in the LN slide to the pathologist. Such a solution has been
suggested by Google AI, developing the LYNA model designed specifically
for pathological LN analysis.69 The LYNAmodel has been designed to assist
the pathologist by highlighting the potential areas with metastatic tumor
allowing the pathologist to make the final decision for the analyzed
slide.68 In the same study, the LYNA-assisted workflow achieved a
significantly higher sensitivity for micrometastasis detection compared to
AI-unassisted H&E slide analysis by an experienced pathologist. To our
knowledge, there’s only one commercial software tool for LNmetastasis de-
tection provided by Visiopharm that is certified as an in vitro diagnostic
medical device (CE IVD). In a study by Challa et al,90 the use of Visiopharm
metastasis algorithm resulted in a perfect tumor detection sensitivity of
100%, yet the reported precision was 41.5% suggesting a high rate of
false-positive metastasis predictions.

Despite the relatively large number of studies focusing onmetastasis de-
tection in LNs included in our review (63 papers), there are currently rela-
tively few studies utilizing AI models to answer clinically driven research
questions offering a biological interpretation of the model results and/or
aiming at model implementation into the clinic. 12 studies analyzed the
metastasis detectionmodel performance in the biological context to charac-
terize the falsely detected metastatic regions. They concluded that
histiocyte-filled LN sinuses and germinal centers are the most common
false-positive metastasis predictions in LN slides. The deep learning models
enabled researchers to systematically assess metastasis dissemination in the
LNs. Wang et al27 used a ResNet50 model to characterize the spatial pat-
terns of metastatic spread in gastric cancer LNs, identifying two distinct
mechanisms of metastasis based on the entry location of the tumor in the
LN: via afferent lymphatic vessel or LN hilum. The authors trained a
patch classifier at 20x magnification, which provided a sufficient output
resolution to analyze the metastatic tumor location within LN achieving
Dice score coefficient of 94.4%. To mitigate the putative false-positive pre-
dictions, the authors used LN sinus, germinal center, and adipose tissue
patches as metastasis-free class during training. False-positive predictions
in germinal centers could be tackled by developing a multi-class classifica-
tion model that accounts for the germinal center class. This approach was
implemented by Pham et al, who introduced a two-step deep learning pipe-
line combining two separate models for the detection of lymphoid follicles
and metastasis regions.44

There is evidence accumulating to suggest that changes in secondary
lymphoid follicles (germinal centers), sinuses, and paracortical areas of
LN, so called reactive patterns (Fig. 1), may predict cancer patient survival.
Allam et al45 described a method for pN stage prediction from
non-metastatic part ofmetastatic LNs called tumormicroenvironment, indi-
cating that interfollicular lymphocyte areas have the highest positive-
predictive power for breast cancer LN cases. We previously summarized
reactive pattern evaluation protocols suggested so far for manual assess-
ment of reactive LN status, which highlighted the need for a standardized
guideline for LN reaction assessment.103 However, to establish evidence-
based guidelines for LN reactive status evaluation, large scale biological
studies need to be conducted to demonstrate its clinical value raising the
necessity for automated detection methods. In this review, we identified
six studies dedicated to AI-drivenmetastasis-free LN compartment analysis.
The earliest study was published in 2019, highlighting the recency of this
topic.95 The LN sinuses tend to have a complex shape of canals penetrating
LN cross-section in various directions, which can be harder to segment
using a patch classification approach at lower magnification. This could
be concluded from the study by Jin et al,97 where the authors trained
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LYNA models for LN compartment detection at different magnifications.
The highest accuracy for LN sinus segmentation was achieved analyzing
patches at 40x magnification, whereas 10x magnification was optimal for
breast cancer metastasis patch identification. In the same study, veins, ar-
teries, nerves, LN capsule, fat, and lymphocytes were also best detected at
40xmagnification except for germinal centers, where best test performance
was achieved at 20x magnification. Manual LN sinus annotation proved to
be a challenging task as suggested by Kurian et al, where authors imple-
mented a U-Net autoencoder model for LN sinus segmentation accounting
for noisy LN sinus annotations by developing a loss function for fuzzy
boundaries.96 In a follow-up study from the same research group, the au-
thors also explored the post-processing of the deep learning model output
and identified evaluation metrics that could be translated into the clinical
practice. The germinal center predictions were used to obtain metrics
such as germinal center count per LN, germinal center mean area and ger-
minal center circularity using the Polsby-Popper circularity metric for
shape evaluation. For LN sinuses, the subcapsular sinus width per LN was
evaluated. The study revealed that a larger number of germinal centers, a
larger germinal center area, and its rounder shape, as well as wider subcap-
sular LN sinuses were associated with longer survival. However, these re-
sults require validation in studies in LNs from other types of cancer. In a
recent study by Song et al,98 authors indicated the importance of prognostic
LN structure size evaluation, concluding that the size of adipocytes, red
blood cell conglomerates, and white gaps in LN have a prognostic signifi-
cance when distinguishing patients by pN status and obesity stage. There
was only a single study where the segmentation of HEVs was attempted.
Bekkhus et al16 utilized a deep learningmodel to segment HEVs in immuno-
fluorescent LN images. Besides HEV detection, the authors also aimed at
HEV dilatation detection, as it was previously suggested that this might
be associated with pre-metastatic changes in regional LNs.104 Further anal-
ysis is needed to validate whether HEV detection and dilation evaluation
can be assessed in routine H&E-stained slides.

When designing an AI study, the selection of the deep learning model
plays a fundamental role. Themajority of the studies included in this review
describe an adaptation of already existing model architectures for the LN
analysis task and the most commonly used models are ResNet, DenseNet,
and U-Net. The LYNA model introduced by Google AI was specifically de-
signed to tackle the metastatic LN identification task, which was later
adapted for metastasis-free LN compartment segmentation.69,70,97 The au-
thors of LYNA model applied the multi-scale model paradigm, where the
model accepts multiple input images at different magnifications,
encompassing both low- and high magnification level features, to the LN
analysis field. The multi-scale LN model idea was further developed by
Schmitz et al,71 proposing a combination of an U-Net autoencoder and
ResNet18 context encoder models. Gamez Serna et al24 introduced multi-
scale MMO-Net model capable of multi-organ segmentation, including
LNs. In a recent study by D’Amato et al,105 multi-scale models were proven
to achieve higher F1 score metrics for tumor detection in 20 different can-
cer types compared to single-magnification setting, however the input–out-
put intensive operations render multi-scale models timewise inefficient at
WSI processing. The time efficiency issue has been addressed by Wang
et al,72 proposing a model that reduced slide processing time more than
eight times compared to LYNA model.

Dataset selection is another key factor when designing the computa-
tional study. Except for MMO-Net dataset released for rat mandibular LN
contour detection, all the public datasets included in our review were
exclusively generated from breast cancer LN cases with the ground truth
specifically oriented towards metastasis evaluation (except HEV
immunofluorescence dataset), which limits the scope of their usability for
other research objectives. There is a need for alternative data sources.
The low incidence of external validation of models found in the selected
study pool (29%, N=21) is most likely related to the apparent lack of pub-
licly available data that could be used as a ground truth in external
validation. The Camelyon17 testing dataset contains slides from multiple
different medical centers, addressing the practical challenge of site-
specific WSI features, however, the slides originate from a single country
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(Netherlands), thus limiting the capabilities to evaluate model generaliz-
ability over different patient geographies.

The datasets used in the studies had a varying degree of public accessi-
bility. Several datasets, such as OE02 esophageal cancer trial data as well as
breast cancer LN dataset from Guy’s hospital had only images publicly
available with inaccessible annotations, whereas only the datasets with
accessible ground truth were regarded as publicly available in our
review. The datasets varied in the nature of ground truth format—four
datasets contained manually annotated ground truth, whereas AIDA
breast LN dataset was complemented with immunohistochemically
stained slides for metastasis. Compared to the manual annotations,
immunohistochemically stained ground truth offers the highest annotation
recall, as this method avoids the bias of human-produced errors. However,
artifacts such as IHC stain residuesmight obfuscate the slide translation into
ground truth mask, raising the need for pathologist to review the stained
slides.94 Additionally, not all the anatomical structures of interest have a
specific antibody that would produce annotation-quality staining. For in-
stance, LN sinus macrophages have a specific stain for CD169+ macro-
phage cells, however, only a small subset of sinus-residing macrophages
express CD169 molecule, whereas CD68 marker for macrophages is not
specific for this cell type only,106 which would produce false positive stain-
ing. Due to these issues, the ground truth annotation process requires an
expert-in-a-loop to ensure reliable outcome. However, the laborious anno-
tation process has a potential to be at least partially automated by applying
novel annotation tools that implement active learning, such asMonai Label,
DeePathology, or DigiPath Viewer.

Limitations

With the exception of one study,16 studies included in this review were
limited to those using light microscopy imaging data because the primary
focus of this review was the analysis of routine H&E-stained slides. How-
ever, numerous studies have been performed on other sample analysis
methods. Miura et al107 have employed scanning acoustic microscopy to
identify lesion elasticity in LNs. Liu et al108 relied on multi-spectral micros-
copy to obtain elliptic features of cells, enabling LN segmentation into
tumor, B, T, and dendritic cells. Fourier transform infrared (FTIR) micros-
copy has been applied for LN architecture analysis, leading to complete un-
supervised LN architecture reconstruction by Bird et al,109 followed by later
study by Leslie et al110 rendering higher-resolution LN microarchitecture
features of eight distinct classes. Compared to light microscopy, each anal-
ysis method has specific advantages: scanning acoustic microscopy is capa-
ble of analyzing tissue elasticity, multi-spectral microscopy includes
spectral bands in infrared and ultraviolet wavelengths besides red, green,
and blue color channels, FTIRmethod captures cell-specificmolecular com-
position, thus offering higher resolution than H&E stained tissue analysis.
These methods, despite their own limitations, could complement the tradi-
tional H&E sample analysis by adding new insights into tissue composition
and biochemical processes inside LNs.

This reviewwas limited to the studies analyzing LNs without further in-
vestigating the structural composition of the primary tumor. Tertiary lym-
phoid structures (TLSs) found inside and nearby the primary tumor are
gaining scientific attention. In the study by Ling et al,111 Inception-
ResNet-v2 model was trained for patch classification to detect TLSs in
esophageal cancer patients and to distinguish between immature and ma-
ture TLS cases. In the same study, mature TLSs have been associated with
a better patient disease-free survival. Barmpoutis et al112 have published
their approach for TLS segmentation in lung cancer patients using
DeepLabv3+ and Inception-ResNet-v2 for feature extraction.

The heterogeneity of datasets and their usage in the studies have limited
our capabilities to perform ameta-analysis on the included studies, limiting
the quantitative power of study comparison. For the metastasis detection
task, 68% (n=43) of all included metastasis detection studies used one or
more of five publicly available datasets, whereas 39% (n=25) of studies
employed inhouse, publicly inaccessible datasets with or without mixing
it with publicly available data. In case of metastasis-free LN analysis, five
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out of six reviewed studies used different publicly unavailable datasets.
We considered that quantitative AI method comparison for models trained
and tested on different datasets would carry a limited value, thus we
refrained from quantitative data interpretation across the reviewed articles.
Another limitation of this study was the language, as only the articles pub-
lished in English were included, thus constricting the range of articles
screened for our analysis.

Conclusions

Based on the published evidence gathered for this review, it can be con-
cluded that the computational lymph node analysis field is currently evolv-
ing. The LN metastasis detection task has been extensively explored by the
scientific community, leading to promising commercial solutions such as
Visiopharm metastasis app, Paige Breast Lymph Node system. However,
when considering clinical implementation, challenges such as sensitivity
and specificitymaximization, as well asmodel robustness evaluation via ex-
ternal testing sets need to be addressed. These practical challenges high-
light the current limitations of accessible annotated LN datasets. New
research studies are emerging acknowledging the computational character-
ization of metastasis-free LN compartment rearrangements, resulting in
first attempts to segment LN compartments in H&E-stained slides including
LN sinuses, germinal centers, vessels, and paracortical lymphocyte areas.
Further research is warranted to establish and validate the clinically inter-
pretable metrics describing the features of segmented LN structures.
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