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Abstract

With the increasing complexity and scope of software systems, their dependability is crucial.

The analysis of log data recorded during system execution can enable engineers to auto-

matically predict failures at run time. Several Machine Learning (ML) techniques, including

traditional ML and Deep Learning (DL), have been proposed to automate such tasks. How-

ever, current empirical studies are limited in terms of covering all main DL types—Recurrent

Neural Network (RNN), Convolutional Neural Network (CNN), and transformer—as well

as examining them on a wide range of diverse datasets. In this paper, we aim to address these

issues by systematically investigating the combination of log data embedding strategies and

DL types for failure prediction. To that end, we propose a modular architecture to accom-

modate various configurations of embedding strategies and DL-based encoders. To further

investigate how dataset characteristics such as dataset size and failure percentage affect model

accuracy, we synthesised 360 datasets, with varying characteristics, for three distinct sys-

tem behavioural models, based on a systematic and automated generation approach. Using

the F1 score metric, our results show that the best overall performing configuration is a

CNN-based encoder with Logkey2vec. Additionally, we provide specific dataset conditions,

namely a dataset size > 350 or a failure percentage > 7.5%, under which this configuration

demonstrates high accuracy for failure prediction.

Keywords Logs · Failure prediction · Deep learning · Embedding strategy ·

Synthesised data generation · Systematic evaluation

1 Introduction

As software systems continue to increase in complexity and scope, reliability and availability

play a critical role in quality assurance and software maintenance (Bauer and Adams 2012;

Le and Zhang 2022). During runtime, software systems often record log data about their

execution, designed to help engineers monitor the system’s behaviour (He et al. 2021). One
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important quality assurance activity is to predict failures at run time based on log analysis,

as early as possible before they occur, to enable corrective actions and minimise the risk of

system disruptions (Carvalho et al. 2019).

However, software systems typically generate a vast quantity of log data which makes man-

ual analysis error-prone and extremely time-consuming. Therefore, a number of automatic

log analysis methods, particularly for failure prediction (Das et al. 2020, 2018; Sahoo et al.

2003) and anomaly detection (Du et al. 2017; Meng et al. 2019; Zhang et al. 2019), have been

proposed over the past few years. Machine Learning (ML) has played a key role in automatic

log analysis, from Traditional ML methods (e.g., Random Forest (RF) (Breiman 2001), Sup-

port Vector Machine (SVM) (Cortes and Vapnik 1995), Gradient Boosting (GB) (Chen et al.

2019)) to Deep Learning (DL) methods (e.g., DeepLog (Du et al. 2017), LogRobust (Zhang

et al. 2019), LogBERT (Guo et al. 2021)) relying on various DL network architectures,

including Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and

transformers (Le and Zhang 2022).

Although several studies have explored the use of DL models with various log sequence

embedding strategies (He et al. 2021), they have been limited in terms of evaluating the

three main types of DL networks—RNN, CNN, and transformer—combined with different

embedding strategies; for instance, two studies by Le and Zhang (2022) and Lu et al. (2018)

included CNN-based models but did not cover transformer-based models. Moreover, previ-

ously studied models were often applied to a limited number of available datasets, which

severely limited the generalizability of results (He et al. 2021). Indeed, because these few

datasets exhibit a limited variety of characteristics, studying the robustness and generaliz-

ability of DL models, along with their embedding strategies, is unlikely to yield practical

guidelines.

In this paper, we aim to systematically investigate the combination of the main DL architec-

tures and embedding strategies, based on datasets whose main characteristics (e.g., dataset

size and failure percentage) are controlled. To achieve this, we first introduce a modular

architecture for failure prediction, where alternative log embedding strategies and DL mod-

els can be easily applied. The architecture consists of two major steps: an embedding step

that converts input logs into log embedding vectors followed by a classification step that

predicts failures by processing the embedding vectors using encoders that are configured by

different DL models, called DL encoders. In the embedding step, three alternative strategies,

i.e., a semantic-based strategy (BERT (Devlin et al. 2018)), a template ID-based strategy

Logkey2vec (Lu et al. 2018), and aggregation of semantic and template ID-based strategies,

FastText with TF-IDF (Zhang et al. 2019), are considered. In the classification step, four types

of DL models, including LSTM (Hochreiter and Schmidhuber 1997a), BiLSTM (Schuster

and Paliwal 1997), CNN (O’Shea and Nash 2015), and transformer (Vaswani et al. 2017).

Furthermore, we compared the results of our systematic investigation of DL architec-

tures with a top traditional ML-based failure predictor to assess the advantage of DL-based

approaches.

Also, to address the issue of the limited availability of adequate datasets, we designed a

rigorous approach for generating synthesised data relying on behavioural models built by

applying model inference algorithms (Shin et al. 2022; Walkinshaw et al. 2013) to available

system logs. When synthesizing data, we control key dataset characteristics such as the size of

the dataset and the percentage of failures. Additionally, we define patterns that are associated

with system failures and are used to classify logs for the failure prediction task. The goal is

to associate failures with complex patterns that are challenging for failure prediction models.

Further, based on our study, we investigated how the dataset characteristics determine the

accuracy of model predictions and then derive practical guidelines.
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Finally, we processed a real-world dataset for failure prediction, called OpenStack_PF, to

compare the results obtained on synthesized data with those obtained on a real-world failure

prediction dataset. The objective was to obtain further evidence of the validity of our data

synthesis strategy.

Our empirical results conclude that the best model includes the CNN-based encoder with

Logkey2vec as an embedding strategy. Using a wide variety of datasets, both synthesised and

real-world, showed that this combination is also very accurate when certain conditions are

met in terms of dataset size and failure percentage. Our findings provide valuable insights

for software and AIOps engineers to select the best DL-based solution for optimal failure

prediction. Moreover, we aim to provide guidance in optimising dataset characteristics to

improve failure prediction accuracy. In conclusion, this paper offers clear guidelines for

those looking to leverage DL in predicting system failures from logs.

To summarise, the main contributions of this paper are:

– A large-scale, systematic investigation of the application of various DL encoders—

LSTM-, BiLSTM-, CNN-, and transformer-based—and embedding strategies—BERT

(Devlin et al. 2018), Logkey2vec (Lu et al. 2018) and hybrid strategy combining FastText

with TF-IDF (Zhang et al. 2019)—for failure prediction modeling

– A systematic and automated approach to synthesise log data, with a focus on experimen-

tation in the area of failure prediction, to enable the control of key data set characteristics

while avoiding any other form of bias.

– A comparison of the results obtained on synthesized data with those of a real-world

dataset to provide further evidence of the validity of our data synthesis strategy.

– A comparison of DL-based and a best-performing traditional ML-based failure predictor

to assess the benefits of the former.

– Practical guidelines for using DL-based failure prediction models according to dataset

characteristics such as dataset size and failure rates.

– A publicly available replication package, containing the implementation, generated

datasets with behavioural models, and results.

The rest of the paper is organised as follows. Section 2 presents the basic definitions

and concepts that will be used throughout the paper. Section 3 illustrates related work.

Section 4 describes the architecture of our failure predictor with its different configuration

options. Section 5 describes our research questions, empirical methodology, and synthetic

log data generation. Section 6 reports empirical results. Section 7 discusses the implications

of the results. Section 8 concludes the paper and suggests future directions for research and

improvements.

2 Background

In this section, we provide background information on the main concepts and techniques that

will be used throughout the paper. First, we briefly introduce the concepts related to finite

state automata (FSA) and regular expressions in § 2.1 and execution logs in § 2.2. We then

describe two important log analysis tasks (anomaly detection and failure prediction) in § 2.3

and further review machine-learning (ML)-based approaches for performing such tasks in

§ 2.4. We conclude by providing an overview of embedding strategies for log-based analyses

in § 2.5.
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2.1 Finite State Automata and Regular Expressions

A deterministic FSA is a tuple M = 〈Q, A, q0, �, δ〉, where Q is a finite set of states,

A ⊆ Q is the set of accepting states, q0 ∈ Q is the starting state, � is the alphabet of the

automaton, and δ : Q × � → Q is the transition function. The extended transition function

δ∗ : Q × �∗ → Q, where �∗ is the set of strings over �, is defined as follows:

(1) For every q ∈ Q, δ∗(q, ǫ) = q , where ǫ represents the empty string;

(2) For every q ∈ Q, every y ∈ �∗, and every σ ∈ �, δ∗(q, yσ) = δ(δ∗(q, y), σ ).

Let x ∈ �∗; the string x is accepted by M if δ∗(q0, x) ∈ A and is rejected by M, otherwise.

The language accepted by an FSA M is denoted by L(M) and is defined as the set of

strings that are accepted by M; more formally, L(M) = {w | δ∗(q0, w) ∈ A}. A language

accepted by an FSA is called a regular language.

Regular languages can also be defined using regular expressions; given a regular expres-

sion r we denote by L(r) the language it represents. A regular expression r over an alphabet

� is a string containing symbols from � and special meta-symbols like “|” (union or alter-

nation), “.” (concatenation), and “*” (Kleene closure or star), defined recursively using the

following rules:

(1) ∅ is a regular expression denoting the empty language L(∅) = ∅;

(2) For every a ∈ �, a is a regular expression corresponding to the language L(a) = {a};

(3) If s and t are regular expressions, then r = s|t and r = s.t (or r = st) are regular

expressions denoting, respectively, the union and the concatenation of L(s) and L(t);

(4) If s is a regular expression, then r = s∗ is a regular expression denoting the Kleene

closure of L(s).

2.2 Logs

In general, a log is a sequence of log messages generated by logging statements (e.g.,

printf(),logger.info()) in the source code (He et al. 2021). A log message is textual

data composed of a header and content (He et al. 2021). In practice, the logging framework

determines the header (e.g., INFO) while the content is designed by developers and is com-

posed of static and dynamic parts. The static parts are the fixed text written by the developers

in the logging statement (e.g., to describe a system event), while the dynamic parts are

determined by expressions (involving program variables) evaluated at runtime. For instance,

let us consider the execution of the log printing statement logger.info(“Received

block "+ block_ID); during the execution, assuming variable block_ID is equal to

2, the log message Received block 2 is printed. In this case, Received block

is the static part while 2 is the dynamic part, which changes depending on the value of

block_ID at run time.

A log template (also called event template or log key) is an abstraction of the log message

content, in which dynamic parts are masked with a special symbol (e.g., *); for example,

the log template corresponding to the above log message is Received block *. Often,

each unique log template is identified by an ID number for faster analysis and efficient data

storage.

A log sequence is a fragment of a log, i.e., a sequence of log messages contained in a

log; in some cases, it is convenient to abstract log sequences by replacing the log messages

with their log templates. Log sequences are obtained by partitioning logs based on either

log message identifiers (e.g., session IDs) or log timestamps (e.g., by extracting consecutive
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Fig. 1 An example illustrating the concepts of log, log message, log template, and log sequence

log messages using a fixed/sliding window). For a log sequence l, |l| indicates the length of

the log sequence, i.e., the number of elements (either log templates or log messages), not

necessarily unique, inside the sequence.

Figure 1 shows an example summarizing the aforementioned concepts. On the left side,

the first three log messages are partitioned (using a fixed window of size three) to create a log

sequence. The first message in the log sequence (LogMessage1) is 0142 info: sent

block 4 in 12.2.1. It is decomposed into the header 0142 info and the content

sent block 4 in 12.2.1. The log template for the content is sent block * in

*; the dynamic parts are 4 and 12.2.1.

2.3 Log Analysis Tasks

In the area of log analysis, several major tasks for reliability engineering, such as anomaly

detection, and failure prediction, have been automated (He et al. 2021); we provide an

overview of these tasks below.

2.3.1 Anomaly Detection

Anomaly detection is the task of identifying anomalous patterns in log data that do not

conform to expected system behaviours (He et al. 2021), indicating possible errors, faults,

or failures in software systems.

To automate the task of anomaly detection, log data is often partitioned into smaller

log sequences. This partitioning is typically based on log identifiers (e.g., session_ID or

block_ID), which correlate log messages within a series of operations; alternatively, when

log identifiers are not available, timestamp-based fixed/sliding windows are also used. Le

and Zhang (2022) assessed the accuracy of anomaly detection models considering both

timestamp-based partitioning (with different time periods) and log identifier partitioning;

models achieved higher accuracy and exhibited robustness when using the latter.

Labelling of partitions is then required, each partition usually being labelled as an anomaly

either when an error, unknown, or failure message appears in it or when the corresponding

log identifier is marked as anomalous. Otherwise, it is labelled as normal.

Failure Detection Failure detection is a special type of anomaly detection that specifically

identifies failures within logs (Bogatinovski et al. 2022), as compared in Fig. 2. Similar to

anomaly detection, log data is partitioned into sequences. The decision of whether a log should

be tagged as anomalous or a failure depends on the system being analyzed. By definition,

anomaly detection targets a wide scope of abnormal behaviours (which may or may not be

a system failure) whereas failure detection focuses on system failures.
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start end

Anomaly Detection Failure Detection

time

Failure Prediction

Anomaly FailureNormal

Log Sequence start endLog Sequence start endLog Sequence

Fig. 2 Illustration of Log Analysis Tasks

2.3.2 Failure Prediction

Failure prediction attempts to proactively generate alerts before the occurrence of failures,

which often lead to unrecoverable outages (He et al. 2021). In failure prediction, a log is

partitioned similarly to previous tasks, often using a session-based log identifier.

The main differences between failure prediction and the above tasks are the following:

– mode of operation. As shown in Fig. 2, anomaly or failure detection are reactive

approaches that raise a flag once an anomaly or failure has happened. Instead, fail-

ure prediction is proactive. It forecasts potential future failures, allowing enough time to

address them.

– input data. The input of failure prediction typically consists of normal-looking inputs, a

subset of which involves subtle and complex patterns in logs, which may be associated

with a future failure. Patterns can indicate impending issues that have not yet manifested

as failures in log data.

Figure 3 shows a simplified comparison of “positive sequences” (in contrast to “normal”

sequences) for the aforementioned tasks (depicted in Subfigures 3b, c and d), next to a nor-

mal log (depicted in Subfigure 3a). The blue box in each Subfigure highlights a partitioned

sequence of log templates, labelled as S1, S2, S3, and S4. For failure prediction (see Sub-

figure 3b), log templates in S2 look normal when considered individually. However, their

occurrence creates a pattern indicating a point on the timeline where a future failure, high-

lighted in red, happens. Hence, S2 is a positive case in data labelling for failure prediction.

Subfigure 3c, on the other hand, shows S3 as a positive instance for failure detection, since

there is a failure message (also highlighted in red) within the blue sequence. Similarly, in

Fig. 3 Comparison of Normal Sequence (on the left) and Positive Sequences in Log Analysis Tasks (on the

right)
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anomaly detection, an anomalous log message, highlighted in yellow, appears within S4 (see

Subfigure 3d).

Dataset Transferability for Failure Prediction It is worth mentioning that, as sketched in

Subfigure 3d, one cannot necessarily expect the occurrence of a failure after a log sequence

with an anomalous section. That is, log data used for anomaly detection are not interchange-

able with those intended for failure prediction. Therefore, using anomaly detection data for

failure prediction would likely yield inaccurate and misleading results.

When using data intended specifically for failure detection in the context of failure predic-

tion, some assumptions should hold. First, log data is required to be ordered by timestamp, to

make it possible to separate the sequence of messages before the occurrence of a failure. In

addition, one must rigorously label log data to decide whether a sequence of log messages is

indeed related to a future failure; this is especially challenging when there is no clear evidence

of a failure, unlike many anomaly detection datasets. The quality of the initial labelling plays

an important role as well. Considering the above, log data labelled for failure detection can be

used for predictive tasks through careful preprocessing and rigorous validation (see § 5.2.3).

2.4 DL Techniques in Log Analysis

In recent years, a variety of deep learning (DL) techniques have been applied to log analysis,

and more specifically to failure prediction and anomaly detection. Compared to traditional ML

techniques such as Random Forests (RF) and K-nearest Neighbours (KNN), DL techniques

incrementally learn high-level features from data, removing complex feature extraction activ-

ities based on domain expertise.

According to Le and Zhang (2022), there are three main categories of DL approaches in log

analysis: (1) Recurrent Neural network (RNN), (2) Convolutional Neural Network (CNN),

and (3) transformer. Additionally, we have a new growing category called (4) Graph Neural

Network (GNN). In each category, different variations can be adopted; for instance, Long

Short-Term Memory networks (LSTM) and Bidirectional Long Short-Term Memory net-

works (BiLSTM), which fall into the RNN category, have been repeatedly used for anomaly

detection and failure prediction (Du et al. 2017; Das et al. 2018; Zhang et al. 2019). We now

explain the major features of each category as well as their variations.

2.4.1 RNN

LSTM (Hochreiter and Schmidhuber 1997b; Gers et al. 2000) is an RNN-based model com-

monly used in both anomaly detection and failure prediction (Du et al. 2017; Das et al. 2018).

An LSTM network consists of multiple units, each of which is composed of a cell, an input

gate, an output gate (Hochreiter and Schmidhuber 1997b), and a forget gate (Gers et al. 2000).

An LSTM-based model reads an input sequence (x1, . . . , xn) and produces a corresponding

sequence (y1, . . . , yn) with the same length. At each time step t > 1, an LSTM unit reads the

input xt as well as the previous hidden state ht−1 and the previous memory ct−1 to compute

the hidden state ht . The hidden state is employed to produce an output at each step. The mem-

ory cell ct is updated at each time step t by partially forgetting old, irrelevant information

and accepting new input information. The forget gate ft is employed to control the amount

of information to be removed from the previous context (i.e., ct−1) in the memory cell ct .

As a recurrent network, an LSTM shares the same parameters across all steps, which

reduces the total number of parameters to learn. Learning is achieved by minimizing the error

between the actual output and the predicted output. Moreover, to improve the regularization
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of an LSTM-based model, a dropout layer is applied between LSTM layers. It randomly

drops some connections between memory cells by masking their value. LSTM-based models

have shown significant performance in several studies in log-based failure prediction and

anomaly detection (Meng et al. 2019, 2020; Das et al. 2020, 2018).

BiLSTM is an extension of the traditional LSTM (Huang et al. 2015). However, BiLSTM

reads the sequence in both directions, enabling it to comprehend the relationships between the

previous and the upcoming inputs. To make this possible, a BiLSTM network is composed

of two layers of LSTM nodes, whereby each of these layers learns from the input sequence

in the opposite direction. At time step t , the output ht is calculated by concatenating h
f
t

(the hidden states in a forward pass) and hb
t (the hidden states in a backward pass). By

allowing this bi-directional computation, BiLSTM is able to capture complex dependencies

and produce more accurate predictions. The BiLSTM-based model has achieved accurate

results for anomaly detection (Zhang et al. 2019).

2.4.2 CNN

CNN is a neural network primarily employed for image recognition (O’Shea and Nash 2015).

It has a unique architecture designed to handle 2D and 3D input data such as images and

matrices. A CNN leverages convolutional layers to perform feature extraction and pooling

layers to downsample the input.

The 1D convolutional layer uses a set of filters to perform convolution operation with the

2D input data to produce a set of feature maps (CNN layer output). According to Kim (2014),

let w ∈ Rk×d be a filter which is applied to a window of k elements in a d-dimension input log

sequence, and let xi represent the i-th elements in the sequence. A feature ci ∈ R is calculated

as ci = σ(w.xi :i+k−1+b), where σ is the activation function (i.e., ReLu), xi :i+k−1 represents

the concatenation of elements {xi , xi+1, ..., xi+k−1}, and b ∈ R denotes a bias term. After this

filter is applied to each window in the sequence ({x1:k, x2:k, ..., xn−k+1:n}), a feature map c =

[c1, c3, ..., cn−k+1] is produced, where c ∈ Rn−k+1. Parameter k represents the kernel size; it

is as an important parameter of the operation. Note that there is no padding added to the input

sequence, leading to feature maps smaller than the input sequence. Padding is a technique

employed to add zeros to the beginning and/or end of the sequence; it allows for more space

for the filter to cover, controlling the size of output feature maps. Padding is commonly used

so that the output feature map has the same length as the input sequence (Chollet 2017).

The pooling layer reduces the spatial dimensions of the feature maps extracted by the

convolutional layer and simplifies the computational complexity of the network.

Recently, CNNs have shown high-accuracy performance in anomaly detection (Lu et al.

2018).

2.4.3 Transformer

The transformer is a type of neural network architecture designed for natural language pro-

cessing tasks, introduced by Vaswani et al. (2017). The main innovation of transformers is the

self-attention mechanism. More important parts of the input receive higher attention, which

facilitates learning the contextual relationships from input data. This is implemented by cal-

culating a weight for each input element, which represents the importance of that element

with respect to the adjacent elements. Hence, a model with self-attention (not necessarily a

transformer) can capture long-range dependencies in the input. Since the transformers do not

process inputs sequentially like LSTM, positional encoding is needed. Positional encoding
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vectors are fixed-size, added to the input to provide information about the position of each

element in the input sequence. Further, a transformer involves a stack of multiple transformer

blocks. Each block contains a self-attention layer and a feed-forward neural network layer.

In the self-attention layer, the model computes attention scores (weights) for each element,

allowing it to capture the relationship between all input elements. The feed-forward layer is

used to transform the representation learned by the self-attention layer into a new representa-

tion entering the next transformer block. In the area of log analysis, transformers have been

recently applied in a few studies on anomaly detection (Le and Zhang 2021; Huang et al.

2020; Guo et al. 2021; Nedelkoski et al. 2020), showing outstanding performance.

2.4.4 GNN

A Graph Neural Network (GNN) is a neural network designed to process data structured

as graphs (Dwivedi et al. 2021). During training, taking a graph-structured input, it updates

node feature vectors (where nodes are equivalent to vertices in the graph) iteratively with

respect to feature vectors of its neighbour nodes and itself. By using the final feature vectors,

GNNs can discern intricate relationships within the graph data. Hence, GNNs can be used

for classification tasks at either the graph or node level.

The main difference between GNN and the aforementioned DL techniques is the data

structure they process. GNNs process data structured as graphs. Since log data are initially

sequential data, it requires further processing to construct a graph from sequential data. When

a node represents a log template and a graph corresponds to a log sequence, classification at

the graph level requires an aggregation method such as READOUT (Dwivedi et al. 2021) to

combine node feature vectors.

We note that GNNs are sometimes regarded as a representation method, such as log

sequence embedding strategies detailed in § 2.5, since they compute the graph representation

of log sequences (Wu et al. 2023). However, we consider them as a classification method,

like the other DL methods described in § 2.4, since current GNNs necessitate pre-existing

semantic embeddings for input.

2.5 Log Sequence Embedding Strategies

When analyzing log sequences, the textual data of log sequences’ elements must be converted

into a vector representation that is understandable by a machine; such a conversion is called

the log sequence embedding. Generally, there are three main approaches for doing this: (1)

template ID-based strategies such as count vectors (Deerwester et al. 1990), (2) semantic-

based strategies based on the contextual information of sequence elements, or (3) hybrid

strategy as a combination of the previous two strategies. Here, we cover one widely used

example for each case in the following sections.

2.5.1 Template ID-based Strategy

There are many studies that have achieved high accuracy results by using log embedding

strategies that rely on the ID numbers or count vectors of log sequence elements (Chen

et al. 2021). Advantages include the speed of processing and model simplicity since text

preprocessing (e.g., tokenization) is not required. However, they do not consider the order of

log messages (templates) in a log sequence, making them prone to unreliable results when

the sequential pattern of log messages (templates) matters (e.g., in failure prediction).
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TF-IDF (Rajaraman et al. 2014) is a widely used embedding strategy in data mining

and information retrieval, employed for log analysis at two different levels: log template ID

level and word (token) level. At the log template ID level, it measures the frequency of a

unique log template in a log sequence, term frequency (TF), divided by how common this log

template is in the total dataset (i.e., Inverse Document Frequency - IDF). At the word (token)

level, it delves deeper. It calculates the TF-IDF value for each unique word (token) inside a

log template and assigns the aggregated value to a log template. Both TF-IDFs compute an

embedding vector for each log sequence, making it incompatible with methods requiring an

embedding vector at the log template level.

Logkey2vec, introduced by Lu et al. (2018), is another strategy used in log analysis, which

is based on log template IDs and is able to transform a log template into an embedding vector.

Logkey2vec maps each unique log template ID to a vector representation. It is a trainable

layer implemented inside a neural network. It relies on a matrix called “codebook”, where

the number of rows is the vocabulary size and the number of columns is the embedding

vector size of each log template ID. The embedding vectors are first initialised by random

numbers and are improved through backpropagation during training. For a log sequence,

Logkey2vec computes the embedding vector of each log template based on its log template

ID; each row of the matrix represents the whole log sequence. We note that Logkey2vec

is not semantic-based in a linguistics sense since it solely takes log template IDs as input,

disregarding the semantic information that lies in the text of log templates. Moreover, unlike

tools such as word2vec (Mikolov et al. 2013) which is pre-trained using CBOW (Continuous

Bag-of-Words) and Skip-grams (Mikolov et al. 2013), Logkey2vec is not pre-trained by

any method; it requires the aforementioned training on its target log data. This strategy has

also been applied, with a different name, by Bogatinovski et al. (2022) (who used the term

“vectorizer”), and by Guo et al. (2021) (who used the term “Embedding Matrix”).

2.5.2 Semantic-based Strategy

Studies using semantic-based strategies take into account the linguistic relationship between

words in log templates. In 2019, Meng et al. (2019) proposed template2vec, an embedding

strategy based on synonyms and antonyms relation of words mentioned in log data. This

strategy enables the matching of new log templates with existing ones. However, since it

is trained on manually added domain-specific synonyms and antonyms, its applicability is

limited.

In the past few years, Bidirectional Encoder Representations from Transformers (BERT)

has provided significant improvements in the semantic embedding of textual information by

taking the contextual information of text into account. It has been used in a few studies in log

sequence embedding (Guo et al. 2021; Le and Zhang 2021). This model fares better than the

other pretrained transformer-based models: GPT2 (Radford et al. 2019) and RoBERTa (Liu

et al. 2019) in log sequence embedding (Le and Zhang 2021).

The pre-trained BERT base model (Devlin et al. 2018) provides the embedding matrix of

log sequences where each row is the representation vector of its corresponding log template

inside the sequence. The BERT model is applied to each log template separately and then the

representation is aggregated inside a matrix. To embed the information of a log template into

a 768-sized vector, the BERT model first tokenizes the log template text. BERT tokenizer uses

WordPiece (Wu et al. 2016), which is able to handle out-of-vocabulary (OOV) words to reduce

the vocabulary size. Further, the tokens are fed to the 12 layers of BERT’s transformer encoder.

After obtaining the output vectors of a log template’s tokens, the log template embedding is

calculated by getting the average of output vectors. This process is repeated for all the log
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templates inside the log sequence to create an n × 768 matrix representation where n is the

size of the log sequence.

2.5.3 Hybrid Strategy

This category aims to combine the benefits of both template ID-based and semantic-based

strategies while compensating for their limitations. The main instance of this category is the

study of Zhang et al. (2019). They leverage FastText Joulin et al. (2016) to convert each

word (or token) of a log template into a d-dimensional vector (d = 300). FastText is a word

vectorisation tool pre-trained on the Common Crawl Corpus dataset (Foundation 2023); it

converts words into vectors while capturing their semantic relationship. Consequently, words

having similar meanings result in similar vectors. The word vectors are further aggregated into

one vector representing a log template using a weighted average with TF-IDF (calculated

at the word level). Specifically, consider a log template T consisting of a list of words,

[t1, t2, ..., tN ], where N indicates the number of words. The list of words can be represented

as a list of vectors [v1, v2, ..., vN ], where vi ∈ Rd is a semantic vector of ti . The embedding

vector of T , VT , is then calculated according to (1), where wi ∈ R indicates the TF-IDF

value of ti .

VT =
1

N

N∑

i=1

wi .vi (1)

This strategy seeks to retain the advantages of the previous strategies. If a word is frequently

mentioned among log templates, it is given a lower TF-IDF weight during the aggregation

of word vectors, increasing the distinction of embedding vectors between log templates.

Moreover, similar to BERT but not as informative in terms of word context, FastText assigns

vectors with high cosine similarity to two log templates that contain different words but are

semantically close.

3 RelatedWork

In this section, we will first discuss empirical studies on log-based anomaly detection and

move on to more closely related failure prediction studies. We will also discuss studies related

to dataset synthesis at the end.

3.1 Related Empirical Studies

3.1.1 Log-based Anomaly Detection

As discussed in § 2.3, anomaly detection is a different task than failure prediction. However,

since they are both binary classification tasks on log data, they can rely on similar DL

architectures (Das et al. 2018, 2020). There are several papers reporting empirical studies

of different DL-based methods for log-based anomaly detection. Due to the large number of

works and differences in objectives, in our review, we include studies that covered more than

one DL model, possibly based on the same DL-based approaches.

Table 1 briefly summarises anomaly detection studies including empirical evaluations.

Column “DL Type(s)” indicates the type of DL network covered in each paper. We indicate

the Log Sequence Embedding (LSE) strategies, introduced in § 2.5, in the next column;
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Table 1 Overview of Related Empirical Studies

Paper DL Type(s) LSE Strategi(es) Dataset(s) Control of Dataset

Characteristics

Labelling

Scheme

Anomaly Detection

Lu et al.

(2018)

LSTM,

CNN, MLP

Logkey2vec HDFS No L

Meng et al.

(2019)

LSTM template ID

Template2Vec

HDFS, BGL No T, L

Huang et al.

(2020)

LSTM,

BiLSTM,

Transformer

count vector,

F+T, Log

Encoder

HDFS, BGL, Open-

Stack

Yes (unstable log

injection ratio)

T, L

Yang et al.

(2021)

LSTM, BiL-

STM,GRU

template

ID,TF-IDF,

F+T

HDFS, BGL No T, L

Guo et al.

(2021)

LSTM,

Transformer

template ID,

count vector,

Embedding

Matrix

HDFS, BGL, Thun-

derbird

No T, L

Le and Zhang

(2021)

LSTM, BiL-

STM, Trans-

former

count vector,

Log2Vec*,

F+T, BERT

HDFS, BGL, Spirit,

Thunderbird

No T, L

Bogatinovski

et al. (2022)

LSTM,

Transformer

count vector,

vectorizer

OpenStack_v2 Yes (unstable log

injection ratio)

T

Le and Zhang

(2022)

LSTM, BiL-

STM, GRU,

CNN

template ID,

Logkey2vec,

F+T

HDFS, BGL, Spirit,

Thunderbird

Yes (class distri-

bution, data noise,

partitioning meth-

ods)

T, L

Xie et al.

(2022)

BiLSTM,

CNN Trans-

former, GNN

count vector,

Logkey2vec,

F+T, BERT

HDFS, BGL, Spirit,

Thunderbird

Yes (partitioning

methods)

T, L

Wu et al.

(2023)

MLP, CNN

LSTM

count vector,

TF-IDF,

Word2Vec,

FastText,

BERT

HDFS, BGL, Spirit,

Thunderbird

Yes (partitioning

methods)

T, L

Failure Prediction

Lin et al.

(2018)

BiLSTM N/A AzureML No T

Das et al.

(2018,

2020)

LSTM template ID Clay-HPC No L

Our

Study**

LSTM, BiL-

STM,

Logkey2vec, Synthesized Data, Yes (Dataset size,

Failure

L

CNN, Trans-

former

BERT, F+T OpenStack_FP Percentage, LSL, Fail-

ure Pattern type)

*: we highlight that Log2Vec is different than Logkey2vec, a log sequence embedding strategy (see § 2.5.1)

**: further discussed in § 7

notice there are a few models not using LSE, such as DeepLog (Du et al. 2017). Column

“Dataset(s)” indicates which datasets (whether existing datasets or synthesised ones) were

used in the studies. Column “Control of Dataset Characteristics” indicates whether the dataset
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characteristics were controlled during the experiment and lists such characteristics. In the

last column, the labelling scheme indicates the applied method(s) for log partitioning, as

mentioned in § 2.2, based either on a log identifier or on timestamp (represented by L and T,

respectively).

We now briefly explain the included papers with the aim of motivating our study and high-

lighting the differences. We note that, unless we mention it, LSE strategies are implemented

specifically for one DL model (combinations are not explored). Indeed, many of the reported

techniques tend to investigate one such embedding strategy or simply do not rely on any.

The studies are listed in chronological order. Lu et al. (2018) introduced CNN for anomaly

detection as well as the Logkey2vec embedding strategy (see § 2.5.1). They compared it to

LSTM and MLP networks, also relying on the Logkey2vec embedding strategy. Meng et al.

(2019) developed LogAnomaly, an LSTM-based model, using their proposed embedding

strategy, Template2Vec (a log-specific variant of Word2Vec).

The first study considering transformers in their DL comparison is by Huang et al. (2020),

featuring three DL models: HitAnomaly (transformer-based), LogRobust (Zhang et al. 2019)

(BiLSTM-based), and DeepLog (LSTM-based). HitAnomaly utilises transformer blocks (see

§ 2.4.3) as part of its LSE strategy, called Log Encoder. LogRobust employed the hybrid

strategy of FastText and TF-IDF shows as F+T while DeepLog did not utilise any LSE

strategy. The authors also controlled dataset characteristics by manipulating the unstable log

ratios. Yang et al. (2021) proposed the GRU-based (Cho et al. 2014) PLELog and compared

it to LogRobust and DeepLog. PLELog used the TF-IDF technique and LogRobust used

F+T. Guo et al. (2021) proposed a transformer-based model, LogBERT, and compared its

performance with two LSTM-based models, LogAnomaly and DeepLog. LogBERT uses an

Embedding Matrix for its embedding strategy, which is similar to Logkey2vec. Le and Zhang

(2021) evaluated their proposed transformer-based model, Neurallog, against LogRobust

(BiLSTM-base) and DeepLog (LSTM-based). The LSE strategies for the models were a

pre-trained BERT (see § 2.5.2) for Neurallog and Log2Vec (Meng et al. 2020) (a strategy

based on Word2Vec) for DeepLog.

An important recent work on failure detection is the study of Bogatinovski et al. (2022).

They presented log data as sequences of subprocesses instead of sequences of log templates.

To this end, they used transformer-based network and clustering methods to extract subpro-

cesses and further leverage them to detect failure using an HMM (Yamanishi and Maruyama

2005). For LSE, they designed the “vectorizer” that is similar to Logkey2vec. Their work

includes the evaluation of varying unstable log ratios and their impact on their model perfor-

mance.

Le and Zhang (2022) conducted a comprehensive evaluation of several DL models includ-

ing LSTM-based models such as DeepLog and LogAnomaly, GRU-based model PLELog,

BiLSTM-based model LogRobust, and CNN. The study focused on various aspects includ-

ing data selection, data partitioning, class distribution, data noise, and early detection ability.

Although they provide insights on many models and dataset characteristics, they did not

include transformer-based models such as Neurallog, or recent semantic-based LSE strate-

gies like BERT, and are limited to commonly used datasets.

Xie et al. (2022) proposed a GNN-based anomaly detection model, LogGD, and compared

it with DL-based models from three categories: CNN, LogRobust (which is BiLSTM-based),

and NeuralLog (which is transformer-based). Both NeuralLog and LogGD leverage BERT to

extract semantic embeddings from log sequences. While Xie et al. (2022) took into account

a wide range of DL techniques and LSE strategies from each category, their results, similar

to those of Le and Zhang (2022), were obtained using only public datasets.
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Finally, (Wu et al. 2023) studied the effectiveness of different LSE on ML-based models

for anomaly detection. In contrast to the study of Le and Zhang (2022), they explored all the

possible combinations between LSE strategies and DL techniques and provided an accurate

ranking for each category. They included six LSE strategies: Count Vector and TF-IDF (the

word-level and template-level) as template ID-based strategies, and Word2Vec, FastText, and

BERT as semantic-based strategies. However, they did not consider hybrid strategies. DL

techniques are limited to MLP, CNN, and LSTM, while the rest of the common methods such

as BiLSTM and transformers are left out. Similarly to Le and Zhang (2022), their results are

bound to four public datasets.

Datasets Studies relying on publicly available datasets are limited to the following: Hadoop

Distributed File System (HDFS) collected in 2009, and three HPC datasets, BGL, Spirit, and

Thunderbird, collected between 2004 and 2006. Besides, for failure detection, there is the

OpenStack dataset (2017) created by injecting a limited number of bugs at different execution

points. In 2022, thanks to the effort of Bogatinovski et al. (2022), OpenStack was labelled

at the log message level, which we refer to as OpenStack_v2. Overall, due to the limited

number of available public datasets, there is a growing number of works focusing either

on labelling existing data to a deeper level or on synthesising log data, as discussed in the

following section.

3.1.2 Log-based Failure Prediction

In recent years, there have been a number of studies on log-based failure prediction, especially

in large-scale systems where signs of failure may not be obvious. Early works on failure pre-

diction focused on structured logs (e.g., numeric parameters) mined from system logs. Sahoo

et al. (2003) collected system health status logs and employed several time-series models

such as the mean of previous values to predict indicative metrics (e.g., system utilization

percentage, network IO usage, and system idle time). Russo et al. (2015) applied different

SVMs relying on radial basis function and linear kernels that take multi-dimensional data

representing values for each of the metrics to predict a future log sequence related to a failure.

More recently, (Lin et al. 2018) proposed a method that combines two ML models, BiLSTM

and RF, to process temporal and spatial data, respectively, and concatenates their outputs to

predict the likelihood of a node failing in the near future. Zhang et al. (2018) expanded this

task to semi-structured logs. They extracted log templates from raw syslog messages and

derived features from sequences of log templates. By training an RF-based model, Prefix, on

features of previously seen log datasets, they achieved high accuracy in switch failure predic-

tion compared to SVM and HMM. More recently, (Liu et al. 2020) adopted machine learning

models to predict system crashes on cloud service data; in their study, RF achieved the best

accuracy compared to xgboost and SVM. The study of Das et al. (2018) opened the door to

analyzing semi-structured logs using DL. After extracting unique log templates, they derived

patterns from them leading to a failure using LSTM. Following that, in 2020, they introduced

an improved LSTM-based model, Aarohi (Das et al. 2020), as state-of-the-art with faster

inference time. Both Dash and Aarohi rely on the template ID-based strategy for embed-

ding (see § 2.5). The above DL-based studies of failure prediction are briefly summarised in

Table 1.

Datasets Due to security concerns, in many reported works in the literature, the data sources

are unavailable including the Clay-HPC (Clay high-performance computing (HPC) systems)

dataset applied on Aarohi Das et al. (2020) and Dash (Das et al. 2018). On the other hand,

the Prefix dataset is available but is of limited use, due to its low complexity leading easily

to high accuracy regardless of the approach. As a result, We found the limited number of
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publicity available datasets to be a hindrance. We therefore opted to develop a method for

synthesising new datasets, as described next.

3.2 Dataset Synthesis Algorithms

In the log analysis literature, especially in anomaly detection, dataset synthesis refers to the

modification of an existing dataset to simulate specific scenarios, such as system performance

issues (Li et al. 2020), or evaluation of logs driven from system updates (Zhang et al. 2019;

Huang et al. 2020). On the other hand, in closely related literature on system monitoring, there

are data synthesis algorithms for trace and benchmark generation that can create new data

without relying on an existing dataset (Blom et al. 2005; Bombarda and Gargantini 2020).

Given the restrictions of available and suitable datasets for our failure prediction problem (as

discussed in § 2.3), we henceforth refer to the second group of algorithms when mentioning

data synthesis.

In 2005, Blom et al. (2005) proposed a method for generating test suites for systems

whose behaviours can be described by extended finite state machines (EFSM). This method

produces a test sequence, referred to as a trace, that represents a coverage item. An observer

monitors the trace and “accepts" it in case the specified coverage item has been covered. More

recently, in 2017, Kluge et al. (2017) introduced EMSBench, which contains a model capable

of mimicking complex system behaviour. Using this model, sequential traces are generated

for the purpose of comparing different platforms. In 2020, Bombarda and Gargantini (2020)

leveraged FSM to design an algorithm that produces test sequences in the form of traces,

identifying those with invalid inputs. By employing FSM, they successfully embedded the

system constraints into the FSM during the generation process, ensuring the creation of only

valid test sequences. Furthermore, Krstić and Schneider (2020) presented an algorithm for

generating an event stream with their associated arbitrary values. These logs are compatible

with system specifications in the first-order dynamic logic (MFODL) (Basin et al. 2020). We

will further discuss existing data synthesis algorithms and their differences with ours when

we present the latter in § 5.3.

4 Failure Prediction Architecture

This section introduces our modular architecture for failure prediction, which aims to help

us systematically evaluate various embedding strategies and DL encoders. Moreover, this

modular architecture can serve as a baseline architecture for follow-up studies. Therefore,

we describe it in this section, independently from the description of the empirical study design

(see Sect. 5).

Figure 4 depicts the modular architecture. The architecture consists of two main steps,

embedding and classification, allowing for different embeddings and DL techniques, respec-

tively. We note that preprocessing is not required in this architecture since log sequences are

based on log templates which are already preprocessed from log messages.

In the embedding step, log sequences are given as input, and each log sequence is in

the form (x1, x2, ..., xi , .., xn), where xi is a log template ID and n is the length of the log

sequence. An embedding technique (e.g., BERT) converts each xi to a θ -dimensional vector

representing the semantics of xi , where θ is the size of log sequence embedding. Then each

log sequence forms a matrix X ∈ Rn×θ . Different log sequence embedding strategies can be

applied; more information is provided in § 4.1.

123



  105 Page 16 of 53 Empirical Software Engineering           (2024) 29:105 

Fig. 4 Overview of the modular architecture for failure prediction

In the classification step, the embedding matrix is processed to predict whether the given

log sequence leads to a failure or not. A DL model, as an encoder � encodes the matrix X

into a feature vector z = �(X) ∈ Rm , where m is the number of features, which is a variable

depending on the architecture of �. Different DL encoders can be applied; more information

is provided in § 4.2. Similar to related studies (Huang et al. 2020; Lu et al. 2018), the output

feature vector z is then fed to a feed-forward network (FFN) and softmax classifier to create

a vector of size d (d = 2), capturing the prediction of the input unit label. As the FFN has a

consistent setting across various configurations, it is separated as a common, trainable part

of the architecture, following an architecture similar to the one of the NeuralLog model (Le

and Zhang 2021) as well as the LogRobust one (Zhang et al. 2019).

More specifically, the FFN activation function is rectified linear unit (ReLu), and the

output vector of the FNN r is defined as r = max(0, zW1 + b1) where W1 ∈ Rm×d f and

b1 ∈ Rd f are a trainable parameter, and d f is the dimensionality of the FNN. Further, the

calculation of the softmax classifier is as follows.

o = r W2 + b2 (2)

softmax(op) =
exp(op)∑
j exp(o j )

(3)

where W2 ∈ Rd f ×d and b2 ∈ Rd are trainable parameters to convert r to t ∈ Rd before

applying softmax; op represents the p-th component in the o vector, and exp is the exponential

function. After obtaining the softmax values, the position with the highest value determines

the label of the input log sequence.

Overall, the configuration of an embedding strategy and a DL encoder forms a language

model that takes textual data as input and transforms it into a probability distribution (Vaswani

et al. 2017). This language model handles the log templates as well as learning the language

of failure patterns to predict the label of sequences.
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To train the above architecture, a number of hyper-parameters should be set such as

the choice of the optimizer, loss function, learning rate, input size (for some deep learning

models), batch size, and the number of epochs. Tuning these hyper-parameters is highly

recommended as it significantly increases the chances of achieving the best failure prediction

accuracy. Section 5.2.4 will detail the training and hyper-parameter tuning in our experiments.

After the model is trained, it is evaluated with a test log split from the dataset with stratified

sampling. We used stratified sampling to keep the same proportion of failure log sequences

as in the original dataset. Similar to training data, the embedding step transforms the test log

sequences into embedding matrices. The matrices are then fed to the trained DL encoder to

predict whether log sequences lead to failure or not.

4.1 Embedding Strategies

While the modular architecture can accommodate various log sequence embedding options,

we only consider one representative instance from each of three LSE strategies (see § 2.5),

given our experimental constraint. More details are provided in § 5.2.1.

Note that following three techniques were not compared in the same study before, accord-

ing to Table 1.

Logkey2vec For Logkey2vec (see § 2.5.1), we set the embedding size to 768, similar to

BERT for better comparison. The vocabulary size is set to 200, consistent with the study of

Lu et al. (2018).

BERT The maximum number of input tokens for BERT (see § 2.5.2) is 512 tokens. This

limit does not constitute a problem in this work since the log templates in our datasets are

relatively short and the total number of tokens in each log template is always less than 512.

Even if log templates were longer than 512, there are related studies suggesting approaches

to use BERT accordingly (Weijie et al. 2021; Ding et al. 2020; Sun et al. 2019). Each layer

of the transformer encoder contains multi-head attention sub-layers and FFNs to compute a

context-aware embedding vector (θ = 768) for each token. This process is repeated for all

the log templates inside the log sequence to create a matrix representation of size n × 768,

where n is the length of the input log sequence.

FastText+TF-IDF. Following its initial evaluation (Zhang et al. 2019), the dimension of the

embedding vector is set to 300 (d = 300).

4.2 Deep Learning Encoder

In this section, we illustrate the main features of the four DL encoders that can be used in

the “Classification step” when instantiating our base architecture. We selected four encoders

(LSTM-, BiLSTM-, CNN-, and transformer-based) because they cover the main DL types.

These four encoders cover all the DL techniques used in log-based failure prediction (BiL-

STM and LSTM). Additionally, they represent the most common DL techniques used in

relevant log analysis tasks: LSTM has been employed in nine studies, BiLSTM and trans-

formers in five, and CNN in three, as detailed in Table 1. GNNs are not included because

there is no fair way to compare them with the others due to the required pre-processing stage

required to transform sequential data into graphs, which is an expensive endeavour and a

subject of current research (Xie et al. 2022).

LSTM-based This DL model is inspired by the LSTM architecture suggested by related

works, including DeepLog (Du et al. 2017), Aarohi (Das et al. 2020), and Dash (Das et al.

2018). The model contains one LSTM hidden layer with 128 nodes and ReLu activation. A
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Dropout with a rate of 0.1 is applied to help the model generalise better. The output of the

model is a feature vector of size 128.

BiLSTM-based The model has an architecture similar to LogRobust, which was proposed

for anomaly detection. Due to its RNN-based architecture, its output is a feature vector with

the same size as the input log sequence length (Zhang et al. 2019).

CNN-based The CNN architecture is a variation of the convolutional design for the CNN-

based anomaly detection mode (Lu et al. 2018). Based on our preliminary experimental

results, 20 filters, instead of one, for each of the three 1D convolutions (see § 2.4.2) are used

in parallel to capture relationships between log templates at different distances. Padding is

used to ensure that feature maps of each convolution have the same dimension as the input.

Hence, the length of the output feature vector is the product of the number of filters (20), the

number of convolutions (3), and the input size of the log sequence.

Transformer-based Our architecture of the transformer model is inspired by recent work

in anomaly detection (Le and Zhang 2021; Huang et al. 2020; Nedelkoski et al. 2020). The

model is composed of two main parts: positional embedding and transformer blocks. One

transformer block is adopted after positional embedding, set similarly to a recent study (Le

and Zhang 2021). After global average pooling, the output matrix is mapped into one feature

vector of the same size as the log template embedding θ = 768, previously explained in

§ 2.4.

5 Empirical Study Design

5.1 Research Questions

The goal of this study is to systematically evaluate the performance of failure predictors,

by instantiating our base architecture with different configuration of DL encoders and log

sequence embedding strategies, for various datasets with different characteristics. The ulti-

mate goal is to rely on such analyses to provide practical guidelines to select the right

failure prediction model based on the characteristics of a given dataset. To achieve this, we

investigate the following research questions:

RQ1: What is the impact of different DL encoders on failure prediction accuracy?

RQ2: What is the impact of different log sequence embedding strategies on failure predic-

tion accuracy?

RQ3: How do DL-based failure predictors fare compared to traditional ML-based ones in

terms of failure prediction accuracy?

RQ4: What is the impact of different dataset characteristics on failure prediction accuracy?

RQ5: How does the accuracy of failure prediction on synthesised datasets compare to that

of real-world datasets?

RQ1 and RQ2 investigate how failure prediction accuracy varies across DL encoders

and embedding strategies reported in the literature. Most of them have been evaluated in

isolation or with respect to a few alternatives, often using ad-hoc benchmarks (see § 3 for

a detailed comparison). To address this, we comprehensively consider all variations of our

base architecture, obtained by combining different DL encoders and log sequence embedding

strategies

that have been widely used in failure prediction and anomaly detection. Furthermore, we

systematically vary the characteristics of the input datasets in terms of the number of log

sequences, the length of log sequences, and the proportion of normal log sequences. The
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answer to these questions is expected to lead to practical guidelines for choosing the best

failure prediction model given a dataset with certain characteristics.

RQ3 compares the DL-based and traditional ML-based (also referred to as non-DL) failure

predictors in terms of accuracy. This will allow us to better understand the potential advantages

and drawbacks of using DL methods for failure prediction.

RQ4 additionally investigates the impact of the input dataset characteristics on failure

prediction accuracy with a focus on the best DL encoder and log sequence embedding strategy

found in RQ1 and RQ2. The answer to this question will help us better understand under

which conditions the configuration of the best DL encoder and log sequence embedding

strategy works sufficiently well for practical use, possibly leading to practical guidelines to

best prepare input datasets for increasing failure prediction accuracy.

RQ5 compares the results (in terms of failure prediction accuracy) obtained by the config-

uration of the best DL encoder and log sequence embedding strategy on synthetic data with

those obtained on a real dataset (more details in § 5.2.3).

5.2 Methodology

As discussed in § 4, we can instantiate the base architecture for failure prediction with

different DL encoders and log sequence embedding strategies.

To answer RQ1 and RQ2, we train different configurations of the base architecture while

systematically varying training datasets’ characteristics (e.g., size and failure types). Then,

we evaluate the relative performance of the configurations in terms of failure prediction

accuracy, using test datasets having the same characteristics but not used during training. We

elaborate on the different configurations, dataset characteristics, and failure predictor training

and testing in the following sections.

To answer RQ3, we compare the results of the best configuration of the DL-based failure

prediction architecture with a traditional ML-based failure predictor. We selected Random

Forest (RF) as a traditional ML-based method since, according to the comprehensive study of

Fernández-Delgado et al. (2014), it has shown the best performance overall compared to other

traditional ML-based methods. Moreover, in the context of log-based failure prediction, the

RF-based method has shown better results compared to other traditional ML-based methods,

such as xgboost and SVM (Zhang et al. 2018; Liu et al. 2020) (see also § 3.1.2). Therefore,

using RF provides the best insights over using DL-based failure predictors. For RF, we set

the number of estimators, which is the primary hyper-parameter, to 10, in line with its related

study (Wu et al. 2023). For embedding strategy, since the input of RF is an embedding vector

rather than an embedding matrix used for our modular architecture, we selected TF-IDF

(template-level), the best overall embedding strategy for RF according to a close study (Wu

et al. 2023).

To answer RQ4, we first identify all the top configurations since there might be certain

datasets where configurations other than the best configuration inferred from RQ1-2 fare bet-

ter. We then analyse the impact of each dataset characteristic (e.g., dataset size, percentage

of failure) on these configurations. To further investigate the combination of these character-

istics, we construct a decision tree based on the best configuration for each dataset to predict

the conditions where each top configuration fares best.

Moreover, we build regression trees (Breiman et al. 1984a) to automatically infer con-

ditions describing how the failure prediction accuracy of the best configurations varies

according to the dataset characteristics.
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To answer RQ5, due to the limited availability of real-world datasets for failure prediction

(see § 3.1.2), we must choose from the datasets available for anomaly detection. Especially,

datasets designed explicitly for failure detection (i.e., a sub-task of anomaly detection) are

more compatible with our task, considering their transferability to failure prediction discussed

in § 2.3.2. OpenStack is a common dataset explicitly used for failure prediction (Bogatinovski

et al. 2022) and further labelled at the log message level that we refer to as OpenStack_v2.

These characteristics allowed us to further process it to make it suitable for failure prediction,

leading to the creation of a new dataset called OpenStack_PF, which we introduce in § 5.2.3.

We compare the failure prediction accuracy results obtained on the synthesized datasets most

similar, in terms of dataset size, failure percentage, and MLSL 1 to OpenStack_PF, with those

obtained on the OpenStack_FP dataset. For practical reasons, we only focus on the accuracy

results of the best DL configuration as well as the best traditional ML model, i.e., RF.

5.2.1 Log Sequence Embedding Strategies and DL Encoders

As for different log sequence embedding strategies, we considered the best-fitting instances

from three categories, which have shown to be accurate in the literature as discussed in § 4.1.

Among template ID-based strategies, we excluded the count vector since they are unable

to capture sequential patterns in a log sequence (see § 2.5). TF-IDF methods (like count

vectors) were incompatible with our architecture since their output embedding is a vector

for each log sequence rather than a matrix. Conversely, Logkey2vec incorporates the order

of log templates in the embedding procedure and yields the desired output structure. Among

semantic-based strategies, since Template2vec is trained on manually added, domain-specific

synonyms and antonyms, its applicability is limited and we excluded it, as mentioned in Sect.

2.5.2. Among available pre-trained strategies, we included BERT, given its prevalent usage

in log analysis studies and its demonstrated benefits (Guo et al. 2021; Le and Zhang 2021).

As for the hybrid strategy, we included F+T (aggregation of FastText with TD-IDF), which

is a common hybrid strategy in the existing literature.

As for different DL encoders in RQ1 and RQ2, we consider four encoders (LSTM, BiL-

STM, CNN, and transformer) that have been previously used in related works; we describe

their architecture details in § 4.2. We configured the encoders based on the recommendations

reported in the literature (see § 4.2 for further details).

5.2.2 Datasets with Different Characteristics

As for the characteristics of datasets, we consider four factors that are expected to affect

failure prediction performance: (1) dataset size (i.e., the number of logs in the dataset), (2)

log sequence length (LSL) (i.e., the length of a log sequence in the dataset), (3) failure

percentage (i.e., the percentage of log sequences with failure patterns in the dataset), and (4)

failure pattern type (i.e., types of failures).

The dataset size is important to investigate to assess the training efficiency of different

DL models. To consider a wide range of dataset sizes while keeping the number of all

combinations of the four factors tractable, we consider six levels that cover the range of

real-world dataset sizes reported in a recent study (Le and Zhang 2022): 200, 500, 1000,

5000, 10000, and 50000.

The LSL could affect failure prediction since a failure pattern that spans a longer log might

be more difficult to predict correctly. Similar to observed lengths in real-world log sequences

1 More details are provided in § 6.5.
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across publicly available datasets (Le and Zhang 2022), we vary the maximum2 LSL across

five levels: 20, 50, 100, 500, and 1000.

The failure percentage determines the balance of classes in a dataset, which may affect

the performance of DL models (Johnson and Khoshgoftaar 2019). The training dataset is

perfectly balanced at 50%. However, the failure percentage can be much less than 50% in

practice, as observed in real-world datasets (Lin et al. 2018). Therefore, we vary the failure

percentage across six levels: 5%, 10%, 20%, 30%, 40%, and 50%.

Regarding failure patterns, we aim to consider patterns with potential differences in terms

of learning effectiveness. However, failure patterns defined in previous studies are too simple;

for example, (Das et al. 2018) consider a specific, consecutive sequence of problematic log

templates, called a “failure chain”. But in practice, not all problematic log templates appear

consecutively in a log. To address this, we use regular expressions to define failure patterns,

allowing non-consecutive occurrences of problematic log templates. For example, a failure

pattern “x(y|z)” indicates a pattern composed of two consecutive templates that starts with

template x and ends with either template y or template z. In addition, we consider two types

of failure patterns (in the form of regular expressions), Type-F and Type-I, depending on the

cardinality of languages accepted by the regular expressions (finite and infinite, respectively).

This is because, if the cardinality of the language is finite, DL models might memorise

(almost) all the finite instances (i.e., sequences of log templates) instead of learning the

failure pattern. For example, the language defined by the regular expression “x(y|z)” is

finite since there are only two template sequences (i.e., xy and xz) matching the expression

“x(y|z). In this case, the two template sequences might appear in the training set, making

it straightforward for DL models to simply memorise them. On the contrary, the language

defined by the regular expression “x∗(y|z)” is infinite due to infinite template sequences

that can match the sub-expression ‘x∗’; therefore simply memorising some of the infinitely

many sequences matching “x∗(y|z)” would not be enough to achieve high failure prediction

accuracy.

To sum up, we consider 360 combinations (six dataset sizes, five maximum LSLs, six fail-

ure percentages, and two failure pattern types) in our evaluation. However, we could not use

publicly available datasets for our experiments due to the following reasons. First, although

(He et al. 2021) reported several datasets in their survey paper, they are mostly labelled based

on the occurrence of error messages (e.g., log messages with the level of ERROR) instead of

considering failure patterns (e.g., sequences of certain messages). Furthermore, there are no

publicly available datasets covering all the combinations of the four factors defined above,

making it impossible to thoroughly investigate their impact on failure prediction. To address

this issue, we present a novel approach for synthetic log data generation in § 5.3.

5.2.3 Real-world Dataset Processing

The real-world log dataset used to address RQ5 is based on the OpenStack dataset, which is

collected from a large-scale study on failures in OpenStack, as documented by Cotroneo et al.

(2019). It is known to be the most comprehensive publicly available dataset of logs including

failure data generated from a cloud-based system (Bogatinovski et al. 2022), involving a wide

variety of failures reported in the OpenStack bug repository.3 Failures stem from different

fault injection mechanisms (e.g., modifying the source code of OpenStack) and running a

workload (task) with the injected fault. In the original OpenStack dataset, the granularity of

2 We set the maximum LSL for to simplify control.

3 https://bugs.launchpad.net/openstack/
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the labels is at the level of the workload; labels are determined by checking assertions at

the end of the workload runs. Bogatinovski et al. (2022) further labelled the logs at the log

message level using two human annotators labelling more than 200000 log messages to find

those indicating the logged failure. We name this version of the dataset OpenStack_v2. To

make OpenStack_v2 ready for failure prediction, we further processed it according to the

discussion on dataset transferability, as mentioned in § 2.3.2.

Specifically, we partition the logs according to their log identifier, which is the task ID in

this context. As discussed in § 2.3.1, partitioning logs using log identifiers leads to higher

accuracy than using timestamp-based ones. If a task ID is marked as a failure, we retain only

the log messages, ordered by timestamp, up before the occurrence of the first failure message.

In this way, we eliminate the direct signs of a failure in a log, resulting in a log sequence that

appears normal although it triggers a failure. Additionally, due to the limitation on maximum

log sequence length, in case a log sequence exceeds the limit, we only keep the last 1000

log messages. We set this threshold since it is the maximum input sequence length in our

modular architecture; moreover, we speculate the messages at the end of the sequence to be

more related to the subsequent failure. We name the processed dataset OpenStack_PF, as it

is suitable for failure prediction. Table 2 provides a summary of the OpenStack_FP statistics,

where “# logs” indicates the number of logs that form a log sequence, and “avg,” “min,”

and “max” represent the average, minimum, and maximum lengths of the log sequences,

respectively.

5.2.4 Failure Predictor Training and Testing

We split each artificially generated dataset, as well as OpenStack_PF, into two disjoint sets,

a training set and a test set, with a ratio of 80:20. Further, 20% of the training set is separated

as a validation set, which is used for early stopping (Prechelt 1998) during training to avoid

over-fitting.

For training failure predictors, to control the effect of highly imbalanced datasets, over-

sampling (Upton and Cook 2008) is performed on the minority class (i.e., failure logs) to

achieve a 50:50 ratio of normal to failure logs in the training dataset. For all the training

datasets, we use the Adam optimizer (Kingma and Ba 2015) with a learning rate of 0.001 and

the sparse categorical cross-entropy loss function (Chen et al. 2022) considering the Boolean

output (i.e., failure or not) of the models. However, we use different batch sizes and num-

bers of epochs for datasets with different characteristics since they affect the convergence

speed of the training error (particularly the dataset size, the maximum LSL, and the failure

percentage). It would however be impractical to fine-tune the batch size and the number

of epochs for 360 individual combinations. Therefore, based on our preliminary evaluation

results, we use larger batch sizes with fewer epochs for larger datasets to keep the training

time reasonable without significantly affecting training effectiveness. Specifically, we set the

two hyperparameters as follows:

Table 2 Overview of OpenStack_PF dataset

#Logs #Failures Failure Percentage #Unique Log Sequence Length

Log Sequences Log Templates avg min max

876 188 21.46% 468 228 4 462
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– Batch size: By default, we set it to 10, 15, 20, 30, 150, and 300 for dataset sizes of 200,

500, 1000, 5000, 10000, and 50000, respectively. If the failure percentage is less than

or equal to 30 (meaning more oversampling will happen to balance between normal and

failure logs, increasing the training data size), then we increase the batch size to 10, 15,

30, 60, 300, and 600, respectively, to reduce training time. Furthermore, regardless of

the failure percentage, we set the batch size to 5 if the maximum LSL is greater than or

equal to 500 to prevent memory issues during training.

– Number of epochs: By default, we set it to 20. If the maximum LSL is greater than or

equal to 500, we reduce the number of epochs to 10, 10, 5, and 5 for dataset sizes of

1000, 5000, 10000, and 50000, respectively, to reduce training time.

Table 3 summarises the above conditions, where FP is the failure percentage and MLSL

refers to the maximum LSL. For OpenStack_FP, we determined the hyperparameter settings

by matching its characteristics to the closest ones in the table (i.e., dataset size of 1000, failure

percentage of 20%, and MLSL of 500).

Once failure predictors are trained, we measure their accuracy on the corresponding test

set in terms of precision, recall, and F1 score. We also refer to robustness as a degree of

consistency in accuracy in the presence of varying data set characteristics.

We conducted all experiments with cloud computing environments provided by the Digital

Research Alliance of Canada (Digital Research Alliance of Canada 2016), on the Cedar

cluster with a total of 94528 CPU cores for computation and 1352 GPU devices.

5.3 Synthetic Data Generation

In defining a set of factors, the methodology described in § 5.2 makes it clear that there is

a need for a mechanism that can generate datasets in a controlled, unbiased manner. Recent

works on data synthesis have used finite-state automata (§ 3.2), but they cannot accommodate

the set of factors that we aim to control during synthetic data generation. For example, let us

consider the factor of failure percentage (§ 5.2.2). Such a factor requires that one be able to

control whether the log sequence being generated does indeed correspond to a failure; this

would ultimately allow one to control the percentage of failure log sequences in a generated

dataset.

While, for smaller datasets, one could imagine manually choosing log sequences that

represent both failures and normal behaviour, for larger datasets this is not feasible. When

considering the other factors defined in § 5.2, such as LSL, the case for a mechanism for

automated, controlled generation of datasets becomes yet stronger.

Table 3 Overview of Hyperparameter Setting

Hyperparameter Condition Dataset Size

200 500 1000 5000 10000 50000

Batch Size Default 10 15 20 30 150 300

PF ≤ 30 10 15 30 60 300 600

MLSL ≥ 500∗ 5 5 5 5 5 5

Number of Epochs Default 20 20 20 20 20 20

MLSL ≥ 500 20 20 10 10 5 5

* This condition has higher priority than the other
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5.3.1 Key Requirements

We now describe a set of requirements that must be met by whatever approach we opt to take

for generating datasets. In particular, our approach should:

R1 - Allow datasets’ characteristics to be controlled. This requirement has already been

described, but we summarise it here for completeness. We must be able to generate datasets

for each combination of levels (of the factors defined in § 5.2). Hence, our approach must

allow us to choose a combination of levels, and generate a dataset accordingly.

R2 - Be able to generate realistic datasets. A goal of this work is to present results that are

applicable to real-world systems. Hence, we must require that the datasets with which we

perform any evaluations reflect real-world system behaviours.

R3 - Be able to generate datasets corresponding to a diverse set of systems. While we

require that the datasets that we use be realistic, we must also ensure that the data generator

can generate log sequences for any system, rather than being limited to a single system.

R4 - Avoid bias in the log sequences that make up the generated datasets.

For a given system, we wish to generate datasets containing log sequences that explore as

much of the system’s behaviour as possible (rather than being biased to a particular part of

the system).

5.3.2 Automata for System Behaviour

Our approach is based on finite-state automata. In particular, we use automata as approximate

models of the behaviour of real-world systems. We refer to such automata as behaviour

models, since they represent the computation performed by (i.e., behaviour of) some real-

world system. We chose automata, or behaviour models, because some of our requirements

are met immediately:

R2. Existing tools (Shin et al. 2022; Walkinshaw et al. 2013) allow one to infer behaviour

models of real-world systems from collections of these systems’ logs (in a process called

model inference). Such models attach log messages to transitions, which is precisely what

we need. Importantly, collections of logs used are unlabelled, meaning that the models that

we get from these tools have no existing notion of normal behaviour or failures.

R3. A result of meeting R2 is that one can easily infer behaviour models for multiple systems,

provided the logs of those systems are accessible.

R4. If we are to use automata to represent systems, then we can define bias of collections

of log sequences in terms of how much of a behaviour model is represented in those log

sequences.

The remaining sections will give the complete details of our automata-based data gener-

ation approach. In presenting these details, we will show how R1 and R4 are met.

5.3.3 Behaviour Models

We take a behaviour model M to be a deterministic finite-state automaton 〈Q, A, q0, �, δ〉,

with symbols as defined in § 2.1.

A behaviour model has the particular characteristic that its alphabet � consists of log

template IDs (see § 2.2). A direct consequence of this is that one can extract log sequences

from behaviour models. In particular, if one considers a sequence of states (i.e., a path)

q0, qi , qi+1, . . . , qn through the model, one can extract a sequence of log template IDs using

the transition function δ. For example, if the first two states of the sequence are q0 and qi ,
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then one need only find s ∈ � such that δ(q0, s) = qi , i.e., it is possible to transition to qi

from q0 by observing s. Finally, by replacing each log template ID in the resulting sequence

with its corresponding log template, one obtains a log sequence (see § 2.2). These sequences

can be divided into two categories: failure log sequences and normal log sequences.

We describe failures using regular expressions. This is natural since behaviour models are

finite state automata, and sets of paths through such automata can be described by regular

expressions. Hence, we refer to such a regular expression as a failure pattern, and denote it

by fp. By extension, for a given behaviour model M, we then denote by failurePatterns(M)

the set {fp1, fp2, . . . , fpn} of failure patterns paired with the model M. Based on this, we

characterise failure log sequences as such:

Failure LOG SEQUENCE For a system whose behaviour is represented by a behaviour model

M, we say that a log sequence represents a failure of the system whenever its sequence of

log template IDs matches some failure pattern fp ∈ failurePatterns(M).

Since this definition of failure log sequences essentially captures a subset of the possible

paths through M, we define normal log sequences as those log sequences that are not failures:

Normal LOG SEQUENCE For a system whose behaviour is represented by a behaviour model

M, we say that a log sequence l is normal, i.e., it represents normal behaviour, whenever

l ∈ L(M) and l /∈
⋃

fp∈failurePatterns(M) L(fp) (we take L(M) and L(fp) to be as defined in

§ 2.1). Hence, defining a normal log sequence requires that we refer to both the language of

the model M, and the languages of all failure patterns associated with the model M.

5.3.4 Generating Log Sequences for Failures

Let us suppose that we have inferred a model M from the execution logs of some real-world

system, and that we have defined the set failurePatterns(M). Then we generate a failure log

sequence that matches some fp ∈ failurePatterns(M) by:

1. Computing a subset of L(fp). We do this by repeatedly generating single members of

L(fp). Ultimately, this leads to the construction of a subset of L(fp). In practice, the

Python package exrex (Tauber 2018) can be used to generate random words from the

language L(fp), so we invoke this library repeatedly.

If the language of the regular expression is infinite, we can run exrex multiple times, each

time generating a random string from the language. The number of runs is set based on our

preliminary results with respect to the range of dataset size (2500 times for each failure

pattern). Doing this, we generate a subset of L(fp).

2. Choosing at random a log sequence l from the random subset L(fp) computed in the

previous step, with |l| ≤ mlsl where mlsl refers to the value of maximum log sequence

manipulated by LSL factor. (see § 2.2) (maximum LSL, see § 5.2). The Python package

random (Package 2019) was employed for this.

We highlight that failure patterns are designed so that there is always at least one failure

pattern that can generate log sequences whose length falls within this bound.

More details on this are provided in § 5.4.

For requirement R4, since our approach relies on random selection of log sequences from

languages generated by the exrex tool, we highlight that the bias in our approach is subject

to the implementation of both exrex, and the Python package, random. Exrex is a popular

package for RegEx that has more than 100k monthly downloads. Its method for generating a

random matching sequence is implemented by a random selection of choices on the RegEx’s

parse tree nodes. Random package uses the Mersenne twister algorithm (Matsumoto and
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Nishimura 1998) to generate a uniform pseudo-random number used for random selection

tasks.

5.3.5 Generating Log Sequences for Normal Behaviour

While our approach defines how failures should look using a set of failure patterns

failurePatterns(M) defined over a model M, we have no such definition of how normal

behaviour should look. Instead, this is left implicit in our behaviour model. However, based

on the definition of normal log sequences given in § 5.3.3, such log sequences can be randomly

generated by performing random walks on behaviour models.

This fact forms the basis of our approach to generating log sequences for normal behaviour.

However, we must also address key issues: 1) the log sequences generated by our random

walk must be of bounded length, and 2) the log sequences must also lack bias.

There are two reasons for enforcing a bound on the length of log sequences:

– Deep learning models (such as CNN) often accept inputs of limited size, so we have to

ensure that the data we generate is compatible with the models we use.

– One of the factors introduced in § 5.2 is LSL, so we need to be able to control the length

of log sequences that we generate.

For bias, we have two sources: 1) bias to specific regions of the behavioural model, 2)

bias to limited variation of LSL. We must minimise bias in both cases.

Algorithm 1 gives our procedure for randomly generating a log sequence representing

normal behaviour of a system. Algorithm 1 itself makes use of Algorithm 2.

Algorithm 1 generateNormalSequence

Input: M : behaviour model, mlsl : int

Output: sequence : 〈s1, s2, . . . , sn〉 ∈ L(M)

1 sequence : list ← filteredRandomWalk(M, mlsl)

2 while sequence ∈
⋃

fpi ∈failurePatterns(M) L(fpi ) do

3 sequence ← filteredRandomWalk(M, mlsl)

4 return sequence

In particular, Algorithm 1 generates a normal log sequence by:

1. Generating a random log sequence by random walk (invoking Algorithm 2);

2. Looking for a failure pattern fp ∈ failurePatterns(M) that matches the generated log

sequence;

3. Repeating until a log sequence is generated that matches no failure pattern.

Ultimately, Algorithm 1 is relatively lightweight; the weight of the work is performed by

Algorithm 2, which we now describe in detail.

The input arguments of Algorithm 2, which defines the procedure filteredRandomWalk,

are a behaviour model M and the maximum LSL, mlsl.

The algorithm proceeds as follows. First, on line 1, we invoke the calculateSValues func-

tion to compute a map that sends each state s ∈ Q of M to the length of the shortest path

from that state to an accepting state in A. Next, on line 2, the sequence variable is initialised to

an empty sequence. As the algorithm progresses, this variable stores the generated sequence

of log template IDs. To help with this, the variable currentState is initialised to keep track of
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Algorithm 2 filteredRandomWalk

Input: M = 〈Q, A, q0, �, δ〉 : behaviour model, mlsl : int

Output: sequence : 〈s1, s2, . . . , sn〉 ∈ L(M)

1 sValue : int ← calculateSValues(M)

2 sequence : list ← 〈〉

3 maximumWalk : int ← mlsl

4 currentState : state ← q0
5 while currentState /∈ A do

6 options : set ← ∅

7 transitions : set ← {〈currentState, s, q〉 : δ(currentState, s) = q}

8 for 〈q, s, q ′〉 ∈ transitions do

9 if sValue(q ′) < maximumWalk then

10 options ← options ∪ {〈q, s, q ′〉}

11 〈q, s, q ′〉 ← random choice from options

12 sequence ← sequence + 〈s〉

13 currentState ← q ′

14 maximumWalk ← maximumWalk − 1

15 return sequence

the state that the algorithm is currently in during the walk of the behavioural model. Hence,

this variable is initialised on line 4 as the initial state. The final step in the setup stage of our

algorithm is to initialise the maximumWalk variable, which serves as a counter to ensure the

limit on the length of the generated log sequence (defined by mlsl) is respected.

In the while loop (line 5), as long as the current state, currentState, is not yet an accepting

state, the random walk transits from the current state to a new state. The set of possible

transitions to take is computed by line 7, and stored in the variable transitions. Each transition

is represented by a triple containing the starting state, the symbol to be observed, and the state

resulting from observation of that symbol. Once this set has been computed, the algorithm

performs a filtering step. In particular, in order to ensure that we respect the limit imposed

on the length of the generated path by mlsl, we only consider transitions that lead to a state

q ′ such that sValue(q ′) < maximumWalk. The resulting list of valid options is then held in

the variable options.

Once the set options has been computed, one transition 〈q, s, q ′〉 will be chosen randomly

from the set (line 13). This random choice eliminates bias because, each time we choose

the next state to transition to, we do not favour any particular state (there is no weighting

involved). This, extended over an entire path, means that we do not favour any particular

region of a behaviour model. Now, from the randomly chosen transition 〈q, s, q ′〉, the log

template ID, s, is added to sequence (via sequence concatenation); currentState is updated to

the next state, q ′; and maximumWalk is decreased by one. Based on the condition of the while

loop (line 5), when currentState ∈ A (i.e., the algorithm has reached an accepting state), the

generated sequence sequence is returned.

While Algorithm 2 generates an unlabelled log sequence, Algorithm 1 generates a normal

log sequence. To do this, it starts by generating a log sequence, by invoking the filtere-

dRandomWalk procedure (Algorithm 2). Since the sequence generated by Algorithm 2 is

unlabelled, we must ensure that we do not generate a failure log sequence. We do this by

checking whether the generated log sequence, sequence, belongs to the language of any

failure pattern in failurePatterns(M). If this is indeed the case, another sequence must be

generated. This process is repeated (line 2) until the log sequence generated by the call of
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filteredRandomWalk does not match any failure pattern in failurePatterns(M). Once a failure

log sequence has been generated, it is returned.

We acknowledge that this process could be inefficient (since we are repeatedly generating

log sequences until we get one with the characteristics that we need). However, we highlight

that failure patterns describe only a small part of a behaviour model (this is essentially the

assumption that failure is a relatively uncommon event in a real system). Hence, normal log

sequences generated by random walks can be generated without too many repetitions.

5.3.6 Correctness and Lack of Bias

We now provide a sketch proof of the correctness of Algorithm 2, along with an argument

that the algorithm eliminates bias.

To prove correctness, we show that, for a behaviour model M, the algorithm always

generates a sequence of log template IDs that correspond to the transitions along a path

through M.

The algorithm begins at q0, by setting currentState to q0 (line 4). From q0, and each

successive state in the path, the possible next states must be adjacent to currentState (line 7).

Hence, the final value of sequence after the while-loop at line 5 must be a sequence of log

template IDs that correspond to the transitions along a path through M.

Further, we must show that the sequence of log template IDs generated does not only

correspond to a path through the behaviour model, but is of length at most mlsl (one of the

inputs of Algorithms 2 and 1). This is ensured by three factors:

– The initialisation of the variable maximumWalk on line 3.

– The subsequent decrease by one of that variable each time a new log template ID is added

to sequence.

– Filtering of the possible next states in the random walk on line 9. In particular, on line 9

we ensure that, no matter which state we transition to, there will be a path that 1) leads

to an accepting state; and 2) has length less than maximumWalk.

Finally, bias is minimised by two factors:

– On line 13, we choose a random next state. Of course, here we rely on the implementation

of random choice that we use.

– On line 9, while we respect the maximum length of the sequence of log template IDs,

we do not enforce that we reach this maximum. Hence, we can generate paths of various

lengths.

Example To demonstrate Algorithm 2, we now perform a random walk over the behaviour

model shown in Fig. 5. We start with the behaviour model’s starting state, q0, with mlsl set

to 5. Since q0 /∈ A, we can execute the body of the while-loop at line 5. Hence, we can

determine the set transitions of transitions leading out of q0:

{〈q0, a, q2〉, 〈q0, b, q2〉, 〈q0, c, q1〉, 〈q0, d, q1〉}.

Our next step is to filter these transitions to ensure that the state that we move to allows us to

reach an accepting state within maximumWalk states. To do this, we filter the set transitions

with respect to the values in Table 4. After this filtering step, the resulting set, options, is

{〈q0, a, q2〉, 〈q0, b, q2〉, 〈q0, c, q1〉, 〈q0, d, q1〉}.

All states in transitions are safe to transition to. To take one transition as an example,

〈q0, a, q2〉 has sValue(q2) = 1 < 5, so is kept.
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Fig. 5 An example of a behaviour model

Once we have computed options, we choose a transition at random. In this case, we arrive

at 〈q0, c, q1〉, meaning that we set currentState to q1. Before we progress to the next iteration

of the main loop of the algorithm, we also decrease maximumWalk. This means that, during

the next iteration of the while loop, we will be able to choose transitions leading to states

from which an accepting state must be reachable within less than 4 states.

Indeed, from q1, there are four transitions, for which we compute the set

{〈q1, a, q0〉, 〈q1, b, q1〉, 〈q1, c, q3〉, 〈q1, d, q3〉}.

From this set, each possible next state has sValue greater than maximumWalk (equal to 4), so

all of them would be possible options for the next step. Suppose that we choose 〈q1, a, q0〉 at

random. Hence, q0 is the next state and a is added to the sequence. For the remaining steps, a

possible run of the procedure could yield the sequence of transitions 〈q0, b, q2〉, 〈q2, d, q1〉,

〈q1, d, q3〉, in which case the final sequence of log template IDs would be c, a, b, d, d .

Table 4 s values for each state
state s value

q0 2

q1 1

q2 1

q3 0
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5.3.7 Compliance to Requirements

We now describe how the approach that we have described meets the remaining requirements

set out in § 5.3.1.

R1 is met because we have two procedures for generating failure log sequences (§ 5.3.4)

and normal log sequences (§ 5.3.5). By having these procedures, we can precisely control

the number of each type of log sequence in our dataset.

R4 is met because of the randomisation used in our data generation algorithm, described

in Sects. 5.3.4 and 5.3.5.

5.4 Experimental Setting for Synthesised Data Generation

To generate diverse log datasets with the characteristics described in § 5.2.2, using the syn-

tactic data generation approach described in § 5.3, we need two main artifacts: behaviour

models and failure patterns.

5.4.1 Behaviour Models

Regarding behaviour models, as discussed in § 5.3.2, we can infer accurate models of real-

world systems from their execution logs using state-of-the-art model inference tools, i.e.,

MINT (Walkinshaw et al. 2013) and PRINS (Shin et al. 2022). Among the potential models

we could generate using the replication package of these tools, we choose models that satisfy

the following criteria based on the model size and inference time reported by Shin et al.

(2022):

(1) The model should be able to generate (accept) a log with a maximum length of 20 (i.e.,

the shortest maximum LSL defined in § 5.2.2;

(2) Since there is no straightforward way of automatically generating failure patterns for

individual behaviour models considering the two failure pattern types, we had to manually

generate failure patterns (detailed in § 5.4.2). Therefore, the size of the model should

be amenable to manually generating failure patterns by taking into account the model

structure (i.e., the number of all states and transitions is less than 1000);

(3) The model inference time should be less than 1 h; and

(4) If we can use both PRINS and MINT to infer a model that satisfies the above criteria for

the same logs, then we use PRINS, which is much faster than MINT in general, to infer

the model.

As a result, we use the following three models as our behaviour models: M1 (generated

from NGLClient logs using PRINS), M2 (generated from HDFS logs using MINT), and

M3 (generated from Linux logs using MINT). Table 5 reports about the size of the three

behaviour models in terms of the number of templates (#Templates), average length of tem-

plates (Avg Template Length) using a white-space separator, the number of states (#States),

and transitions (#Transitions). It additionally shows the number of states in the largest strongly

connected component (#States-NSCC) (Black 2020), which indicates the complexity of a

behaviour model (the higher, the more complex).

5.4.2 Failure Patterns

Regarding failure patterns, recall a failure pattern fp of a behaviour model M is a regular

expression where L(fp) ⊂ L(M), as described in § 5.3.3. Also, note that we need two types of

123



Empirical Software Engineering           (2024) 29:105 Page 31 of 53   105 

Table 5 Overview of Behavioural models

Model #Templates Avg Template Length #States #Transitions #States-NSCC

M1 70 54 154 195 5

M2 16 51 91 189 72

M3 115 39 350 486 331

failure patterns (Type-F and Type-I), and the failure log sequences generated from the failure

patterns must satisfy the dataset characteristics (especially the maximum LSL) defined in

§ 5.2.2. To manually create such failure patterns (regular expressions) in an unbiased way,

we used the following steps for each behaviour model and failure pattern type:

Step 1: We randomly choose the alphabet size of a regular expression and the number of

operators (i.e., alternations and Kleene stars; the latter is not used for Type-F).

Step 1: Using the chosen random values, for a given behaviour model M, we manually

create a failure pattern (regular expression) fp to satisfy L(fp) ⊂ L(M) and the

maximum LSL within the time limit of 1 hour; if we fail (e.g., if the shortest log in

L(fp) is longer than the maximum LSL of 20), we go back and restart Step 1.

Step 1: We repeat Steps 1 and 2 ten times to generate ten failure patterns and then randomly

select three out of them.

As a result, we use 18 failure patterns (i.e., 3 failure patterns × 3 behaviour models × 2

failure pattern types) for synthetic data generation. Table 6 reports the characteristics of

failure patterns in terms of their behavioural model (Model), pattern type (Type), the length

of the pattern in terms of letters and operators (Length), size of the alphabet (#Alphabet), and

the number of operators (#Operators). Additionally, it includes the maximum depth of Kleene

Star Structure(s) for Type-I (Star Depth), which indicates the maximum depth of a nesting

structure (e.g., 3 for ((b∗c)∗a)∗b). Since there are three failure patterns per behavioural model

and type, their values are presented in the form of a triple, respectively. For instance, under

the M2 model and Type-I, the first failure pattern has a length of 31 and an alphabet size of 5,

uses 10 operators, and showcases a star depth of 1. While the complexity of failure patterns

is bounded by their behavioural model (see § 5.3.4), there is a wide variability among failure

patterns across each characteristic.

Table 6 Overview of Failure Patterns

Model Type Length #Alphabet #Operators Star Depth

M1 F (14, 34, 35) (7, 17, 30) (5, 8, 1) -

I (17, 25, 41) (16, 15, 16) (1, 7, 8) (1, 2, 2)

M2 F (20, 27, 32) (11, 9, 11) (3, 6, 7) -

I (31, 8, 39) (5, 5, 12) (10, 1, 9) (1, 1, 2)

M3 F (134, 36, 48) (77, 16, 14) (16, 10, 5) -

I (44, 30, 124) (11, 16, 78) (12, 7, 13) (1, 2, 1)
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5.4.3 A Remark on Generalisability.

At this point, we highlight that we cannot give failure patterns that are representative of

real-world patterns for two key reasons:

– Failure patterns are necessarily dependent on the behaviour model, itself representing a

specific system.

– To the best of our knowledge, there are no failure patterns derived from real-world systems

reported in the literature.

Hence, instead of aiming to generate a set of failure patterns that are somehow representative

of a target that is necessarily elusive, we aim to work with failure patterns that are diverse.

We ensure this by first separating failure patterns into two types: Type-F and Type-I.

Distinguishing between failure patterns that accept infinite and finite languages allows us to

see how our failure prediction machinery performs when the language of log sequences to

work with is infinite vs. finite.

Second, in varying the alphabet size, we control how much of a behaviour model a failure

pattern can capture. Hence, across ten randomly generated failure patterns, we would generate

failure patterns that could explore only a small region of the behaviour model, along with

others that would explore larger regions of the behaviour model.

Further, in varying how many (if any) alternations are used, we control how many selec-

tions can be made when traversing a behaviour model. For example, the failure pattern a | b

allows a single selection; we either take the a transition, or the b transition. However, the

failure pattern (a | b)(c | d) allows two selections; we first either take a or b, and then we

either take c or d .

Finally, in varying how many (if any) Kleene stars are used, we control how many oppor-

tunities for cycles we have when traversing our behaviour model. For example, if we have

a∗, then we have a single opportunity to loop on a. If we have (a | b)∗(c | d)∗, then we have

two opportunities to loop: on either a or b, and then on either c or d .

As a result, the various elements of control that we introduced above

lead to the selection of failure patterns that will generate a large variety of log sequences

from a single behaviour model.

5.4.4 Overview of Synthesised Data.

As the correctness of the synthetic data generation was discussed in § 5.3, the synthesised

datasets should follow the desired characteristics we specified in § 5.2.2. Here we present an

overview of additional statistics regarding the dataset generation. Figure 6 summarises three

statistics in terms of average and minimum length of log sequences (Subfigure 6a and b) as

well as the number of unique log templates in each dataset (Subfigure 6c). Each box is based

on 360 datasets generated from its corresponding behavioural model M1, M2, or M3. We

note that log sequences inside synthesised datasets are directly generated by our approach

introduced in § 5.3. Thus, no partitioning method is needed. However, given that each log

sequence simulates a complete walk ( meaning from the initial state until the accepting state

of a behavioural model), it more closely resembles the log sequences partitioned based on

the log identifier. Based on Subfigure 6a, synthesised datasets from M3 exhibit the largest

interquartile ranges (IQRs), indicating a significant variation in average log sequence length.

This arises from the higher complexity of M3 in terms of the number of states and templates

(see § 5.4.1). Based on Subfigure 6b, the minimum length of log sequences remains relatively
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Fig. 6 Overview of Synthesised Datasets

consistent across models. In Subfigure 6c, M1 and M2 closely align with the number of unique

templates reported for M1 and M2 in Table 5. M3, however, shows a large IQR, ranging

from the number of unique log templates in M3, 115, to as few as 35. Given that MLSL values

(refer to Algorithm 2) can be as low as 20, our algorithm is constrained to reach an accepting

state within a specified number of transitions followed during a walk on the behavioural

model, defined as a finite state automaton. In this way, there may be some transitions in the

finite automaton that are not covered. Consequently, the log templates associated with the

uncovered transitions are not present in the generated log sequence. Overall, the statistics of

the synthesised datasets are consistent with our settings.

6 Results

This section presents the results of RQ1 (DL encoders), RQ2 (log sequence embedding

strategies), RQ3 (traditional ML), RQ4 (dataset characteristics), and RQ5 (real-world data),

respectively.
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6.1 RQ1: DL Encoders

Figure 7 shows boxplots of the failure prediction accuracy (F1 score) for different DL

encoders (i.e., transformer-based, LSTM-based, CNN-based, and BiLSTM-based models)

on the datasets generated by different behaviour models (i.e., M1, M2, and M3). Each box

is generated based on 360 × 3 data points since we have 360 combinations of dataset char-

acteristics and three log sequence embedding strategies. In each box, a triangle indicates the

mean value.

Overall, the CNN-based model achieves the best performance in terms of F1 score for

all behaviour models. It has the highest mean values with the smallest interquartile ranges

(IQRs), meaning that the CNN-based model consistently works very well regardless of dataset

characteristics and log sequence embedding strategies. The BiLSTM-based model also shows

promising results. However, the CNN-based model’s results are significantly higher for all the

behavioural models (paired Wilcoxon test p-values ≪ 0.001). In contrast, the LSTM-based

and transformer-based models show poor results (low F1 score on average with very large

IQRs). These patterns are independent from both the embedding strategy and the model.

Further, the large IQR for LSTM-based and transformer-based models suggests that these

models are very sensitive to the dataset characteristics.

The poor performance of the transformer-based encoder can be explained by the fact

that the transformer blocks in the encoder are data-demanding (i.e., requiring much training

data). When the dataset size is small (below 1000), the data-demanding transformer blocks

are not well-trained, leading to poor performance. This limitation is thoroughly discussed in

the literature (Xu et al. 2020).

The LSTM-based encoder, on the other hand, has two simple layers of LSTM units.

Recall that an LSTM model sequentially processes a given log sequence (i.e., a sequence

of templates), template by template. Although LSTM attempts to address the long-term

dependency problem of RNN by having a forget gate (see § 2.4.1), it is still a recurrent

network that has difficulties to remember a long input sequence (Lipton 2015). For this

reason, since our log datasets contain long log sequences (up to a length of 1000), the

LSTM-based encoder did not work well.

Fig. 7 Failure prediction accuracy for different DL encoders. The triangles additionally indicate mean values
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The BiLSTM-based encoder involves LSTM units and therefore has the weakness men-

tioned above. However, for BiLSTM, the input sequence flows in both directions in the

network, utilizing information from both sides. Furthermore, it is enhanced by the attention

mechanism that assigns more weight to parts of the input which are associated with the failure

pattern (Vaswani et al. 2017). Thus, the BiLSTM-based encoder can more easily learn the

impact of different log templates on the classification results. However, the attention layer is

more data-demanding than the convolution layers (see § 4.2) in the CNN-based encoder, and

this explains why the BiLSTM-based encoder does not outperform the CNN-based encoder.

The high performance of the BiLSTM-based and CNN-based encoders can be explained by

the number of trainable parameters; for these two encoders, unlike the transformer-based and

LSTM-based ones, the number of trainable parameters increases as the input sequences get

longer. The larger number of parameters makes the encoders more robust to longer input log

sequences. Furthermore, CNN additionally processes spatial information (i.e., how templates

relate to each other in the data) using multiple filters with different kernel sizes (Gu et al.

2018), which makes failure prediction more accurate even when the input size (sequence

length) is large. These characteristics make the CNN-based encoder the best choice in our

application context.

The answer to RQ1 is that the CNN-based encoder tends to significantly outperform

the other encoders across the range of data characteristics and sequence embedding

strategies.

6.2 RQ2: Log Sequence Embedding Strategies

Figure 8 shows the boxplots of the failure prediction accuracy (F1 score) for the different log

sequence embedding strategies considered in this study (i.e., BERT, F+T, and Logkey2vec)

on the datasets generated by the three behaviour models (M1, M2, and M3). Each box is

Fig. 8 Failure prediction accuracy for different log sequence embedding strategies. The triangles additionally

indicate mean values
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Table 7 Friedman test results (p-values). A level of significance α = 0.01 is used. In case of a significant

difference, the best strategy is denoted as l (Logkey2vec), f (F+T), and b (BERT)

DL encoder M1 M2 M3 All

CNN ≪ 0.001 (B) ≪ 0.001 (L) ≪ 0.001 (L) ≪ 0.001 (L)

BiLSTM ≪ 0.001 (B) ≪ 0.001 (B) 0.001 (B) ≪ 0.001 (B)

transformer 0.068 ≪ 0.001 (F, B) ≪ 0.001 (F, B) ≪ 0.001 (F, B)

LSTM ≪ 0.001 (B) ≪ 0.001 (L, B) ≪ 0.001 (L) ≪ 0.001 (B)

All ≪ 0.001 (l) ≪ 0.001 (L, B) ≪ 0.001 (B) ≪ 0.001 (B)

generated based on 360×4 data points since we have 360 combinations of dataset characteris-

tics and four DL encoders. Similar to Fig. 7, the triangle in each box indicates the mean value.

We now inspect the plots shown inside with the aim of answering our research questions.

The plots based on precision and recall are excluded since they draw similar conclusions.

Figure 8 shows that the BERT embedding strategy performs better than F+T and

Logkey2vec for all behaviour models in terms of mean values and smaller IQRs. This means

that, on average, for all DL encoders, the semantic-aware log sequence embedding using

BERT fares better than both F+T, which employs FastText but is not as informative as BERT,

and Logkey2vec, which solely relies on log template IDs and does not account for the seman-

tic information of templates.

To better understand the impact of log sequence embedding strategies on the performance

of different DL encoders, we additionally performed Friedman test as a non-parametric

test to compare the F1 score distributions of BERT, F+T, and Logkey2vec for each of the

four DL encoders. Table 7 reports the statistical test results. For example, the low p-value in

column M2 and row CNN indicates that there are statistically significant differences between

embedding strategies. In such cases, we employ a paired Wilcoxon test between each pair of

embedding strategies and compare their medians to identify the top-performing strategy(ies).

Fig. 9 Failure prediction accuracy of CNN-based model for different log sequence embedding strategies;

triangles indicate mean values
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These are represented between brackets as L (Logkey2vec), F (F+T), and B (BERT) in the

Table.

Interestingly, BERT is statistically better than or equal to F+T and Logkey2vec for all DL

encoders except the CNN-based encoder (i.e., the best-performing DL encoder as investigated

in § 6.1) and the LSTM-based encoder for M3. On the other hand, for the CNN-based encoder,

the best overall embedding strategy is Logkey2vec, as clearly observable in Fig. 9, depicting

the F1 score distributions of Logkey2vec, F+T, and BERT for the CNN encoder. In other

words, combining the CNN-based encoder and the Logkey2vec embedding strategy is the

best configuration of DL encoders and log sequence embedding strategies. Although, in

contrast to BERT, Logkey2vec does not consider the semantic information of log templates,

it accounts for the order of template IDs in each log sequence. Furthermore, Logkey2vec

is trained together with the DL encoder, while BERT is pre-trained independently from the

DL encoder. We suspect that such characteristics of Logkey2vec play a positive role when

combined with the CNN-based encoder. F+T presents the largest IQR and lowest mean and

median. This observation is consistent with the overall strategy comparison depicted in Fig. 8,

and similar rationales apply.

We note that BERT is still an attractive strategy for log sequence embedding when any

other encoder than CNN is used. Although BERT is considerably larger than Logkey2vec

in terms of parameters, using BERT does not require significantly more time and resources

than Logkey2vec and F+T since BERT minimises repeated calculations by mapping each

log template to its corresponding BERT embedding vector.

The answer to RQ2 is that the performance of the log sequence embedding strategies

varies depending on the DL encoders used. Although BERT outperforms F+T and

Logkey2vec overall across all encoders, Logkey2vec outperforms BERT when the

CNN-based encoder is used.

6.3 RQ3: Traditional ML

Figure 10 shows the boxplots of the failure prediction accuracy (F1 score) for the best

configuration of the DL encoder and the log sequence embedding strategy, i.e., the CNN-

based encoder and Logkey2vec, next to one of the best performing (Fernández-Delgado et al.

2014; Zhang et al. 2018; Liu et al. 2020), traditional ML-based failure predictor (RF), on the

datasets generated by the three behaviour models (M1, M2, and M3). Each box is generated

based on 360 data points since we have 360 combinations of dataset characteristics. Similar

to the previous boxplots, the triangle in each box indicates the mean value. We shall now

examine the provided plots aiming to address our research question.

In Fig. 10, the CNN-based encoder with Logkey2vec clearly achieves significantly higher

accuracy and robustness compared to RF, in terms of average accuracy and IQR, respectively,

regardless of the behaviour models used to generate the log datasets. RF relies on aggregat-

ing decisions from multiple trees which can limit its ability to capture intricate, non-linear

patterns of failures. In contrast, CNNs, as described in § 2.4.2, use convolutional layers to

automatically extract hierarchical features from embedded representations, combined with

pooling layers that reduce spatial dimensions, allowing CNNs to handle more complex pat-

terns. Additionally, as explained in § 5.2, the input of RF is an embedding vector rather

than an embedding matrix using TF-IDF, which is a template-ID-based strategy. The best

DL configuration also uses a template ID-based strategy, Logkey2vec. However, unlike TF-
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Fig. 10 Failure prediction accuracy of the best DL-based configuration (CNN with Logkey2vec) next to a

traditional ML-based configuration (RF); triangles depict mean values

IDF, Logkey2vec embeddings keep updating during failure predictor training; this enables

logkey2vec to learn the embeddings with respect to labels of the log sequences, see § 2.5.1.

The answer to RQ3 is that, using the best configuration of the DL-based failure pre-

dictor, i.e., the CNN-based encoder and Logkey2vec, results in significantly higher

accuracy and robustness (low IQR) compared to Random Forest, which is considered

one of the top traditional ML classifiers.

6.4 RQ4: Dataset Characteristics

Recall that there are 12 possible configurations for the DL-based architecture (i.e., four

DL encoders and three embedding strategies), each of which may exhibit varying perfor-

mances across different data set characteristics. Although CNN+L (CNN-based encoder

with Logkey2vec) is the best configuration overall based on RQ1 and RQ2 results, there may

be datasets where other configurations fare better. Therefore, it could potentially be informa-

tive to investigate each of the configurations in terms of their accuracy for different dataset

characteristics. However, many configurations clearly provide low accuracy for most of the

datasets and do not significantly outperform the other cases. So we first determined the best

configurations worth investigating across the 1080 datasets. Specifically, for each configura-

tion, we counted the number of datasets for which that configuration is among the best. We

defined a threshold r set to 0.01 to include all configurations with a difference in accuracy

value lower than the threshold r . This way, we could account for all high-performing con-

figurations. It turned out that only the following three configurations kept appearing among

the best configurations for almost all datasets4: CNN+L (CNN encoder with Logkey2vec),

CNN+B (CNN-based encoder with BERT), and BiLSTM+B (BiLSTM-based encoder with

4 There were only 72 out of 1080 datasets where the configurations other than the top three configurations

were among the best. However, not only these were very rare but their accuracy was too low to be useful.
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Table 8 Overview of the Three Best Configurations for DL-based Failure Prediction

Rank #Best (r = 0.01) Config Avg Med Min Max

1 866 CNN+L 0.962 1.0 0.0 1.0

2 667 CNN+B 0.936 0.997 0.0 1.0

3 627 BiLSTM+B 0.879 0.995 0.0 1.0

BERT). Note that the top three configurations remained the same for different threshold values

(r = 0, 0.05, 0.1). Table 8 provides more details about the three best configurations; column

“#Best (r = 0.01)” provides the number of instances where the confuguration is among the

best, and additional columns “Avg”, “Med”, “Min”, and “Max” show the average, median,

minimum, and maximum F1 scores for the configurations, respectively. Based on the above

observations, we focus our analysis of dataset characteristics on the three best configurations,

while providing the same plots for the rest of the configurations as supplementary material

in our replication package (see § 6.6).

Figure 11 shows the distributions of F1 scores according to different dataset characteristic

values for CNN+L, the best configuration overall. To save space, we have excluded the plots

for the second-best and third-best configurations from the paper as they were very similar to

Fig. 11 Failure prediction accuracy of the CNN-based encoder with Logkey2vec for different dataset charac-

teristics
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CNN+L, except for the maximum sequence length for BiLSTM+B, which will be discussed

separately later. However, all the remaining plots can be found in our replication package,

as previously mentioned. We discuss next how the failure prediction accuracy of CNN+L

varies with each of the dataset characteristics.

In Fig. 11a, we can see the impact of dataset size on the failure prediction accuracy; it is

clear that accuracy decreases with smaller datasets, regardless of the behaviour models used

to generate the log datasets. For example, when dataset size is 200, accuracy decreases below

0.7 in the worst case, whereas it always stays very close to 1.0 when dataset size is above

or equal to 5000. Since larger datasets imply more training data, this result is intuitive but it

clarifies data requirements for failure prediction.

Figure 11b depicts the impact of maximum LSL values (MLSL) on the failure prediction

accuracy. Compared to the impact of data set size, we can see that its impact is relatively

small. This implies that CNN+L works fairly well for long log sequence lengths of up to 1000.

We suspect that the impact of log sequence length could be significant for much longer log

sequences. However, log sequences longer than 1000 are not common in publicly available,

real-world log datasets (Le and Zhang 2022) as explained in Sect. 5.2.2. Nevertheless, the

investigation of much longer log sequences would be informative.

The relationship between failure percentage and failure prediction accuracy (F1 score) is

depicted in Fig. 11c. It is clear that, overall, the F1 score increases as the failure percentage

increases. This is intuitive since a larger failure percentage means more instances of failure

patterns in the training data, making it easier to learn such patterns. An interesting observation

is that the average failure prediction accuracy is above 0.9 even when the failure percentage

is 10%. This implies that CNN+L can cope well with unbalanced data.

Figure 11d shows the failure prediction accuracy for different failure pattern types. There

is no consistent trend across models M1, M2, and M3; Type-F (the corresponding language

is finite) is easier to detect than Type-I (the corresponding language is infinite) in M2 and

M3, whereas the opposite happens in M1. It is unclear why, in M1, detecting less complex

failure patterns (Type-F) is more difficult than detecting more complex patterns (Type-I). We

may not have defined failure pattern types in a way that is conducive to explaining variations

Fig. 12 Failure prediction accuracy of the BiLSTM-based encoder with BERT as a function of maximum

sequence length
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in accuracy and different hypotheses will have to be tested in future work with respect to

which pattern characteristics matter.

As mentioned earlier, BiLSTM+B shows a distinct result only for longer log sequences,

as depicted in Fig. 12. Unlike CNN+L shown in Fig. 11(b), larger IQR and lower average

values are clearly visible for longer log sequences in Fig. 12. This indicates that significantly

increasing the maximum length of log sequences decreases the failure prediction accuracy

of BiLSTM+B.

To further investigate the data set characteristics that work well with the three best con-

figurations, we built a classification tree predicting the best configuration for given dataset

characteristics. To do this, we first labelled the 1080 datasets with the three best config-

urations; specifically, each dataset was labelled with the top performer among the three

configurations. We then split the 1080 datasets into subsets of 720 (66.7%) and 360 (33.3%)

datasets for training and testing the classification tree, respectively. Since the training data

was imbalanced due to the superior performance of CNN+L for most datasets, we applied

higher weights to minority classes using Inverse Proportional Weighting (He and Garcia

2009) to address the class imbalance issue. We also performed Minimal Cost-Complexity

Pruning (MCCP) (Breiman et al. 1984b) to avoid over-fitting. Figure 13 shows the resulting

classification tree, where each non-leaf node captures a decision condition and each leaf node

the (predicted) best configuration for the conditions corresponding to the path from the root

to the leaf. Each leaf node also includes the number of samples in the leaf, as well as the

average (“avg”), median (“med”), minimum (“min”), and maximum (“max”) F1 score for

the predicted configuration. For example, the right-most leaf node indicates that CNN+L is

the best configuration when the dataset size is larger than 3000. A total of 540 of the 1080

datasets satisfy this condition, and we can expect a failure prediction accuracy of 0.998 when

using CNN+L.

The classification tree shows that dataset size and, to a lesser extent, failure percentage

play a pivotal role in determining the best configuration for the DL-based failure predictor.

Specifically, CNN+L is recommended for dataset sizes larger than 3000. However, for smaller

dataset sizes, if the failure percentage is lower than or equal to 15%, BiLSTM+B is the

recommended configuration. In other words, for dataset sizes lower than or equal to 3000

and failure percentages lower than or equal to 15%, BiLSTM+B performs better than CNN+L

Fig. 13 Decision Tree identifying the best configurations based on dataset characteristics
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and CNN+B. We suspect this result is due to BiLSTM+B’s higher capability in the presence

of highly imbalanced datasets. In contrast, if the failure percentage is above 15%, CNN+B

is recommended when the dataset size is lower than or equal to 350, while CNN+L is

recommended when the dataset size is higher than 350. In other words, for dataset sizes

lower than or equal to 3000 and failure percentages higher than 15%, CNN+B performs the

best. This can be attributed to the challenges posed by a small dataset for training logkey2vec

from scratch, leading to better semantic-enabled embeddings from BERT.

We additionally built regression trees for each of the three best configurations to further

investigate how their failure prediction accuracy varies according to dataset characteristics.

We applied the same approach used for pruning the classification tree above.

Figure 14 depicts the regression trees for CNN+L (Fig. 14a), CNN+B (Fig. 14b), and

BiSLTM+B (Fig. 14c). For example, in Fig. 14a, the left-most leaf node indicates that the

average failure prediction accuracy is predicted to be 0.516 if the dataset size is less than or

equal to 350 and the failure percentage is less than or equal to 7.5. Otherwise, the failure

average prediction accuracy is predicted to be 0.9.

From the regression trees, it is clear that dataset size and failure percentage are once again

the two main factors that explain variations in failure prediction accuracy. Both CNN+L and

CNN+B show similar results: the accuracy decreases significantly when the dataset size is

less than or equal to 350 and the failure percentage is less than or equal to 7.5. BiLSTM+B

also exhibits low accuracy in similar conditions (i.e., when both the dataset size and the

failure percentage are small), but it additionally shows a low accuracy when the maximum

log sequence length is higher than 750.

More practical implications and guidelines derived from the classification and regression

trees will be further discussed in Sect. 7.1.

Fig. 14 Regression Tree for the best configurations based on dataset characteristics in F1 scores
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Table 9 Comparison of Results from a Real-world Dataset (OpenStack_FP) with Synthesised Datasets with

similar characteristics

Dataset DS MLSL PF CNN + L

P R F1

SynthesisedM1
1000 500 20 0.987 1.000 0.993

SynthesisedM2
1000 500 20 0.932 0.965 0.9480

SynthesisedM3
1000 500 20 0.947 0.988 0.967

average 0.955 0.984 0.969

OpenStack_FP 876 468 21.46 0.974 0.974 0.974

The answer to RQ4 is that dataset size, followed by failure percentage, plays an

important role in the accuracy of DL-based failure predictors while LSL is important

only for some configurations. In contrast, failure pattern type does not have a clear

relationship with failure prediction accuracy.

Interestingly, failure predictors are very accurate (F1-score > 0.95) and robust

(I Q R < 0.01) when dataset size is above 350 or failure percentage is above 7.5%.

6.5 RQ5: Real-world Data

Table 9 shows the accuracy results of synthesized datasets alongside those of the real-

world dataset, OpenStack_FP, for the best the same DL-based configuration, CNN+L. The

“Dataset” column lists the datasets chosen for comparison. SynthesisedM1 , SynthesisedM2 ,

and SynthesisedM3 are the datasets generated from the M1, M2, and M3 behavioural mod-

els, with similar characteristics to OpenStack_FP in terms of dataset size, maximum log

sequence length, and percentage of failure, denoted by “DS”, “MLSL”, and “PF”, respec-

tively. “CNN+L” stands for the most effective configuration based on RQ1-3 results. For each

behavioural model, there are two dataset instances matching these three characteristics but

having different failure pattern types (Type-F and Type-I). The values of precision, recall,

and F1 score (denoted by “P”, “R”, and “F1”, respectively) are shown under the “CNN+L”

column, for a more detailed comparison. Since we do not have information regarding the

failure pattern types of OpenStack_PF, the table presents an average of the two synthesised

datasets in each row dedicated to Synthesised data. Furthermore, the fourth row shows the

average accuracy results from all synthesised behavioural models.

According to Table 9, the average F1 score for synthesised datasets shows a difference

below 0.01 with OpenStack_FP (0.969 vs 0.974). The precision values obtained on the

synthesised datasets are slightly lower than those obtained on OpenStack_FP, while the

recall values are slightly higher. The average difference amounts to 0.019 for precision and

0.010 for recall. To rigorously assess the significance of this difference, we performed the

Wilcoxon test between the accuracy results obtained on synthesised data and those obtained

on OpenStack_PF; for each test, the accuracy results from the synthesized datasets were

paired with the results from OpenStack_PF. All p-values for precision, recall, and F1 score

are far above 0.05, indicating that the differences between real-world and synthesized datasets

are statistically insignificant.
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The answer to RQ5 is that there is no significant difference between the accuracy

results obtained on comparable synthesised datasets and a real-world one (Open-

Stack_FP) when using the best configuration for failure prediction (CNN-based

encoder with Logkey2vec).

6.6 Data Availability Statement

The replication package, including the implementation, generated datasets with behavioural

models, and results, is publicly available (Hadadi et al. 2024).

7 Discussion

7.1 Findings and Implications

Our study leverages the main DL types (LSTM, CNN, and transformer), along with all

categories of LSE strategies (Logkey2vec, BERT, and hybrid strategy of FastText and TF-

IDF). In contrast to other studies mentioned in Table 1, the full configuration of DL encoders

and LSE strategies are evaluated. Moreover, instead of using a limited number of datasets,

using synthesized data enables us to control dataset characteristics to identify necessary

conditions for achieving high-accuracy models. Nonetheless, we also considered a real-

world dataset for failure prediction (OpenStack_PF) and applied it to the best failure predictor

configuration. This allows us to compare the failure prediction accuracy results obtained on

the synthesized datasets with those obtained on the OpenStack FP dataset.

Several major findings are reported in § 6. First, the CNN-based DL encoder fares the

best among different DL encoders, including the ones based on LSTMs, transformers, and

BiLSTMs. Second, the CNN-based DL encoder works best with the Logkey2vec embedding

strategy, although BERT fares better than Logkey2vec and the hybrid of FastText and TF-IDF

overall for all DL encoders. Third, compared to the leading traditional ML approaches, such as

Random Forest, the best DL-based failure predictor configuration yields significantly higher

accuracy and robustness. Fourth, although the CNN-based DL encoder and the Logkey2vec

embedding strategy are not the most recent techniques in their respective fields, interestingly,

their configuration (CNN+L) works best overall for failure prediction. For CNN+L, both the

size and the failure percentage of input log datasets significantly drive the failure prediction

accuracy, whereas the log sequence length and the failure pattern type do not. Similar trends

have been observed for the second-best configuration (CNN+B). However, for the third-best

configuration (BiLSTM+B), besides the above relations, MLSL increasing the maximum

length of log sequences significantly decreases the failure prediction accuracy.

Fifth, based on the analysis of § 6.4, we are able to provide comprehensive guidelines. In

general, for datasets larger than 3000, CNN+L is the recommended configuration. Conversely,

when dataset sizes are 3000 or less and the dataset’s failure percentage is at most 15%, the

preferred choice is BiLSTM+B. Regarding the expected accuracy, the accuracy of both

CNN+L and CNN+B significantly reduces if the dataset size is 350 or below, and the failure

percentage is up to 7.5%. While BiLSTM+B accuracy is directly affected by the maximum

log sequence length, accuracy further decreases when it exceeds 750. If the maximum log
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sequence is at most 750, BiLSTM+B significantly decreases when the dataset size is 350 or

below, similar to CNN+L and CNN+B, and the failure percentage is up to 15%.

The conditions driving failure prediction accuracy suggest practical guidelines. For exam-

ple, for a log dataset size below 350 and a failure percentage below 7.5%, failure prediction

using CNN+L will be inaccurate and cannot be trusted. In that case, one can increase either

the log dataset size or the failure percentage to build a better failure predictor. Although the

failure percentage is inherent to the system under analysis and might not be easy to control

in practice, collecting more log sequences during the operation of the system to increase the

dataset size is usually feasible.

Last but not least, using the best configuration, the accuracy results obtained on synthesised

and real-world datasets do not present a significant difference, hence further suggesting our

data synthesis approach is valid.

Below we discuss the practical implications of our findings for the main stakeholders:

AIOps engineers and software engineering researchers.

AIOps Engineers Proactive maintenance is an important part of AIOps engineering (Notaro

et al. 2021). Failure prediction is therefore a crucial part of alleviating the impact of failures.

In this study, the analysis of the best configurations of the failure prediction model described

in § 6.2 can guide engineers in choosing the most appropriate options when designing an

architecture for their data. Our guidelines, based on the decision and regression trees presented

in § 6.3, narrow the scope of possible design choices by decreasing the number of candidate

configurations based on the characteristics of the dataset. Furthermore, we remark that the

implementation of our modular architecture is available (see § 6.6), enabling AIOps engineers

to reuse our artifacts seamlessly.

Software Engineering Researchers In this paper, we use a modular architecture to effectively

study different DL architectures on failure prediction data. Since existing approaches apply

DL models with selective settings such as LSE strategies (Das et al. 2018, 2020), we propose

a novel approach to study configurations of LSE strategies and DL architectures that have

not been studied together before (see Table 1). We speculate this approach can further inspire

the adaptation of DL-based modular architectures in other studies in the field of AI for

software engineering. In addition, we use a controllable synthetic data generation algorithm

to generate labeled datasets with varying characteristics. Such datasets are crucial to obtaining

comprehensive and generalisable results when only a limited number of datasets are available

for assessing a new method. We believe the algorithm presented in § 5.3 can be adopted to

generate synthetic datasets tailored to specific requirements.

7.2 Threats to Validity

There are a number of potential threats to the validity of our experimental results.

Hyper-parameter Tuning of Models The hyper-parameters of failure predictors, such as opti-

mizers, loss functions, and learning rates, can affect the results. To mitigate this, we followed

recommendations from the literature. For the batch size and the number of epochs, as men-

tioned in § 5.2.4, we chose values for different combinations of dataset characteristics based

on preliminary evaluation results. Better results could be obtained with different choices.

Synthetic Data Generation Process Due to the lack of a method to generate the datasets sat-

isfying different dataset characteristics mentioned in § 5.3.1, we proposed a new approach,

with precise algorithms, that can generate datasets in a controlled, unbiased manner as dis-

cussed in § 5.3. To mitigate any risks related to synthetic generation, we provided proof of the

correctness of the algorithms and explained why it is unbiased during the generation process
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in § 5.3.6. To further support the validity of the generation process, in § 6.5, we compared

the results on actual datasets reported in the literature with those of the synthesised datasets

for corresponding key parameters (e.g., dataset sizes and failure percentage). Results show

to be remarkably consistent, thus backing up the validity of our experiments.

Timeliness of Failure Predictions Depending on the context, the timeliness of failure predic-

tion may impact the applicability of our DL models. Because the focus of our experiments is

on prediction accuracy, we have not investigated how early our DL models can accurately pre-

dict failures; we simply predict failures after processing all log messages (up to the moment

before the failure message occurs) within a log sequence. Investigating timeliness would

require entirely different experiments; for example, this can be done by varying the distance

between the last log message inputted to DL models and the occurrence of failures, either

in terms of the number of log messages or time difference. However, due to the objective

and design of our study, we use the entire log sequence before the failure for prediction,

meaning the distance between the last log message in the observation window inputted to

DL models and the failure log message is zero by design. We remark that for the real-world

OpenStack_FP dataset, which contains timestamps, the average time distance between the

last message before failure and the failure message is 1.87 s. However, interpreting whether

such a lapse is sufficient in practice requires to know the practical context in which the pre-

diction models are deployed. We acknowledge the limitations of our datasets and the need

to study the timeliness of failure prediction for DL models systematically in the future.

Behavioural Models and Failure Patterns The behavioural models and failure patterns used

for the generation of synthetic datasets may have a significant impact on the experimental

results. We want to remark that this is the first attempt to characterise failure patterns for

investigating failure prediction performance. To mitigate this issue, we carefully chose them

based on pre-defined criteria described in § 5.4 and provided a remark on its generalizability in

§ 5.4.3. Nevertheless, more case studies, especially considering finer-grained failure patterns,

are required to increase the generalizability of our findings and implications and, for that

purpose, we provide in our replication package all the artifacts required.

Possible Bugs in the Implementation The implementation of the DL encoders, the log

sequence embedding strategies, the dataset generation algorithms, and the scripts used in

our experiments might include unexpected bugs. To mitigate this risk, we used the replica-

tion packages of existing studies (Chen et al. 2021; Le and Zhang 2021) as much as possible.

Also, we carefully performed code reviews.

8 Conclusion

In this paper, we presented a comprehensive and systematic evaluation of alternative fail-

ure prediction strategies relying on DL encoders and log sequence embedding strategies.

We presented a generic, modular architecture for failure prediction which can be configured

with specific DL encoders and embedding strategies, resulting in different failure predic-

tors. We considered Logkey2vec, BERT, and a hybrid of FastText and TF-IDF, representing

three categories of log sequence embedding strategies. We also covered the main DL cat-

egories resulting in four DL encoders (LSTM-, BiLSTM-, CNN-, and transformer-based).

Our selection was inspired by the previously used DL models in the literature.

We evaluated the failure prediction models on diverse synthetic datasets using three

behavioural models inferred from available system logs. Four dataset characteristics were

controlled when generating datasets: dataset size, failure percentage, Log Sequence Length
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(LSL), and failure pattern type. Using these characteristics, 360 datasets were generated for

each of three behavioural models.

Evaluation results show that the accuracy of the CNN-based encoder is significantly higher

than the other encoders regardless of dataset characteristics and embedding strategies. Among

the three embedding strategies, pretrained BERT outperformed Logkey2vec and the hybrid

strategy overall, although Logkey2vec fared better for the CNN-based encoder. Compared

to the best traditional ML-based failure predictor (Random Forest), the best configuration

demonstrates significantly superior accuracy and robustness. The analysis of dataset char-

acteristics confirms that increasing the dataset size and failure percentage increases failure

prediction accuracy. In comparison, LSL is a significant factor only for specific configu-

rations, while the other factors (i.e., failure pattern type) did not show a clear relationship

with accuracy. Furthermore, the accuracy of the best configuration (i.e., CNN-based with

Logkey2vec) consistently yielded high accuracy when the dataset size was above 350 or the

failure percentage was above 7.5%, which makes it widely usable in practice. Finally, the

accuracy results obtained from the synthesized and real datasets are consistent.

As part of future work, we plan to further evaluate the best-performing configurations

of the failure prediction architecture on additional real-world log data to further investigate

the effect of other factors, such as log parsing techniques or data noise, on model accuracy.

As future research direction, we plan to assess the impact of more dataset characteristics on

log-based failure prediction. This notably includes different sources of data noises such as

varying degrees of mislabelled logs, log parsing errors, and evolving logs. The degree and

type of data noise are, however, dependent on the system of study and such noise may not

be significant on all datasets. Finally, following the discussion on the timeliness of failure

prediction and limitations of our datasets in § 7.2, when using real-world data, we also

plan to include additional evaluation metrics, such as lead time (Salfner et al. 2010) and the

number of log messages before the occurrence of a failure, to assess the accuracy of models

at predicting failures early on.
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