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Abstract

This paper sets out to develop an efficient probabilistic optimal power flow (POPF) algo-

rithm to assess the influence of wind power on power grid. Given a set of wind data

at multiple sites, their marginal distributions are fitted by a newly developed generalized

Johnson system, whose parameters are specified by a percentile matching method. The

correlation of wind speeds is characterized by a flexible Liouville copula, which allows to

model the asymmetric dependence structure. In order to improve the efficiency for solv-

ing POPF problem, a lattice sampling method is developed to generate wind samples at

multiple sites, and a logistic mixture model is proposed to fit distributions of POPF out-

puts. Finally, case studies are performed, the generalized Johnson system is compared with

Weibull distribution and the original Johnson system for fitting wind samples, Liouville

copula is compared against Archimedean copula for modelling correlated wind samples,

and lattice sampling method is compared with Sobol sequence and Latin hypercube sam-

pling for solving POPF problem on IEEE 118-bus system, the results indicate the higher

accuracy of the proposed methods for recovering the joint cumulative distribution func-

tion of correlated wind samples, as well as the higher efficiency for calculating statistical

information of POPF outputs.

1 INTRODUCTION

The continuous variation of wind speed leads to the fluctua-

tion of the output of wind farms [1, 2]. When wind turbines

are connected to the electric grid, the probabilistic optimal

power (POPF) model can serve as a candidate tool to handle

the uncertain behaviour of wind power, which deploys statis-

tical methods to describe the variation of wind speeds [3]. In

practical settings, wind speeds at neighbouring sites are cor-

related and non-normally distributed, the implementation of

POPF computation would bring forward the issue of mod-

elling correlated wind speeds, where the use of copula is often

suggested [4, 5].

In the framework of copula theory, the joint cumulative dis-

tribution function (CDF) of wind speeds can be recovered

by marginal distributions and its dependence structure. Hence,

given a set of wind speed data, the first step would be to fit
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marginal CDFs of wind samples. The employed statistical model

should meet the following requirements:

1) it can accurately match the statistical information of wind

samples at each site;

2) its parameters can be conveniently determined;

3) its CDF, probability density function (PDF) and quantile

function (QF) can be given in closed form, which helps to

generate samples for POPF computation.

Hitherto, several statistical models have been suggested for

fitting wind speed samples, such as: Weibull distribution [6, 7],

Burr distribution [8], Kappa distribution [9], generalized lambda

distribution (GLD) [10], Johnson system [11], Cornish–Fisher

expansion [12], polynomial transformation model (PTM) [13,

14], Gram–Charlier series [15], kernel tuned polynomial expan-

sion (KTPE) series [16], kernel density estimate method [17, 18],

IET Gener. Transm. Distrib. 2024;1–14. wileyonlinelibrary.com/iet-gtd 1



2 XIAO ET AL.

TABLE 1 A summary of statistical models for fitting wind speed samples.

Distribution functions Parameter estimation algorithms

Type Model CDF PDF QF MLE RM PWM Percentile

I Weibull distribution
√ √ √ √ √ √ √

Burr distribution
√ √ √ √

× × ×

Kappa distribution
√ √ √

× × ×
√

GLD × ×
√ √ √ √ √

Johnson system
√ √ √

×
√

×
√

Cornish–Fisher expansion × ×
√

×
√

× ×

PTM × ×
√

× ×
√ √

II Gram–Charlier series
√ √

× ×
√

× ×

KTPE
√ √

× × × ×
√

KDE
√ √

×
√

× × ×

GMM
√ √

×
√

× ×
√

and Gaussian mixture model (GMM) [19, 20]. These models

are summarized in Table 1, which are classified into two types:

type-I and type-II.

Let X denote the wind speed, type-I models aim to relate X

to another random variable with a known CDF, which makes

it easy to generate wind speed samples. Taking Weibull distri-

bution for example, its quantile function (QF) is in closed form,

the wind speed X can be explicitly related to a standard uniform

variable, and wind speed samples can be generated by apply-

ing QF to standard uniform deviates. From this viewpoint, the

underlying idea of Johnson system and Cornish–Fisher is the

same, because both of them characterize the uncertainty of wind

speed by relating X to a standard normal variable. When fitting

wind speed data, type-I models can be parameterized by the

maximum likelihood estimation (MLE) method, raw moment

(RM) matching, probability weighted moment (PWM) match-

ing or percentile matching method, which are summarized in

Table 1.

The type-II models set out to reconstruct the CDF and PDF

of wind speed in closed form, but the quantile function cannot

be analytically given, when it comes to generating wind speed

samples, numerical algorithms should be introduced to calculate

the quantile function. Besides, except for Gram–Charlier series,

the parameters of type-II model are difficult to be determined

by the moment matching method, algorithms like MLE method

and percentile matching method should be deployed to tackle

this problem.

Once marginal distributions are fitted, the joint CDF of wind

speeds can be constructed by elliptical copula or Archimedean

copula. The elliptical copula is developed from an multivari-

ate elliptical distribution, which is capable of characterizing

the mutual dependence structure of wind speeds. One advan-

tage of elliptical copula is that analytical formula is readily

available to parameterize the copula model and to gener-

ate correlated samples. Although a theoretical framework has

been proposed to construct different elliptical copulas, only

a few of them have a joint PDF in closed form, which

includes Gaussian copula [21], t -copula [22] and Laplace

copula [14].

In contrast to elliptical copula, most Archimedean copulas

have a joint CDF in closed form, and Archimedean copu-

las derived from different generators can be used to represent

different types of dependence structures of wind speeds. If

Kendall’s 𝜏 is employed to measure the dependence struc-

ture of wind samples, the parameters of Archimedean copula

can be obtained analytically [4, 23]. The main problem of

Archimedean copula is that it lacks a generic and efficient sam-

ple generation algorithm. Generic algorithms like Rosenblatt

transformation and rejection sampling method can be used

to sample Archimedean copulas based on various generators,

but they are not computationally convenient [16]; the algo-

rithm based on Laplace transformation is very efficient, but

it is mathematically demanding, and only applicable to a few

Archimedean copulas [9]. Therefore, when Archimedean cop-

ula is employed to model correlated wind speeds, more efforts

should be devoted to developing efficient and convenient

algorithms to sample Archimedean copula.

Once the stochastic behaviour of wind speeds is represented

by copula, POPF computation can be implemented to mea-

sure the influence of wind speed variation on electric grid. The

POPF regards uncertain variables in the optimal power flow

(OPF) model as inputs, and calculates statistical information

of OPF solutions to quantify the uncertainty effects of inputs

[6, 7]. Mathematically, the POPF model is a black-box system

with random inputs, solutions of OPF model can be regarded

as POPF outputs. Hitherto, various uncertainty quantification

algorithms have been introduced to estimate statistical moments

or distribution functions of POPF outputs, which can also be

classified into two types.

The underlying idea of type-I algorithms is to deploy sta-

tistical moments to represent the stochastic behaviour of

POPF inputs, such as: cumulant method [24], point estimate

method (PEM) [25, 26] and unscented transformation (UT)

method [27]. When the cumulant method is used for POPF
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XIAO ET AL. 3

computation, it establishes a linear model to calculate cumu-

lants of POPF outputs from those of inputs. This strategy is

extremely efficient, and requires only one deterministic OPF

computation, but it does not work very well when the stochas-

tic variation of POPF inputs is large. In order to improve the

accuracy, PEM and UT employ a non-linear polynomial model

to relate POPF inputs and outputs [28]. However, the number

of POPF inputs is generally large, and the curse of dimen-

sionality would arise during POPF computation, therefore, the

emphasis of type-I algorithms is to balance the accuracy and

computational burden.

The type-II algorithms include Monte Carlo simulation

(MCS) [17], quasi-Monte Carlo simulation (QMCS) [22] and

Latin hypercube sampling (LHS) [16]. The basic idea of these

algorithms is to generate samples to represent statistical features

of wind speeds. Via copula method and marginal transforma-

tions, the POPF problem with m inputs can be mapped to an

m-dimensional hypercube space, where the difference of these

three algorithms can be illustrated. MCS generates samples of

POPF inputs from a pseudorandom sequence, which may clus-

ter in some regions and leave gaps in other regions, leading to

a low convergence rate in the case of POPF computation. In

comparison with MCS, QMCS and LHS employ low discrep-

ancy sequences to generate samples of POPF inputs, which

are more uniformly distributed in the m-dimensional hypercube

space [0, 1]m . When QMCS and LHS are used to solve POPF

problem, their computation burden is lower than that of MCS.

This paper aims to develop an efficient POPF computa-

tion algorithm to assess the influence of wind power on power

grid, and wind speeds are regarded as POPF inputs. The

contributions are summarized as follows:

1) In the case that only samples of POPF inputs are avail-

able, a generalized Johnson system is proposed to recover

distribution functions of POPF inputs.

2) A new copula model named Liouville copula is employed to

decouple correlated POPF inputs to independent standard

uniform random variables, which allows for characteriz-

ing the asymmetric and symmetric dependence structure of

POPF inputs.

3) A lattice sampling method is developed to generate low

discrepancy sequences, and to efficiently solve the POPF

problem.

The following part of the paper is organised as follows.

Section 2 derives the generalized Johnson system. Section 3

develops a Liouville copula based on Clayton generator to

model correlated wind speeds. Section 4 presents lattice sam-

pling method and logistic mixture model (LMM) to solve the

POPF problem. Section 5 performs case study to verify the

proposed methods, and the related conclusions are given in

Section 6.

2 GENERALIZED JOHNSON SYSTEM

This section aims to develop a class of statistical models to

recover the CDF, PDF and quantile function of wind samples.

Consider the original Johnson system based on the standard

normal distribution

X = J (Z ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

a + b ⋅ sinh
(

Z − c

d

)
SU

a + b ⋅ exp
(

Z − c

d

)
SL

a + b −
b

1 + exp
(

Z−c

d

) SB ,

(1)

where X represents the target wind speed, Z denotes a standard

normal variable, a, b, c and d are parameters.

The Johnson system in Equation (1) can be viewed like this:

it first deploys the normal distribution to fit wind samples,

and then improves the fitting by using an appropriate model

in Equation (1). Because wind speed generally follows a non-

normal distribution, if the normal distribution in Equation (1)

is replaced by a more appropriate distribution, say, Weibull

distribution, it can yield a better representation for the wind

speed. This paper proposes a generalized Johnson system by

assuming Z to be a non-normal random variable with zero

mean.

Let Ψ(Z ) be the CDF of Z , let F (X ) be the CDF of wind

speed. If the analytical expression of Ψ(Z ) is known, it has

F (X ) = Ψ(Z ) = Ψ
[
J−1(X )

]
, (2)

where J−1(⋅) is the inverse of J (⋅) in Equation (1)

Z = J−1(X ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

c + d ⋅ sinh−1

(
X − a

b

)
SU

c + d ⋅ ln

(
X − a

b

)
SL

c + d ⋅ ln

(
X − a

a + b − X

)
SB .

(3)

Then, the PDF of wind speed is

f (X ) =
d [F (X )]

dX
=

d [Ψ(Z )]

dZ
⋅

dZ

dX

|||Z=J−1 (X )

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜓
[
J−1(X )

]
⋅

d√
(X − a)2 + b2

SU

𝜓
[
J−1(X )

]
⋅

d

X − a
SL

𝜓
[
J−1(X )

]
⋅

bd

(X − a)(a + b − X )
SB ,

(4)

where 𝜓(⋅) is the PDF of Z . The quantile function of wind

speed is

X = F−1(U ) = J
[
Ψ−1(U )

]
, (5)

where U is a uniform variable within the range [0, 1], F−1(⋅)
and Ψ−1(⋅) are quantile functions of X and Z , respectively.
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4 XIAO ET AL.

If Z in Equation (1) is a non-normal random variable,

the algorithm in reference [29] cannot be used to param-

eterize the proposed model. In Appendix, a generalized

Johnson system based on Weibull distribution is presented in

Table A1, and a percentile matching method is presented for

the parameter estimation.

3 LIOUVILLE COPULA

3.1 Model construction

Consider correlated wind speeds at d different sites, let Fi (Xi ) be

the CDF of Xi (i = 1, … , d ), then a correlated standard uniform

random vector U can be obtained by

U =

⎛⎜⎜⎜⎜⎜⎜⎝

U1

⋮

Ui

⋮

Ud

⎞⎟⎟⎟⎟⎟⎟⎠

Ui =Fi (Xi )
←									

⎛⎜⎜⎜⎜⎜⎜⎝

X1

⋮

Xi

⋮

Xd

⎞⎟⎟⎟⎟⎟⎟⎠

, (6)

where Ui is a uniform variable within [0, 1] (i = 1, … , d ). Let

Cd (U ) denote the employed copula model, let F d (X ) be the

joint CDF of wind speeds, it has

F d (X ) = Cd (U1, … ,Ui , … ,Ud )

= Cd

[
F1(X1 ), … ,Fi (Xi ), … ,Fd (Xd )

]
. (7)

If the elliptical copula or Archimedean copula is used to con-

struct Cd (⋅) and to generate samples of correlated wind speeds

for POPF computation, it has

⎛⎜⎜⎜⎜⎜⎜⎝

V1

⋮

Vi

⋮

Vd

⎞⎟⎟⎟⎟⎟⎟⎠

Copula
							→

⎛⎜⎜⎜⎜⎜⎜⎝

U1

⋮

Ui

⋮

Ud

⎞⎟⎟⎟⎟⎟⎟⎠

Xi =F−1
i

(Ui )

											→

⎛⎜⎜⎜⎜⎜⎜⎝

X1

⋮

Xi

⋮

Xd

⎞⎟⎟⎟⎟⎟⎟⎠

, (8)

where V = (V1, … ,Vi , … ,Vd ) is a d -dimensional independent

uniform random vector, and the quantile function F−1
i

(⋅) can be

constructed by the generalized Johnson system in Equation (5)

(i = 1, … , d ). With Equation (8), samples of V can be trans-

formed to samples of correlated wind speeds, and the POPF

problem can be mapped to the independent uniform space.

Instead of elliptical copula and Archimedean copula, this

paper employs Liouville copula to construct the joint CDF of

wind speeds, and sets out to relate U to a D-dimensional ran-

dom vector V = (V1, … ,Vi , … ,VD ) (D ≥ d ). In other words,

Liouville copula employs D (D > d ) independent uniform vari-

ables to fit the dependence structure of X , which is expected

to enhance the flexibility of the copula and allows for a better

representation of correlated wind speeds.

3.2 Sample generation

Here, a Liouville copula based on Clayton generator is con-

structed to represent the dependence structure of wind speeds.

The following presents the analytical expression of Clayton

generator

𝜙(t )= (1 + t )
−

1

𝜃 , (9)

where 𝜃 is the parameter.

Let X = (X1, … ,Xi , … ,Xd ) denote correlated wind speeds,

suppose wind speed at the ith site is represented by 𝛼i differ-

ent independent uniform variables, the dependence structure

of X would be characterized by Clayton generator and a

D-dimensional independent standard uniform random vector

V = (V1, … ,Vi , … ,VD ) (D=
∑d

i=1
𝛼i ) [30].

In the case of POPF computation, Liouville copula generates

samples of correlated wind speeds by following procedures.

1) Denote

Li = 𝛼1 + 𝛼2 +⋯+ 𝛼i , (i = 1, … , d ). (10)

2) Let W = (W1, … ,Wi , … ,Wd ) be a d -dimension random

vector, and

Wi =

Li∑
k=Li−1+1

−ln(Vk )

S
, (i = 1, … , d ; L0 = 0), (11)

where S is a random variable with Gamma distribution, the

PDF of S is

g(S ) =
1

Γ(1∕𝜃)
S

1

𝜃
−1

e−S .

3) Transform W to U by

Ui = (1 +Wi )
−

1

𝜃

𝛼i−1∑
r=0

Γ
(

1

𝜃
+ r

)

r ! ⋅ 𝜃 ⋅ Γ
(

1

𝜃
+ 1

)
(

Wi

1 +Wi

)k

,

(i = 1, 2, … , d ), (12)

where Γ(⋅) is the gamma function.

The above procedures can be represented by

⎛
⎜⎜⎜⎜⎜⎜⎝

V1

⋮

Vi

⋮

VD

⎞
⎟⎟⎟⎟⎟⎟⎠

Eq. (11)
							→

⎛
⎜⎜⎜⎜⎜⎜⎝

W1

⋮

Wi

⋮

Wd

⎞
⎟⎟⎟⎟⎟⎟⎠

Eq. (12)
							→

⎛
⎜⎜⎜⎜⎜⎜⎝

U1

⋮

Ui

⋮

Ud

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13)
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XIAO ET AL. 5

3.3 Parameter estimation

When Liouville copula is used to fit correlated wind speeds,

the dependence structure is characterized by parameters 𝜃 and

𝛼i (i = 1, … , d ). Here, a rank correlation matching method is

proposed to specify parameters of Liouville copula.

Consider correlated wind speeds at two sites, which are

denoted by Xi and X j , respectively, denote Kendall’s rank cor-

relation coefficient between Xi and X j as 𝜏i, j , denote (xs,i , xs, j )

(s= 1, … , n) as samples of (Xi , X j ), it has

𝜏i, j =
2

n(n − 1)

∑
1≤s<h≤n

sgn(xs,i − xh,i )sgn(xs, j − xh, j ), (14)

where sgn(⋅) is the sign function, (xh,i , xh, j ) is the hth sample of

(Xi , X j ).

On the other hand, 𝜏i, j can be obtained analytically by

Liouville copula in terms of 𝜃, 𝛼i and 𝛼 j [30]

𝜏i, j = −1 + 4

𝛼i−1∑
ri=0

𝛼 j−1∑
r j=0

Γ
(

2

𝜃

)

[
𝜃 ⋅ Γ

(
1

𝜃
+ 1

)]2
⋅
Γ(𝛼i + 𝛼 j + ri + r j )

Γ(𝛼i + 𝛼 j )

⋅
B(𝛼i + ri , 𝛼 j + r j ) ⋅ B

(
1

𝜃
+ ri + r j ,

1

𝜃
+ 𝛼i + 𝛼 j

)

B(𝛼i , 𝛼 j )ri !r j !
, (15)

where B(⋅, ⋅) is beta function. By matching the correlation coef-

ficient 𝜏i, j to that of wind speeds Xi and X j , the parameters 𝜃
and 𝛼i (i = 1, … , d ) can be determined.

4 LATTICE SAMPLING METHOD FOR
POPF COMPUTATION

4.1 Lattice sampling method

Let k and n be two integers, let ‘(k, n)’ denote the greatest

common divisor between k and n. For example,

(2, 6) = 2, (5, 6) = 1.

Consider the reduced residue system (RRS) of n

K = {k|(k, n) = 1, k = 1, … , n}, (16)

where K comprises of integers from 1 to n that are rel-

atively prime to n. The number of elements in K can be

counted by using Euler’s totient function 𝜑(n). For exam-

ple, if n= 12, K = {1, 5, 7, 11}, and 𝜑(12)= 4; if n= 15,

K = {1, 2, 4, 7, 8, 11, 13, 14}, and 𝜑(15)= 8.

Here, the RRS of n is used to construct a set of

samples in a 𝜑(n)-dimensional hypercube space [0, 1]𝜑(n).

Denote all elements in K as: “k1, … , ki , … , k𝜑(n)”, denote

vs = (vs,1, … , vs,i , … , vs,𝜑(n) ) (s= 1, … , 𝜑(n)) as a set of samples,

FIGURE 1 The probabilistic optimal power flow problem as a non-linear

stochastic response problem.

and

ts,i =
[ks × ki ]n

n
, (s = 1, … , 𝜑(n)), (17)

where [⋅]
n

denotes the modulo operation. For example,

[5 × 7]
12
= [35]

12
= 11, [2 × 11]

15
= [22]

15
= 7. Below are a set

of samples developed from the RRS of n= 12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

12

5

12

7

12

11

12

5

12

1

12

11

12

7

12
7

12

11

12

1

12

5

12
11

12

7

12

5

12

1

12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The RRS of n has the following property: ‘if ki ≠ k j , then,

[ks × ki ]n ≠ [ks × k j ]n
’. This property enures that the low dis-

crepancy sequences from Equation (17) can avoid clumping

together and uniformly spread across the sampling space. In

conjunction with the generalized Johnson system and Liou-

ville copula, this lattice sampling technique can well represent

statistical features of wind speeds.

4.2 POPF computation

Mathematically, the POPF problem can be formulated as a

non-linear stochastic response problem, which is illustrated

by Figure 1, where X = (X1, … ,Xi , … ,Xm ) denotes all ran-

dom variables in the OPF model, Y denotes an arbitrary

OPF solution.

The aim of POPF computation is to calculate statistical

information of Y from those of Xi (i = 1, … ,m)

Y = H (X ), X = (X1, … ,Xi , … ,Xm ), (18)

where Xi (i = 1, … ,m) are POPF inputs, Y is POPF outputs,

the implicit function H (⋅) is defined by OPF model.

Via the quantile function of Xi in Equation (5) and Liou-

ville copula in Equation (13), the POPF inputs X can be

related to an M -dimensional independent uniform vector

V = (V1, … ,Vi , … ,VM )

Y = H (X ) = G (V1, … ,Vi , … ,VM ). (19)
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6 XIAO ET AL.

According to Equation (19), statistical moments of the POPF

outputs Y can be obtained by lattice sampling method

E [Y r ] ≃
1

𝜑(n)

𝜑(n)∑
s=1

yr
s =

1

𝜑(n)

𝜑(n)∑
s=1

G r (t s ), (20)

where vs = (vs,1, … , vs,i , … , vs,M ) (s= 1, … , 𝜑(n)) are samples

generated by Equation (17), and n is an integer with 𝜑(n) ≥ M .

By using samples of Y , the distribution functions of Y can

be also be reconstructed. Here, a LMM is proposed to recover

the CDF of POPF outputs

F (Y ) =
1

N

N∑
k=1

Ψ(Y , 𝜇k, 𝜎k ) =
1

N

N∑
k=1

(
1 + e

−
Y−𝜇k

𝜎k

)−1

,

(21)

where N is the number of mixture components,Ψ(Y , 𝜇k, 𝜎k ) is

the CDF of a logistic random variable, 𝜇k and 𝜎k are parameters

of the kth component respectively (k = 1, … ,N ).

Denote all 2N parameters of LMM as a vector

x = (𝜇1, … , 𝜇k, … , 𝜇N , 𝜎1, … , 𝜎k, … , 𝜎N )T

= (x1, … , xk, … , x2N )T .

Denote

g(x, ui ) =
⎛
⎜⎜⎝

1

N

N∑
k=1

1

1 + e
−

yi −𝜇k

𝜎k

⎞
⎟⎟⎠
− ui ,

(i = 1, … ,L; L ≥ 2N ), (22)

where yi is a sample of POPF outputs Y , ui is the corresponding

percentage value of yi (i = 1, … ,L; L > 2N ).

Here, Levenberg–Marquardt (LM) algorithm is employed

to specify the parameter vector x, which is obtained by the

following iterative formula

xk+1 = xk +
(
J

T
J + 𝜆 ⋅ 𝚲

)
∖
(
J

T
G
)
, (𝜆 > 0)

G = −
(
g(xk, u1 ), … , g(xk, ui ), … , g(xk, uL )

)T
,

(23)

where ‘∖’ denotes the matrix left division operation, J is the

Jacobian matrix of Equation (22): J = {
𝜕g(x,ui )

𝜕xk

} (i = 1, … ,L;

k= 1, … , 2N ), 𝜆 is the damping factor, 𝚲 is a diagonal matrix

of size (2N ) × (2N ), which consists of diagonal elements of

J
T

J. In Equation (23), the initial guess x0 for x is generated by

uniform deviates with in [0, 1].

4.3 Computational procedure

Below are procedures of the proposed POPF computation

algorithms, which are also depicted in Figure 2.

1) Let X = (X1, … ,Xi , … ,Xm ) denote all POPF inputs, fit

distributions to Xi by the generalized Johnson system in Sec-

FIGURE 2 The flowchart of the proposed probabilistic optimal power

flow computation algorithm.

tion 2, construct the quantile function of Xi by Equation (5)

(i = 1, … ,m).

2) Calculate Kendall’s rank correlation coefficient 𝜏i, j of POPF

inputs by Equation (14) (i, j = 1, … ,m), estimate parameters

of Liouville copula by Equation (15).

3) Generate samples vk = (vs,1, … , vs,i , … , vs,M ) (s = 1, … , 𝜑(n))

by Equation (17), transform them to correlated stan-

dard uniform deviates by Equation (13), which are fur-

ther transformed to samples of POPF inputs xs = (xs,1,
… , xs,i , … , xs,m ) by Equation (5)

xs,i = F−1
i

(us,i ), (s = 1, … , 𝜑(n); i = 1, … ,m).

4) Perform deterministic OPF calculations to generate samples

of POPF outputs, calculate moments of POPF outputs, and

recover distribution functions of POPF outputs by LMM in

Equation (21).

5 CASE STUDY

5.1 Fitting marginal distributions of wind
samples

When the copula method is employed to characterize statisti-

cal features of correlated wind speeds, marginal distributions
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XIAO ET AL. 7

TABLE 2 The parameters of the generalized Johnson system and Johnson

system.

Sample Model 𝜶 𝜷 a b c d

I
SB − − −0.7936 14.4403 −0.3610 0.9421

WB 8.4746 2.6045 −5.0667 19.6570 −2.6144 3.9043

II
SB − − −0.3211 20.5606 1.2567 1.2719

WB 6.5876 2.0180 −2.9466 22.2339 2.2858 4.9736

III
SB − − 2.2237 11.5010 −2.4457 5.4132

WB 8.4877 3.7056 5.2921 7.0090 −2.4118 7.5115

should be provided. In Table A1 of Appendix, a generalized

Johnson system based on Weibull distribution is presented to

recover the CDF, PDF and quantile function of wind samples.

In order to avoid ambiguity, the three models derived from

Weibull distribution are, respectively, denoted as WU , WL and

WB . When the Johnson system based on Weibull distribution is

used to fit wind samples, it first employs Weibull distribution to

fit wind samples, where the parameters 𝛼 and 𝛽 are determined

by the maximum likelihood method, then it employs the per-

centile matching method in Appendix to select an appropriate

model and to specify values of a, b, c and d .

Here, three sets of wind samples are taken from three wind

farms in Northwest China, which are denoted as Sample-I,

Sample-II and Sample-III, respectively. Except for the proposed

generalized Johnson system, Weibull distribution and the orig-

inal Johnson system based on standard normal distribution are

also employed to fit wind samples, the PDFs are depicted in

Figure 3, the parameters are summarized in Table 2. In order to

demonstrate the accuracy of these three models, the percentage

of each wind speed sample is calculated by the fitted theoreti-

cal distribution and empirical distribution, respectively, and the

absolute error is calculated

𝜀k = ||F (xk ) − Fe (xk )|| × 100[%], (k = 1, … , n), (24)

where xk denotes the kth wind speed sample, F (⋅) is the CDF

established by Weibull distribution, the original Johnson system

or the generalized Johnson system, Fe (⋅) is the empirical CDF

given by wind speed data. The minimum, average and maximum

values of 𝜀k (k= 1, … , n) are presented in Table 3.

As shown in Table 3 and Figure 3, because the Johnson SB

model has four parameters to represent statistical features of

wind samples, it behaves better than the two-parameter Weibull

distribution. In comparison to the SB model, the proposed

WB model has six parameters to include statistical informa-

tion of the target wind data, and thus yields an even better

fitting. As noted in Section 2, Weibull distribution is more accu-

rate than normal distribution for modelling the uncertainty of

wind speed, therefore, the generalized Johnson system based

on Weibull distribution performs better than the original John-

son system based on normal distribution. It is worth mentioning

that if there is a more appropriate distribution function Ψ(⋅) for

characterizing wind speed, a new generalized Johnson system

can be developed to fit wind samples by procedures in Section 2.

FIGURE 3 The probability density functions of wind speeds.
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8 XIAO ET AL.

TABLE 3 The absolute errors in % between theoretical cumulative

distribution function (CDF) and empirical CDF.

Sample Model Minimum Average Maximum

I

Weibull 1.01 × 10−6 3.12 5.84

SB 3.55 × 10−5 1.05 1.63

WB 1.41 × 10−5 0.47 1.14

II

Weibull 5.15 × 10−5 1.33 3.71

SB 1.83 × 10−5 0.94 2.16

WB 8.74 × 10−7 0.52 1.31

III

Weibull 7.95 × 10−4 0.84 2.33

SB 6.03 × 10−4 0.57 1.82

WB 7.12 × 10−5 0.31 0.94

5.2 Fitting correlated wind speed data

Here, except for Liouville copula in Section 3, Archimedean

copula based on Clayton generator in Equation (9) is also

employed to match the correlation structure of wind speeds

C3(U1,U2,U3 ) =

[
U

−𝜃1

1 +
(

U
−𝜃2

2 +U
−𝜃2

3 − 1
)𝜃1∕𝜃2

− 1

]−1∕𝜃1

,

(25)

and Kendall’s 𝜏 of Archimedean copula in Equation (25) is

𝜏 =
𝜃

𝜃 + 2
. (26)

If 𝜃1 is equal to 𝜃2, that is, 𝜃1 =𝜃2, C3(U1,U2,U3 ) in

Equation (25) reduces to the exchangeable Archimedean

(EA) copula; if 𝜃1 ≠ 𝜃2, C3(U1,U2,U3 ) would be the nested

Archimedean (NA) copula.

For wind samples in Figure 3, if Kendall’s 𝜏 is employed

to measure the dependence structure, the following correlation

matrix can be obtained by Equation (14)

RX =

⎛
⎜⎜⎜⎝

1 0.442 0.458

0.442 1 0.745

0.458 0.745 1

⎞
⎟⎟⎟⎠
.

TABLE 4 The parameters and correlation matrix of Archimedean copula and Liouville copula.

Copula Parameters Correlation matrix Absolute error

EA 𝜃1 = 𝜃2 = 2.425

⎛
⎜⎜⎝

1 0.548 0.548

0.548 1 0.548

0.548 0.548 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0.106 0.090

0.106 0 0.197

0.090 0.197 0

⎞
⎟⎟⎠

NA
𝜃1 = 1.636 ⎛⎜⎜⎝

1 0.450 0.450

0.450 1 0.745

0.450 0.745 1

⎞⎟⎟⎠

⎛⎜⎜⎝

0 0.008 0.008

0.008 0 0

0.008 0 0

⎞⎟⎟⎠𝜃2 = 5.843

Liouville
𝜃 = 0.871, 𝛼1 = 1 ⎛⎜⎜⎝

1 0.442 0.459

0.442 1 0.745

0.459 0.745 1

⎞⎟⎟⎠

⎛⎜⎜⎝

0 0 0.001

0 0 0

0.001 0 0

⎞⎟⎟⎠𝛼2 = 8, 𝛼3 = 18

TABLE 5 The absolute error in % between copula models and empirical

joint cumulative distribution function.

Minimum Average Maximum

EA 2.21 × 10−4 3.52 10.2

NA 9.23 × 10−5 1.88 4.74

Liouville 1.52 × 10−5 0.59 1.25

By matching the correlation matrix of copula to RX , the

parameters of copula can be obtained, which are presented in

Table 4. One point worth noting is that Liouville copula and

Archimedean copula in Equation (25) are both constructed by

Clayton generator, but Liouville copula has four parameters to

control the dependence structure, and thus is more flexible. As

shown in Table 4, the Liouville copula yields a more accurate

match to the correlation matrix of wind speeds.

According to Equation (7), the joint CDF of wind speeds can

be recovered

F3(X ) = C3

[
F1(X1 ),F2(X2 ), … ,F3(X3 )

]
, (27)

where C3(⋅) is the copula model, Fi (Xi ) (i = 1, 2, 3) are marginal

CDFs of wind speeds, which can be obtained by the general-

ized Johnson system in Equation (2) and Table A1. Here, the

following error index is defined to measure the performance of

copulas in Table 4

𝜀k =
|||F3(xk ) − F̂3(xk )

||| × 100[%] (k = 1, … , n), (28)

where xk = (xk,1, xk,2, xk,3 ) denotes the kth sample of wind

speeds, F (xk ) is the percentage evaluated by F3(⋅) in Equa-

tion (27), F̂3(xk ) is the corresponding one given by the

empirical joint CDF, Table 5 summarizes the minimum, aver-

age and maximum values of 𝜀k (k= 1, … , n). As can be seen,

the joint CDF constructed by Liouville copula is more accurate

than those based on EA copula and NA copula.

In comparison to EA copula, the NA copula has two differ-

ent parameters 𝜃1 and 𝜃2 to regulate the dependence structure,

and performs better in characterizing statistical features of wind

speeds. In the case of Liouville copula, it employs 30 ran-

dom variables to represent the dependence structure of wind

speeds (see Equation (13) and Table 4: 𝛼1 + 𝛼2 + 𝛼3 = 30),
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XIAO ET AL. 9

TABLE 6 Wind turbines included in IEEE 118-bus system.

Nodes Number of turbines Wind speed

2, 13, 44, 52, 83 20 X1

3, 14, 48, 53, 84 20 X2

5, 16, 50, 82, 86 20 X3

whereby the statistical information of wind samples can be pre-

cisely described. Figure 4 depicts the pairwise scatter plots of

wind samples in the uniform space [0, 1]2, where it can be

seen that the scatter plots of (U1, U2 ) and (U1, U3 ) exhibit

strong asymmetry.

With the algorithms in reference [30, 31], it generates 6550

samples for each copula model in Table 4, the pairwise scatter

plots are also shown in Figure 4. Because EA copula can only

model the homogeneous dependence structure, leading to that

dependence structures between arbitrary two wind speeds are

the same. The NA copula is capable of modelling the hetero-

geneous dependence structure, the scatter plot of (U2, U3 ) is

different to those of (U1, U2 ) and (U1, U3 ), which accounts

for its better performance than EA copula (see Tables 3 and 5).

However, due to the limited flexibility, the EA copula and NA

copula fail to capture the asymmetry of dependence structures

of (U1, U2 ) and (U1, U3 ), and they show lower accuracy than

Liouville copula.

5.3 POPF computation considering
correlated wind speeds

Consider IEEE 118-bus system with 15 nodes integrated with

wind turbines [32], which are shown in Table 6.

Let P denote the wind turbine output power, and

P =

⎧⎪⎨⎪⎩

2Xi−8

11
4 ≤ Xi ≤ 15

2 15 < Xi ≤ 25 (MW ),

0 else

(29)

where Xi (i = 1, 2, 3) are wind speeds. Wind turbines are

double-fed induction generators, and their reactive power is

compensated by the controller, keeping the constant value

unchanged, usually very close to zero.

By using the generalized Johnson system in Table 2 and

Liouville copula in Table 4, the uncertainty of wind speeds is

represented by 27 independent standard uniform variable. For

the tested IEEE 118-bus system, load demands are assumed to

follow normal distributions, where mean values are base case

data, standard deviations are 5% of mean values and the cor-

relation coefficients among load demands are 0.5. Hence, the

number of POPF inputs is 126, and the value of M in Equa-

tion (19) is 126. Table 7 presents three different values of n and

corresponding values of 𝜑(n) in Equation (20).

Except for lattice sampling method, Sobol sequence and LHS

are also used for POPF computation. The program has been

run in MATLAB on a 2.3 GHz Intel Corei3-2350M computer

TABLE 7 The values of n and 𝜑(n).

n 262 1250 3750

𝜑(n) 130 500 1000

with 3 GB of RAM. The objective function of deterministic

OPF model is to maximize social welfare, the interior-point

method is employed to solve the deterministic OPF model

[33]. The following error index is defined to measure the

performance of the employed algorithms

𝜀r =
1

N

N∑
j=1

|||||
mMCS

r , j − m∗
r , j

mMCS
r , j

|||||
× 100[%], (30)

where mMCS
r , j is the mean (r = 1) or standard deviation (r = 2)

of j th POPF outputs from MCS with 105 trials, 𝜇∗
r , j is the one

estimated by Sobol sequence, LHS or lattice sampling method.

𝜀r is the average absolute relative error. N is the number of the

output variables in the system.

Table 8 summarizes results of Sobol sequence, LHS and

lattice sampling method, where V , Θ, Pl and Ql denote the

voltage, phase angle, active power flow and reactive power flow,

respectively. As shown in Table 8, all three algorithms can yield

accurate estimates for mean values; but in the case of calculating

standard deviations of POPF outputs, Sobol sequence performs

poorer than LHS and lattice sampling method, and the pro-

posed lattice sampling method is more accurate than LHS, the

results of Lattice sampling method with 500 points are com-

parable to those of LHS with 1000 points. Hence, when lattice

sampling method is used for POPF computation, it can alleviate

the computational burden significantly.

With the obtained samples, the distribution functions of

POPF outputs can be recovered. According to Equation (21),

the PDF of POPF outputs is

f (Y ) =
d [F (Y )]

dY
=

1

N

N∑
k=1

1

𝜎k
⋅ e
−

Y−𝜇k

𝜎k ⋅

(
1 + e

−
Y−𝜇k

𝜎k

)−2

.

(31)

Here, LMM in Equation (31) is used to fit PDFs of the reactive

power flows of line 16–17 and line 85–86, which are denoted

as Ql16−17 and Ql85−86, respectively. Except for LMM in Equa-

tion (31), GMM is also employed to fit PDFs of Ql16−17 and

Ql85−86

f (Y ) =
1

N

N∑
k=1

𝜙(y, 𝜇k, 𝜎k ) =
1

N

N∑
k=1

1√
2𝜋

e
−

(Y−𝜇k )2

2𝜎2
k . (32)

Following the procedures in Section 4.2, the parameters of

LMM and GMM are determined and given in Table 9, the PDFs

are plotted in Figure 5. An inspection of Figure 5 demonstrates

that both LMM and GMM can accurately fit the histogram of

Ql16−17, but in the case of Ql85−86, the tails of the histogram are
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TABLE 8 Error in % of Sobol sequence, Latin hypercube sampling and lattice sampling method.

130 points 500 points 1000 points

Sobol LHS Lattice Sobol LHS Lattice Sobol LHS Lattice

V
𝜀1 0.004 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002

𝜀2 6.19 2.66 2.53 4.04 1.91 1.33 3.70 1.80 0.85

Θ
𝜀1 0.24 0.74 0.15 0.13 0.29 0.17 0.09 0.19 0.11

𝜀2 9.72 4.54 2.30 5.67 2.43 1.81 4.22 2.06 1.36

Pl
𝜀1 0.73 0.77 0.26 0.38 0.26 0.23 0.25 0.23 0.17

𝜀2 8.13 3.63 3.58 4.88 2.23 1.87 4.03 1.70 1.33

Ql
𝜀1 1.14 0.59 0.49 0.74 0.24 0.22 0.61 0.21 0.11

𝜀2 9.50 4.38 4.11 5.84 2.17 1.79 4.21 1.94 1.21

Time (s) 148.6 571.7 1143.4

TABLE 9 The parameters of logistic mixture model and Gaussian mixture model.

Ql16−17 Ql85−86

LMM GMM LMM GMM

𝝁k #k 𝝁k #k 𝝁k #k 𝝁k #k

−0.08431 0.00224 −0.08447 0.01166 0.01785 0.00198 0.00572 0.01086

−0.09534 0.00222 −0.07617 0.00798 0.00395 0.00246 0.00894 0.01215

−0.10903 0.00687 −0.09056 0.01679 −0.00543 0.00224 0.02712 0.00368

−0.07678 0.00262 −0.08316 0.01029 0.02343 0.00225 0.00774 0.01172

−0.09035 0.00199 −0.09207 0.00397 0.01114 0.00209 0.01997 0.00435

−0.06921 0.00401 −0.09871 0.02053 0.02782 0.00244 0.00818 0.01189

FIGURE 5 The probability density functions of reactive power flows.

not well modelled by GMM. Testing for various POPF outputs,

it is found that if the shape of histogram is unimodal, both mod-

els can accurately recover the PDF of target samples of POPF

outputs; but if the PDF shape is multimodal, LMM performs

better than GMM.

6 CONCLUSION

This paper develops a lattice sampling technique-based POPF

to assess the influence of correlated wind speeds on power grid,

the conclusions are as follows:
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1) The Johnson system can be extended to non-normal vari-

ables with zero mean, the parameters can be specified by the

percentile matching method; because the Johnson system

based on Weibull distribution has six parameters to capture

statistical information of wind speeds, it performs better

for fitting wind samples than the original four-parameter

Johnson system based on standard normal distribution.

2) In practical settings, it is possible that the dependence struc-

ture of wind speeds is asymmetric, the elliptical copula and

Archimedean copula fail to capture such asymmetry, and

Liouville copula serves as a useful tool to handle asymmetric

dependency of wind speeds.

3) Sobol sequence, LHS and the proposed Lattice sampling

method are low discrepancy sequences, the simulation on

IEEE 118-bus indicate that lattice sampling method is more

efficient and accurate in POPF computation.
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APPENDIX

The parameters of the generalized Johnson system can be

determined by following procedures.

1) Denote x1, … , xk, … , xn as a set of wind speed samples,

denote the empirical quantile function as F−1
e (⋅). Select a real

number 𝜃, and compute the following quantiles

x−3𝜃 = F−1
e [Ψ(−3𝜃)], x−𝜃 = F−1

e [Ψ(−𝜃)],

x3𝜃 = F−1
e [Ψ(3𝜃)], x𝜃 = F−1

e [Ψ(𝜃)]. (A1)

2) Denote

A = x3 − x1, B = x−1 − x−3, C = x1 − x−1. (A2)

3) If
AB

C 2
> 1, the SU (WU ) distribution should be employed,

and the parameters can be calculated as:

a =
x1 + x−1

2
+

B − A

2(A + B − 2C )
,

b =
2C
√

AB −C 2

(A + B − 2C )
√

A∕C + B∕C + 2
,

c = d ⋅ sinh−1

(
B − A

2
√

AB −C 2

)
, d =

2

cosh−1

(
A + B

2C

) .

(A3)

If
AB

C 2
= 1, the SL (WL) distribution should be employed, and

the parameters are

a =
x1 + x−1

2
−

C (A +C )

2(A −C )
, b = 1,

d =
2𝜃

ln(A∕C )
, c = d ⋅ ln

(
A −C

C
√

AC

)
.

(A4)

If
AB

C 2
< 1, the SB (WB) distribution should be employed,

and the parameters are

a =
x1 + x−1

2
−

b

2
+

C 2(A − B)

2(C 2 − AB)
,

b =
C
√

[(B +C )(A +C ) − 4AB](B +C )(A +C )

C 2 − AB
,

d =
𝜃

cosh−1
[

1

2

√
(1 +C∕A)(1 +C∕B)

] ,

c = d ⋅ sinh−1

[
C (A − B)

√
(1 +C∕A)(1 +C∕B) − 4

2(C 2 − AB)

]
.

(A5)
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TABLE A1 The generalized Johnson system based on Weibull distribution.

CDF

Ψ(Z ) − 1 − exp

[
−

(
Z + 𝜇

𝛽

)𝛼]
(𝜇 = 𝛽Γ(1 + 1∕𝛼))

WU 1 − exp

⎛⎜⎜⎜⎜⎝
−

⎡⎢⎢⎢⎢⎣

𝜇 + c + d ⋅ sinh−1

(
X − a

b

)

𝛽

⎤⎥⎥⎥⎥⎦

𝛼⎞⎟⎟⎟⎟⎠

F (X ) WL
𝛼d

𝛽𝛼
⋅

[
𝜇 + c + d ⋅ sinh−1

(
X − a

b

)]𝛼−1

√
(X − a)2 + b2

exp

⎛
⎜⎜⎜⎜⎝
−

[
𝜇 + c + d ⋅ sinh−1

(
X − a

b

)]𝛼

𝛽𝛼

⎞
⎟⎟⎟⎟⎠

WB a + b ⋅ sinh

⎛⎜⎜⎝
𝛽
[
−ln(1 −U )

]1∕𝛼
− 𝜇 − c

d

⎞⎟⎟⎠

PDF

𝜓(Z ) −
𝛼

𝛽𝛼
(Z + 𝜇)𝛼−1

exp

[
−

(
X + 𝜇

𝛽

)𝛼]

WU 1 − exp

⎛⎜⎜⎜⎜⎝
−

⎡⎢⎢⎢⎢⎣

𝜇 + c + d ⋅ ln

(
X − a

b

)

𝛽

⎤⎥⎥⎥⎥⎦

𝛼⎞⎟⎟⎟⎟⎠

f (X ) WL
𝛼d

𝛽𝛼
⋅

[
𝜇 + c + d ⋅ ln

(
X − a

b

)]𝛼−1

X − a
exp

⎛⎜⎜⎜⎜⎝
−

[
𝜇 + c + d ⋅ ln

(
X − a

b

)]𝛼

𝛽𝛼

⎞⎟⎟⎟⎟⎠

WB a + b ⋅ exp

⎛⎜⎜⎝
𝛽
[
−ln(1 −U )

]1∕𝛼
− 𝜇 − c

d

⎞⎟⎟⎠

Quantile function

Ψ−1(U ) − 𝛽
[
−ln(1 −U )

]1∕𝛼
− 𝜇

WU 1 − exp

⎛⎜⎜⎜⎜⎝
−

⎡⎢⎢⎢⎢⎣

𝜇 + c + d ⋅ ln

(
X − a

a + b − X

)

𝛽

⎤⎥⎥⎥⎥⎦

𝛼⎞⎟⎟⎟⎟⎠

F−1(U ) WL
𝛼bd

𝛽𝛼
⋅

[
𝜇 + c + d ⋅ ln

(
X − a

a + b − X

)]𝛼−1

(X − a)(a + b − X )
exp

⎛⎜⎜⎜⎜⎝
−

[
𝜇 + c + d ⋅ ln

(
X − a

a + b − X

)]𝛼

𝛽𝛼

⎞⎟⎟⎟⎟⎠

WB a + b −
b

1 + exp

⎛⎜⎜⎝
𝛽
[
−ln(1 −U )

]1∕𝛼
− 𝜇 − c

d

⎞⎟⎟⎠
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