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Effective T-matrix of a cylinder
filled with a random two-
dimensional particulate

K. K. Napal, P. S. Piva and A. L. Gower

Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

 KKN, 0000-0003-2901-5655

When a wave, such as sound or light, scatters
within a densely packed particulate, it can be
rescattered many times between the particles, which
is called multiple scattering. Multiple scattering
can be unavoidable when trying to use sound
waves to measure a dense particulate, such as a
composite with reinforcing fibres. Here, we solve
from first principles multiple scattering of scalar
waves, including acoustic, for any frequency from
a set of two-dimensional particles confined in a
circular area. This case has not been solved yet,
and its solution is important to perform numerical
validation, as particles within a cylinder require
only a finite number of particles to perform direct
numerical simulations. The method we use involves
ensemble averaging over particle configurations,
which leads us to deduce an effective T-matrix for the
whole cylinder, which can be used to easily describe
the scattering from any incident wave. In the specific
case when the particles are monopole scatterers, the
expression of this effective T-matrix simplifies and
reduces to the T-matrix of a homogeneous cylinder
with an effective wavenumber k⋆. To validate our
theoretical predictions, we develop an efficient Monte
Carlo method and conclude that our theoretical
predictions are highly accurate for a broad range of
frequencies.

1. Introduction

(a) Ensemble averaging

Multiple scattering is unavoidable when using waves
to characterize a particulate composite, or designing
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metamaterials to control wave propagation. Furthermore, the number of particles in most
applications makes direct numerical simulations impossible for current computing power,
though there are some notable attempts [1,2]. Even if such simulations were possible, when
it comes to experimental measurements, the positions of the particles are impossible to know
for one particular sample. One way to avoid these problems is to use ensemble averaging.
That is, to take an average over all possible particle positions. In light or acoustic experiments
conducted for fluids and gases, this type of averaging occurs naturally when averaging over
time as the particles are rapidly moving around. That is, taking an average of the scattered
signal over time can be equivalent to an ensemble average.1 Assuming that ensemble averaging
is equivalent to averaging over time and space, which is often the case, is called the ergodicity
assumption [3]. Refer to [4–6] for work that compares the ensemble-averaged field approach
with the cases of one specific configuration of particles.

(b) What is known

The scenarios that are best understood are (i) waves in an infinite medium with no boundaries
[7,8] and (ii) plane waves incident on a half-space or plate filled with particles [6,9,10]. Both
scenarios have been considered to obtain effective wavenumbers [11–13]. Though we mention
the methods that use Lippmann–Schwinger for acoustics, they involve an extra integral that
is often omitted [14] and complicates the calculations. Our approach in this article is valid for
any type of scatterer and scalar waves. Both scenarios of using plane waves and an infinite
medium have several applications (typically when considering layered media such as planetary
atmospheres, layers in the ocean or soils), but one significant drawback is that it has been
very challenging to numerically validate the assumptions used for these methods. Both use
statistical assumptions, such as the quasi-crystalline approximation (QCA) [15] that is not based
on an asymptotic approximation. Validation is needed to establish the range of validity of
these assumptions. However, direct numerical simulations of scattering from a configuration of
particles for both planes and infinite media require a huge number of particles [16,17] or the
introduction of periodic boundaries, which can introduce artefacts [18].

(c) The cylindrical setting

The methods developed to describe the average plane wave propagating in a disordered
particulate plate or half-space can now be extended to other geometries [19]. The ideal scenario
to compare theoretical predictions with direct numerical simulations is to have cylindrical
particles inside a cylinder, as this reduces the problem to two dimensions and we need
only a finite number of particles for the direct numerical simulations. See figure 1 for an
illustration. This is the simplest case to perform numerical validation of a very general theory
[19]. Furthermore, we show in this work that the effective dispersion equation for the cylindri-
cal geometry is the same as the plane-wave case. So numerically validating the cylindrical
geometry will also serve as numerical validation of the dispersion equation for plane waves and
all geometries. We also note that it appears that the cylindrical setting has never been solved
from a first principles approach. The formulas we provide are also valid for any inter-particle
pair correlation. For a radiative transfer model of this setting, see [20].

1In ergodic systems, if enough time has passed, all physically possible states of the system will have occurred, and so that
taking an average over time is equivalent to averaging over all possible configurations.
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(d) Industrial applications

Beyond numerical validation, there are industrial applications that need a method to calculate
waves scattered from a cylinder with particles. Examples of cylinders filled with cylindrical
particles include concrete beams reinforced with iron, cables filled with wires or fibre-rein-
forced composite [21]. Applications include designing cylinders with exotic effective properties
or developing methods to measure the cylindrical particles [22,23]. In terms of measurement, it
is likely that more information can be extracted from waves scattered from a cylinder filled with
a particulate than just plane wave reflection from a plate filled with the same particulate.

(e) Effective properties

The most common approach to model the average scattering from, say, a spherical or cylindrical
region with particles is to assume the region is homogeneous with some effective properties
[24–30], and then use the standard boundary conditions such as continuity of displacement.
This approach is valid for low frequency [28] but for higher frequencies is incorrect in three
dimensions [19], and we demonstrate the same here for two dimensions in this work. To
obtain an accurate model for broad-range frequencies, the boundary condition needs to be
deduced from first principles, together with an eigensystem for the effective wavenumbers [19].
Although the process is more involved, the final expression for the average scattered wave from
a cylindrical region is simple: the average scattered wave can be calculated from an effective
T-matrix for any incident frequency, source and particle properties. We stress that without
deducing the results from first principles, as we do here, it would not be possible to just guess
the form of this effective T-matrix.

The mode to mode scattering
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Figure 1. Consider a circular region filled with sound-hard particles, illuminated with a modal source of the form

uinc = VN(r) as defined in equation (2.3), with N = 0 (left panel) or N = 3 (right panel). Both panels compare the average

scattered wave ⟨usc⟩ predicted by our effective wave method (EWM) with a brute force Monte Carlo (MC) approach. The MC

approach simulates the scattered field from either 1, M = 1, or 200, M = 200, configurations of particles and then takes the

average over these configurations. In general, the average scattered wave is given by equation (2.15). The left panel shows

that when using an incident wave uinc = V0(r), with radial symmetry, then the only scattered mode also has radial symmetry

after averaging. The right panel shows how a source with a 60∘ rotation symmetry also leads to a scattered wave with the

same symmetry.
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(f) Monopole scatterers

One somewhat surprising result we deduce is that if the particles scatter only monopole waves,
that is, waves that have radial symmetry, then the material as a whole behaves as homogeneous,
where the mass density is the same as the background, and the bulk density is given by a
simple formula. We deduce this for particles in a cylinder and hypothesize that it is true for any
material filled with monopole scatterers, even when including all orders of multiple scattering.
Beyond just curiosity, there are many particles that behave approximately like a monopole
scatterer, and therefore the simple formulas we deduced are appropriate. For example, in
acoustics void-like, particles are approximately monopoles for a broad frequency range, see the
Dirichlet case in figure 2. In elasticity, particles become approximately monopole when the bulk
modulus is much greater than the shear modulus [31]. Other cases include resonators such as a
split ring resonator [32].

(g) Overview of the method

After ensemble averaging over particle configurations within a cylindrical region, the system
inherits cylindrical symmetry. For example, if the source has radial symmetry, then the average
scattered field will also have radial symmetry. This is also true for sources with more general
rotational symmetry resulting in scattered fields of the same rotational symmetry (cf. figure
1). In this article, we take advantage of this mode-to-mode symmetry to analyse the general
behaviour of the random particulate material independently from the incident field.

After denoting with Vn and Un, the regular and outgoing cylindrical waves of order n (cf.
equation (2.3)), the cylindrical symmetry translates as follows: when the exciting source is Vn,
then the average scattered field is TnUn, where the complex number Tn only depends on the
properties of the random particulate cylinder (radius and properties of the particles). Since the
scattering problem is linear, the knowledge of the Tn allows us to describe the scattering from
any incident field, after decomposing the latter into the modes Vn. Having simple expressions
for Tn is crucial to help guide methods to characterize or design particulate materials. We do so
by using the effective wave method (EWM) approach [19]. Finally, we validate our results with
an adapted Monte Carlo (MC) method in which the rate of convergence is accelerated thanks to
the cylindrical symmetry.

(h) Overview of this article

In §2, we first introduce the statistics of the random particulate material and the required
notations for the ensemble averaging. We then define the T-matrix of the effective cylinder
whose exact formula depends on the solutions of the averaged Foldy–Lax equations.

The latter are solved in §3 using the EWM, which consists of finding solutions that are
isotropic waves with a complex wavenumber k⋆. The method leads to an eigenvalue problem
called the dispersion equation, whose eigenvalue provides k⋆.

In §4, we use the expression of the solutions of the averaged Foldy–Lax equations to deduce
a formula of the effective T-matrix. The latter is very simple when the particles are monopole
scatterers:

(1.1)
Tn = − Cn

Dn
with

Cn = kJn′ (kR~)Jn(k⋆R
~) − k⋆Jn(kR

~)Jn′ (k⋆R
~)

Dn = kHn′ (kR~)Jn(k⋆R
~) − k⋆Hn(kR

~)Jn′ (k⋆R
~)

,

where R~ is the radius of the region enclosing the centres of the particles and k is the wave-
number of the background medium. This result is remarkable because the above expression
corresponds to the T-matrix of a homogeneous acoustic cylinder of radius R~, sound speed
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c⋆ = ω/k⋆ and density ρ, which is equal to the background medium. Particles that are approxi-
mately monopole scatterers appear in mainly two scenarios: either small sound soft particles or
resonators [33]. For all these cases, the T-matrix being given by equation (1.1) shows us that the
effective wavenumber k⋆ suffices to describe the random material.

When the particles are not monopole scatterers, equation (1.1) is not exact. The exact formula
is given by

(1.2)Tn = −
∑
n′
Cn − n′Fn′

∑
n′
Dn − n′Fn′

,

where the Cn and Dn are the same as before, and the weights Fn are the eigenfunctions of the
dispersion equation, associated with the effective wavenumber k⋆.

For monopole scatterers, we have that (n′ = 0), and the above reduces to equation (1.1). We
note that often F0 is the largest term, which explains why equation (1.1) can give accurate
results for non-monopole scatterers, see for example, the numerical results for sound soft
(Dirichlet) particles shown in figure 2 in the low-frequency regime. In this same figure, we also
see how for sound hard particles (Neumann), which intensively scatter dipole moments, the
MC results closely match the formula in equation (1.2), whereas they do not match the formula
of the T-matrix for monopole scatterers.

2. Random particulate material

(a) Deterministic scattering from J particles

Here, we summarize some results for multiple scattering of acoustic waves, in the time-har-
monic regime, by a collection of J circular cylinders, referred to as particles, with axes aligned

Dirichlet
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Figure 2. Comparison of various methods to calculate the component T0 of the T-matrix of a cylinder filled with particles.

The solid red line is our effective waves method (EWM) (equation (1.2)), the black points are from a brute force MC method

and the dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (1.1)). The left

(right) graph shows the results for sound soft (hard) particles. In both cases, the general expression of the effective T-matrix

matches the MC results. The EWM-MA method only matches well with the MC for sound soft scatterers for low frequencies.

Both graphs were generated with a particulate volume fraction of n = 0.05 (portion area occupied by particles of radius

a = 1 inside the cylinder of radius R = 20).
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with the z-axis. The centre of the ith particle is identified by ri ∈ ℝ2 as shown in figure 3 and is
assumed to be confined in a region denoted by ℛi. This means that all particles are contained
inside the following set:

(2.1)ℛ := r ∈ ℝ2 : |r| ≤ R .

The propagation of waves in free space is governed by the two-dimensional Helmholtz
equation.2

(2.2)Δu + k2u = 0,

where Δ := ∂x2 + ∂y2 is the two-dimensional Laplace operator, and k ∈ ℝ is the wavenumber of the
homogeneous background. Consider the following basis of the solutions of Helmholtz equation
Vn and Un defined by

(2.3)

Un(kr) := Hn(kr)einθ ∀r ∈ ℝ2 ∖ {0}

Vn(kr) := Jn(kr)einθ ∀r ∈ ℝ2,

where (r, θ) are the polar coordinates of r, i.e. r = (rcos θ, rsin θ), Jn are Bessel functions and Hn

are Hankel functions, both of the first kind. The specific solutions Vn(kr) have the particularity
of being smooth while Un(kr) have a singularity at the origin and are outgoing solutions.

To analyse acoustic scattering, we follow the same procedure as in [19,34]. Both the incident
field uinc and the scattered field usc are solutions of equation (2.2). We assume that uinc is
smooth and regular in the region that covers the particles3, the scattered field has to be a sum of
outgoing fields from each particle centred at ri, as a result, we can write

(2.4)uinc(r) = ∑
n = − ∞

+∞
gnVn(kr),

(2.5)usc(r) = ∑
i = 1

J
∑

n = −∞

+∞
fn
i Un(kr − kri) .

For a known incident wave, its coefficients, gn ∈ ℂ, can be calculated via Bessel expansion

while the scattering coefficients, fn
i ∈ ℂ, are unknowns that can be determined by following the

multipole method [35]. The latter leads to the following system of equations:

(2.6)fn
i = Tn

i ∑
n′

Vn′ − n(kri)gn′ + Tn
i ∑
j ≠ i

∑
n′

Un′ − n(kri − rj)fn′
j

∀n ∈ ℤ, ∀i = 1…J,

where Tn
i  is the T-matrix of particle i, which can represent a wide range of particles [36].

To give an example, the expression of a T-matrix of a homogeneous particle with wavenum-
ber ki, density ρi and radius ai is given by

(2.7)Tn
i = −

ρikJn′ (kai)Jn(kiai) − ρkiJn(kai)Jn′ (kiai)
ρikHn′ (kai)Jn(kiai) − ρkiHn(kai)Jn′ (kiai)

⋅

The system of equations (2.6) totally determines the scattering coefficients fn
i , which allows to

solve the scattering problem from the J given particles. However, this result is not very useful in
practice for two main reasons: first, the position of the particles is often unknown, and second,
there can be a very large number of particles in most industrial applications [37]. The ensemble
average over all particle positions, that we summarize below, solves both these problems from
the computational standpoint.

2Time evolution of the harmonic waves follows the convention Re {u(r)e − iωt }.
3This is true for any source which originated from the region outside of where the particles are placed.
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(b) Particulate distribution

(i) Single particle distribution

We describe each particle, say particle i, with two random variables: the random variable ri,
whose values are the possible positions of the centre of particle i in space (ℝ2), and the random
variable λi, which describes all other properties of the particle (radius ai, density ρi, etc.). To set
ideas, we will assume that λi only describes the radius ai and ranges in the following set:

(2.8)S := [A−, A+],

where A− (resp. A+) is the minimal (resp. maximal) possible particle radius.
The values (in ℝ2) taken by ri depend on λi. For example, the values of ri have to be one

radius ai away from the boundary ∂ℛ, which completely contains all particles (cf. figure 3). In
this article, we assume that ri is distributed uniformly over the set ℛi(λi) defined by

(2.9)ℛi := {r ∈ ℛ : dist(r, ∂ℛ) > ai} .

This assumption translates to

p(ri | λi) = 1
|ℛi|

,

where p(ri | λi) is the probability distribution of ri conditional to λi, and |ℛi| is the area of
ℛi. Bayes theorem allows to specify the probability distribution p(ri, λi) of the pair of random
variables (ri, λi) with respect to the probability p(λi) of a single particle i to have properties λi:

(2.10)p(ri, λi) = p(ri|λi)p(λi) = p(λi)
|ℛi|

.

This equation represents the choice of a probability distribution that does not have any
preferential position ri for the single particle i, which means there is no agglomeration owing to
an external force acting on the particles.

Set-up of cylindrical particles inside a cylinder

r 2
•

r 1
•

r 3
•

r 4
•

R̃ = R − a
1

R

R1

O
•

a1

x

z

y

Figure 3. Illustration of a possible configuration of four particles. The particles are cylinders whose axes are aligned with the

z-axis. The position ri ∈ R
2
 of the ith particle is determined by the intersection of its axis with the plane xOy. The particles

are of radius ai and physically contained in a cylinder of radius R. In this specific example, all the particles have the same

radius ai = a1 and the centres ri are therefore confined in the same disc ℛ1 shown in green.
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(ii) Joint particle distribution

Each particle is described by two random variables (λi, ri), i = 1, …, J. In general, the particle
positions are correlated, for example, no particles can overlap. The most commonly used term
to describe inter-particle correlation is the pair correlation g, which satisfies (cf. [38, eqn 8.1.2]):

(2.11)p(r1; r2 |λ1; λ2) = g(r1, λ1; r2, λ2)
|ℛ1 | |ℛ2|

J
J − 1 ,

where on the left is the joint law of two-particle positions when their properties are known.
The pair correlation g describes how correlated any two particles are, when the positions

and properties of all other particles are unknown. For example, if g = 1 for all values of its
arguments then both ri and rj in the above are independent and uniformly distributed over ℛi

and ℛj, respectively (in the limit J ∞).
Finally, we introduce the density

(2.12)n(λi) := J
|ℛi|

p(λi) (number of λi  type particles per unit volume).

Then we derive the following useful relation:

(2.13)p(rj, λj|ri, λi) = p(rj, λj; ri, λi)
p(ri, λi)

= |ℛi|p(λj)p(ri; rj|λi; λj) = n(λj)
J − 1 g(ri, rj),

where we used equations (2.10)–(2.12).

(iii) The pair correlation

In this article, we consider that the particles have a distribution that is isotropic
and homogeneous in space. As a consequence, the pair correlation is of the form
g(ri, λi; rj, λj) = g(|rj − ri|, λi, λj). We assume the pair correlation is of the following form:

(2.14)
g(r, λ1, λ2) =

0, r < a12,
1 + δg(r, λ1, λ2), a12 < r < b12,
1, r > b12,

where g(r, λ1, λ2) = 0 when particles overlap, with a12 being the minimum allowed distance
between particles of type λ1 and λ2 (a12 ≥ a1 + a2). This form of the pair correlation moreover
assumes that at a certain distance b12 from each other, the particles become uncorrelated, that
is, g(r, λ1, λ2) = 1 for r > b12. This assumption will lead to analytic simplifications, as well as being
a good approximation for most disordered materials. A typical plot of the pair correlation (see
[39,40]) is illustrated in figure 4.

(c) Definition of the effective T-matrix

The expression of the scattered field in equation (2.5) can be simplified after using Graf’s
addition theorem (equation (A 1),ii) with x = kr and d = −kri

(2.15)usc(r) = ∑
n = − ∞

+∞
FnUn(kr),

(2.16)Fn := ∑
i = 1

J
∑

n′ = −∞

+∞
Vn′ − n(−kri)fn′

i .

Note that equations (2.15) and (2.16) are only valid for r > R, nevertheless, this is enough for the
definition of the effective T-matrix below. Taking the ensemble average of the equation above, as
defined in appendix B, leads to
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(2.17)⟨usc(r)⟩ = ∑
n = − ∞

+∞
⟨Fn⟩Un(kr), |r| < R .

Since the scattering problem is linear with respect to the incident field, ⟨Fn⟩ depends linearly on
the coefficients gn of the incident field (cf. definition of the incident field uinc, equation (2.4)):

(2.18)⟨Fn⟩ = ∑
N = − ∞

+∞
Tn,NgN (effective T-matrix definition) .

This relation defines the T-matrix T of the averaged material that connects the modes of the
incident field with the ones of the averaged scattered field. It allows us to describe the scattering
from any incident field, provided the coefficients gn in equation (2.4) are known.

In the specific case when the region where the particles are confined is circular, we have
Tn,N = 0 if n ≠ N (cf. appendix E), so that equation (2.17) becomes

(2.19)⟨usc(r)⟩ = ∑
n = − ∞

+∞
TngnUn(kr), |r| < R,

where Tn := Tn,n.
Computing Tn,N requires to compute ⟨Fn⟩. From equations (2.15), (B 1) and (B 3), we obtain

(2.20)⟨Fn⟩ = ∫
S
n(λ1)∫ℛ1

∑
n′

Vn′ − n( − kr1)⟨fn′⟩(r1, λ1) dr1dλ1 .

Here, we used equation (B 7) to substitute ⟨fn⟩(r1, λ1) = ⟨fn
1⟩(r1, λ1).

The function ⟨fn⟩(r1, λ1) needs to be determined before we can compute ⟨Fn⟩. In appendix B 2,
we show how to obtain the governing equation:

(2.21)⟨fn⟩(r1, λ1) = Tn(λ1)∑
n′

Vn′ − n(kr1)gn′

+ Tn(λ1)∑
n′
∫
S
n(λ2)∫ℛ2

Un′ − n(kr1 − kr2)⟨fn′⟩(r1, λ1)g(|r1 − r2 | , λ1λ2) dr2dλ2,

where we also used the simpler pair-correlation given by equation (2.14). Note that equation
(2.21) is also valid in the case of non-circular particles, as soon as the probability distribution

Radial pair-correlation function

pair correlation
hole correlation

3

2

1

0

0 1 2

a12 = 1 b12 = 5.25

3 4
r

g
(r

)

5 6

Figure 4. Typical plot of the pair correlation function. The pair-correlation g(r) is zero for r < a12 because particles cannot

overlap. The local minima (maxima) indicate that there is a distance r from one fixed particle, say at r1, where it is less

(more) likely to find other particles. Finally, assuming g(r) = 1 for r ≥ b12 means that a particle at r1 becomes uncorrelated

to particles that are further than b12. All variables are dimensionless so that a12 = 1.
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of the orientations of any particle in the (O,x,y) plane is uniform over [0, 2π] and independent
of all other particles (see [19] for a derivation in the three-dimensional case). Intuitively, the
particle averaged over all possible orientations behaves as a circular particle after averaging,
and only the diagonal terms Tn(λ1) of its non-diagonal T-matrix contribute to the resulting
governing equation.

In the next section, we use the EWM to solve equation (2.21). This method introduced in
[19] proved to be successful in the three-dimensional case and provides a closed formula for
⟨fn⟩(r1, λ1). This in turn allows us to compute ⟨Fn⟩ given by equation (2.20) and reach an explicit
formula for Tn,N by specifying gn = δn − N in equation (2.18), where δ is the Kronecker delta:

(2.22)δn = 1 if n = 0
0 if n ≠ 0 .

3. The effective wave method

To solve the general governing integral equation (2.21), we use the EWM [19] as summarized
below.

Overview of the EWM

The starting point is to assume that there exists k⋆ ∈ ℂ such that

(3.1)(Δ + k⋆2 ) ⟨fn⟩(r1, λ1) = 0, λ1 ∈ S, |r1 | < R1 .

This assumption will greatly simplify the governing integral equation (2.21), from which
we will be able to determine both k⋆ and ⟨fn,N⟩(r1, λ1). To summarize, the method has three
steps:

(i) Separate microstructure and boundary. The assumption made with equation (3.1) is used
in the governing equation (2.21) to derive two separate equations called the ensemble
wave equation and the ensemble boundary condition. The first one only depends on the
microstructure of the random material while, in contrast, the second one takes into
account the incident field and the shape of the random material, acting much like a
boundary condition.

(ii) The effective eigensystem. We decompose ⟨fn,N⟩(r1, λ1) in the basis of functions Vn(k⋆r1)
and substitute the decomposition into the ensemble wave equation. The coefficients
F(λ1) of the decomposition are then shown to be the eigenfunctions of an eigensystem
whose eigenvalue is k⋆.

(iii) The ensemble boundary condition. To determine the amplitudes of the eigenfunctions
F(λ1), we then use the ensemble boundary condition, which takes into account the
incident field and the shape of the random material.

(a) Separate microstructure and boundary

We follow the steps described above to determine the solutions ⟨fn⟩(r1, λ1) of equation (2.21).
The first step uses equation (3.1), and some algebraic manipulations shown in appendix C.1 to
rewrite the governing equation (2.21) into two separate equations:

(3.2)⟨fn⟩(r1, λ1) + ∑
n′ ∈ ℤ

Tn(λ1)∫
S

Jn′n(r1)
k2 − k⋆

2 − Kn′n(r1) n(λ2) dλ2 = 0 (ensemble wave equation),

(3.3)∑
n′

Vn′ − n(kr1)gn′ + ∑
n′
∫
S

ℐn′n(r1)
k2 − k⋆

2 n(λ2) dλ2 = 0 (ensemble boundary condition).
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The terms Jn′n(r1), ℐn′n(r1) and Kn′n(r1), respectively, defined in equations (C 6) and (C 3), involve
the function ⟨fn,N⟩(r1, λ1).

One of the key advantages of splitting the integral equation (2.21) into the two separate
equations above is that the ensemble wave equation (3.2) does not depend on the shape of the
region ℛ or the incident wave. As we will see below, the ensemble wave equation (3.2) can
be used to determine the effective wavenumber k⋆, which implies that k⋆ only depends on
the microstructure: the density of the particles n(λ1), their properties provided by the T-matrix
Tn(λ1) and the pair correlation g, which explicitly appears in the quantity Kn,n′(r1) defined in
equation (C 3). We further discuss how to interpret k⋆ in §4.5.

On the other hand, the ensemble boundary condition (equation (3.3)) acts like a boundary
condition and shows how the incident wave and material boundary affect the overall solution.

(b) The effective eigensystem

Since ⟨fn⟩(r1, λ1) satisfies equation (3.1), it can be decomposed into the modes

(3.4)⟨fn⟩(r1, λ1) = ∑
n1
Fnn1(λ1)Vn1(k⋆r1), λ1 ∈ S, |r1 | < R1,

where Vn1 is defined in equation (2.3).
The unknowns k⋆ and Fnn1(λ1) can be determined by substituting equation (3.4) into equation

(3.2). The details are shown in appendix C2 with the resulting equation being

(3.5)Fnn1(λ1) + ∑
n′n2

δn2 − n1 + n′ − nTn(λ1)∫
S
Nn′ − n

12 (k, k⋆)Fn′n2(λ2)n(λ2) dλ2 = 0,

where δn is defined by equation (2.22) and

(3.6)N l
12(k, k⋆) := 2πNl(ka12, k⋆a12)

k⋆
2 − k2 − 2π∫a12

b12
Jl(k⋆r)Hl(kr)δg(r)rdr,

(3.7)Nl(x, y) := xHl′(x)Jl(y) − yHl(x)Jl′(y) .

The above is a nonlinear eigenvalue problem, which is why we refer to k⋆ as an eigenvalue.
After calculating k⋆ we can calculate the eigenfunctions Fn′n2(λ1) by solving the linear system
of equation (3.5), though, in practice, it is far better to calculate both k⋆ and Fn′n2(λ1) using the
modal decomposition, as we do in §4.

(c) The ensemble boundary condition

The eigensystem equation (3.5) is not enough to fully determine the Fnn1, for instance, if Fnn1 is a
solution to the eigensystem then so is αFnn1 for any scalar α.

To fully determine Fnn1, we need to substitute equation (3.4) into the ensemble boundary
condition, namely equation (3.3). The details are shown in appendix D, the key results being
equations (D5) and (D6), which exploit the symmetry of the region ℛ2, when chosen to be a
cylinder. Combining these two equations after setting the radius R2 := R − a2 finally results in the
boundary condition:

(3.8)gN + 2π
k⋆

2 − k2 ∑
n′
∫
S
Fn′(N − n′)(λ2)NN − n′(kR2, k⋆R2)n(λ2) dλ2 = 0,

where Nl is defined by equation (3.6).
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4. An effective cylinder

(a) Modal decomposition of the problem

In this section, we exploit the rotational symmetry of the region defined by equation (2.1) in
which the particles are contained. Since equation (2.21) is linear with respect to gn, it can be
decomposed into simpler and independent equations: let ⟨fn,N⟩(r1, λ1) be the solution when
substituting gn = δN − n in equation (2.21), then

(4.1)⟨fn,N⟩(r1, λ1) = Tn(λ1)VN − n(kr1)

+ Tn(λ1)∑
n′

∫Sn(λ2)∫ℛ2
Un′ − n(kr1 − kr2)⟨fn′,N⟩(r1, λ1)g(|r1 − r2| , λ1, λ2) dr2dλ2,

then we can recover the solution for any incident wave by using

(4.2)⟨fn⟩(r1, λ1) = ∑
N
gN⟨fn,N⟩(r1, λ1) .

From the three-dimensional version of these effective equations [19], we know that equation
(3.5) can be reduced by using symmetry. We show how to do this for the modal decomposition
below, with the result being:

(4.3)⟨fn,N⟩(r1, λ1) = αNFn,N(λ1)VN − n(k⋆r1),

where αN ∈ ℂ is some amplitude that is introduced for later convenience. Below is the proof of
equation (4.3).

Proof. Using the rotational symmetry of the modal source, we simplify the form of the modal
solutions ⟨fn,N⟩(r1, λ1). To this end, we denote by Rϕ the rotation matrix of angle ϕ and replace r1

with Rϕr1 in equation (4.1):

(4.4)⟨fn,N⟩(Rϕr1, λ1) = Tn(λ1)VN − n(kRϕr1)

+ Tn(λ1)∑
n′
∫
S
n(λ2)∫ℛ2

Un′ − n(kRϕr1 − kRϕr2)⟨fn′,N⟩(Rϕr2, λ2)g(|r1 − r2 |)dr2dλ2,

where we changed the integration variable from r2 to Rϕr2, which is possible for any rotation as
ℛ2 is a disc. Then, from equation (2.3) we deduce the property

Un(Rϕr1) = Un(r1)einϕ and Vn(Rϕr1) = Vn(r1)einϕ,
using the latter in equation (4.4), and then multiplying both sides of the equation with

e−i(N − n)ϕ leads to

(4.5)⟨fn,N⟩(Rϕr1, λ1)e−i(N − n)ϕ = Tn(λ1)VN − n(kr1) +

Tn(λ1)∑
n′
∫
S
n(λ2)∫ℛ2

Un′ − n(kr1 − kr2)e−i(N − n′)ϕ⟨fn′,N⟩(Rϕr2, λ2)g(|r1 − r2 |)dr2dλ2 .

Now note that both ⟨fn,N⟩(Rϕr1, λ1)e−i(N − n)ϕ and ⟨fn,N⟩(r1) solve exactly the same integral
equation. So by assuming uniqueness, i.e. that there is only one solution to the above, we
conclude that

(4.6)⟨fn,N⟩(r1) = ⟨fn,N⟩(Rϕr1)e−i(N − n)ϕ,

for any r1 and ϕ. Let (r1, θ1) be the polar coordinates of r1, then, without loss of generality, we
then choose ϕ = −θ1, which leads to

(4.7)⟨fn,N⟩(r1, θ1, λ1) = ⟨fn,N⟩(r1, 0, λ1)e
i(N − n)θ1 .

Finally, because ⟨fn,N⟩(r1) satisfies a wave equation (3.1), the only possibility for it to satisfy
equation (4.7) is to be of the form given in equation (4.3). ∎
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(b) The modal dispersion equation

We can deduce a simpler effective eigensystem and dispersion equation by using the symmetry
equation (4.3). To start we substitute equations (C 8) and (4.3) into the modal decomposition in
equation (4.2) to obtain

(4.8)∑
n1
Fnn1(λ1)Vn1(k⋆r1) = ∑

N1
αN1gN1Fn,N1(λ1)VN1 − n(k⋆r1) .

Then, since Vn form an orthogonal basis of functions,

(4.9)Fnn1 = ∑
N1
δN1 − n1 − nαN1gN1Fn,N1 .

To simplify the effective eigensystem equation (3.5), we consider one mode at a time by taking
gN1 = δN1 − N, which used in equation (4.9) implies that we can substitute Fnn1 = δN − n1 − nαNFn,N

into equation (3.5). The result after some algebraic manipulations is

(4.10)Fn,N(λ1) + ∑
n′

Tn(λ1)∫
S
Nn′ − n

12 (k, k⋆)Fn′,N(λ2)n(λ2) dλ2 = 0.

The above equation is identical to the case of the eigensystem for plane waves [34] and matches
also the eigensystems for a single type of particle [12,41] when taking n(λ) = δ(λ − λ1). This result
is somewhat expected as the ensemble wave equation (3.2) does not depend on the incident
wave and material geometry, which also explains why the modal index N only appears in Fn,N

in the above.
Instead of solving equation (3.5), it is far simpler to solve the above and then write the

general solution in the modal form using equation (4.9). In practice, to solve equation (4.10),
we can discretize the integral over S as a set of reals {t1, …, tS}. Then define a block vector
F containing the entries Fn(ts) for n = −M, −M + 1, …,M − 1,M, for some finite M, and for
s = 1, …, S, so that the eigensystem becomes

(4.11)(I + M) ⋅ F = 0,

(4.12)where Mnn′, ss′(k⋆) = Tn(ts)Nn′ − n
12 (k, k⋆)n(ts′) .

The parameter k⋆ is then obtained by solving the equation (4.13)

(4.13)det[I + M(k⋆)] = 0.

Multiple wavenumbers. The dispersion equation (4.10) has infinitely many eigenvalues kp
with p = 1, 2, …. Consequently, ⟨fn⟩(r1) can more generally be written as a sum over all the
eigenvalues kp and their corresponding eigenfunctions [42], which leads to more accurate
solutions. However, only a small difference in comparison with using just the eigenvalue
with the smallest imaginary part is observed (cf. [19,41,42] for details). For this reason, and
for simplicity, we only account for the one wavenumber k⋆ in this article. See figure 5 for a
typical distribution of the many eigenvalues of equation (4.10).

(c) The modal ensemble boundary condition

To determine the αN that appears in equation (4.9), we need to use the ensemble boundary
condition. The simplest way to do this is again to take gN1 = δN1 − N in equation (4.9) and then
substitute the result into equation (3.8) to obtain
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(4.14)1 + 2παN
k⋆

2 − k2 ∑
n′
∫
S
Fn′,N(λ2)NN − n′(kR2, k⋆R2)n(λ2) dλ2 = 0,

which we can use to determine:

(4.15)αN = − k⋆
2 − k2

2π ∑
n′
∫
S
Fn′,N(λ2)NN − n′(kR2, k⋆R2)n(λ2) dλ2

−1
.

(d) The effective T-matrix

As discussed in §2(c), the effective T-matrix Tn,N can easily describe the average scattered wave
for any incident wave through:

(4.16)⟨Fn⟩ = ∑
N = −∞

+∞
Tn,NgN,

where the ⟨Fn⟩, given by equation (2.20), are the average coefficients of the waves scattered from
the whole cylinder ℛ. Note the above holds for any choice of gN and Tn,N does not depend on
gN.

To calculate Tn,N, we substitute the modal decomposition given by equation (4.2) into (2.20)
to obtain

(4.17)⟨Fn⟩ = ∑
N

gN∫
S
n(λ1)∫ℛ1

∑
n′

Vn′ − n( − kr1)⟨fn′,N⟩(r1, λ1) dr1dλ1 .

Comparing the above with the definition of the effective T-matrix given by equation (4.16), it is
clear that

Multiple effective wavenumbers

2.5

2.0

1.5

1.0

Im
 (

k p
a
)

Re (kpa)

k* ≈ 1.05 + 0.052

0.5

0.0
−6 −3 0 3 6

Figure 5. Eleven of the eigenvalues kp of equation (4.13) for any material filled with sound hard particles of radius a = 1

and a particle volume fraction of n = 0.15. Here, the frequency is such that ka = 1. Note that changing R does not affect

the eigenvalues kp as the dispersion equations (4.10) or (4.11) do not depend on the radius R. k∗ corresponds to the one with

the smallest imaginary part. The x-axis is the real part, and the y-axis is the imaginary part. The other wavenumbers have a

much larger imaginary part leading to evanescent waves inside the random material.
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(4.18)Tn,N = ∫
S
n(λ1)∫ℛ1

∑
n′

Vn′ − n( − kr1)⟨fn′,N⟩(r1, λ1) dr1dλ1 .

To calculate the above, we follow the same steps shown in appendix C. Specifically, we use
Green’s second identity equation (C 4), the regular expansion equation (4.3) and the orthogonal-
ity of the Vn functions to conclude that

(4.19)Tn,N = δN − n
2παn
k⋆

2 − k2 ∫Sn(λ1)∑
n′
Fn′,n(λ1)Qn − n′(kR1, k⋆R1)dλ1,

where R1 is the radius of the disc ℛ1 and we defined:

(4.20)Ql(x, y) := xJl′(x)Jl(y) − yJl(x)Jl′(y) .

Finally, we substitute αn given by equation (4.15), which results in

(4.21)Tn,N = − δN − n

∫
S
n(λ1)∑

n′
Fn′,n(λ1)Qn − n′(kR1, k⋆R1)dλ1

∫
S
n(λ1)∑

n′
Fn′,n(λ1)Nn − n′(kR1, k⋆R1) dλ1

⋅

We recall that the diagonal terms Tn,n of the effective T-matrix are denoted Tn in this article.
Note that once the effective T-matrix is known, the scattering from any incident field can be

computed with equation (2.19) after decomposing the incident field in modes as in equation
(2.4). For example, in figure 6, we have plotted the total pressure field u := uinc + usc resulting
from an incident plane wave and a point source.

(e) Monopole particles only

The effective T-matrix equation (4.21) resembles the T-matrix for a homogeneous cylinder, see
for example equation (2.7). In fact, it is a weighted average of the factors of a homogeneous
T-matrix, as explained in §1. From this observation, we see that if the particles are monopole
scatterers we obtain a significant simplification.

Let us assume here that the particles scatter only monopole waves, in which case the
scattered field given by equation (2.5) becomes

(4.22)usc(r) = ∑
i = 1

J
f0
iH0(kr − kri),

which leads to ⟨fn,N⟩(r1) = 0 if n ≠ 0 and, as a result of equation (4.3), Fn,N = 0 if n ≠ 0. Substitut-
ing this result into the formula of the effective T-matrix given by equation (4.21), and assuming
that the radius R1 of the region ℛ1 is the same for every type of particle λ1, we obtain:

(4.23)Tn,N
M = − δN − n

kJn′ (kR~)Jn(k⋆R
~) − k⋆Jn(kR

~)Jn′ (k⋆R
~)

kHn′ (kR~)Jn(k⋆R
~) − k⋆Hn(kR

~)Jn′ (k⋆R
~)

(monopole scatterers).

This corresponds to the T-matrix of a homogeneous cylinder of radius R~ = R − a, sound speed
c⋆ = ω/k⋆ and mass density ρ⋆ = ρ, where ρ is the density of the host medium (cf. equation (2.7)).
The situation of the scattering by monopole particles is illustrated in figure 7.
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5. Numerical results

(a) Data accessibility

The numerical results [43] presented in this section are produced with the open-source software
EffectiveTMatrix.jl [44] implemented in Julia. The package source code is also accessible on a
GitHub public repository4 where the specific script used to generate the data is available5.

4Repository: https://github.com/Kevish-Napal/EffectiveTMatrix.jl/tree/1.0.0
5Script: https://github.com/Kevish-Napal/EffectiveTMatrix.jl/blob/1.0.0/examples/RSPA/generate_data.jl

Average field for two different sources
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Figure 6. Average pressure field when the incident field is a plane wave (left) and a point source (right). The material is

made of sound hard particles of radius a = 1 confined in a disc of radius R = 20. The particle volume fraction is set to

n = 0.05. The frequency is such that ka = 0.1 and kR = 2.

Monte Carlo results: monopole particles
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Figure 7. Comparison of various methods to calculate the components T0 and T1 of the T-matrix of a cylinder filled with

monopole scatterers. The solid red line is our EWM (equation (4.21)), the black points are from the MC method (equation

(5.2)) and the dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (4.23)).

In this situation, EWM of course coincides with EWM-MA since the latter corresponds to EWM in the particular case of

monopole scatterers. All graphs were generated with particles of radius a = 1 inside the cylinder of radius R = 20, the volume

fraction is set to n = 0.1.
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(b) Optimized Monte Carlo simulations

We use a MC method to validate our theoretical results (equations (4.21) and (4.23)). To develop
an efficient MC method, we rely on the following symmetry of the modes:

(5.1)uinc(r) = JN(kr)eiNθ ⟨usc⟩(r) = TNHN(kr)eiNθ .

This result is easily obtained from equation (2.19) with the specific choice gn = δn,N, which
substituted into equation (2.18) leads to

(5.2)TN = ⟨FN⟩ .

In other words, TN can be numerically estimated by simulating the waves scattered from one
particle configuration at a time by using equation (2.6), and then taking the average of FN

defined by equation (2.16) over many different particles configurations.
To illustrate the efficiency of this MC method, we compare it with another method com-

monly used in the literature [38], which directly computes ⟨usc⟩. For this second method, we use
equation (2.5) to compute ⟨usc⟩(R, 0). Then, from equation (5.1), we can also compute TN with

(5.3)TN = HN
−1(kR)⟨usc⟩(R, 0) .

The two methods (equations (5.2) and (5.3)) are compared in figure 8. The standard deviation of
the mean of the second method is larger than the first one, resulting in a slower convergence.
The reason is that equation (5.3), in contrast to equation (5.2), includes all the modes of each
scattered field computed for a specific particle configuration:

(5.4)⟨usc⟩(R, 0) = ∑
n
FnHn(kR) .

Optimized Monte Carlo simulations
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Figure 8. Computation of T0 using the two different methods given by equations (5.2) (modal) and (5.3) (naive). We

computed 5000 realizations of these quantities for different configurations of particles, the plots on the top and bottom,

respectively, correspond to the real and imaginary parts of the results. The distribution of the results is reported on the

histograms on the left. The plots on the right correspond to the cumulative average of the realizations. Both methods

converge to the same limit; however, the modal method converges faster and presents a lower standard deviation of the

mean. The simulations were computed with particles of size a = 1 constrained in a cylinder of radius R = 20, frequency

ka = 1 and volume fraction of n = 0.05.
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While the terms n ≠ N of the sum vanish on average, they significantly contribute to the
standard deviation of the mean in equation (5.3).

(c) Validation of the effective waves method

We validate the EWM equation (4.18) against the MC method equation (5.2) for several
frequencies ω over an interval Ω, such that the dimensionless variable ka ranges from 0.05
to 1.5. To this end, we define the relative error, averaged over frequencies:

(5.5)ϵn := 1
|Ω| ∑

ω ∈ Ω

|Tn
MC(ω) − Tn

EWM(ω)|
|Tn

MC(ω)|
,

where Tn
MC(ω) is obtained following the MC method equation (5.2) and Tn

EWM(ω) following the
EWM equation (4.18). A few plots of Tn

MC(ω) and Tn
EWM(ω) are provided in figures 2, 9 and 10.

The values of ϵ0, ϵ1, ϵ2, ϵ3 and ϵ4 for the cases of sound soft and sound hard particles are reported
in tables 1 and 2.

The EWM equation (4.21) gives reliable results for a broad range of frequencies, including
high frequencies, provided that the volume fraction is not too high, as shown in figures 2, 7 and
9 the top graph of figure 10 and the first two rows of tables 1 and 2.

Figure 10 shows that the predictions of the EWM for monopole scatterers (equation (4.23))
closely match the MC predictions. So does figure 9 at low frequencies. This is expected, as
sound-soft (or Dirichlet) particles are known to behave like monopole scatterers [45] for low
frequencies. Figure 9 also shows that as the frequency increases we need to use the EWM that
includes higher order modes (or multi-poles) (equation 4.21) to obtain a good match with the
MC results. Figure 2 in the introduction also confirms these conclusions.

Finally, the accuracy of the EWM decreases as the volume fraction increases (tables 1 and 2,
figure 10). Several parameters influence the precision of the results when increasing the volume
fraction. First, a more precise pair correlation function, such as Percus–Yevick, should be used
when the volume fraction increases, while we only used the hole correction in our simulations.

Monte Carlo results: sound soft particles
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0.2 0.4 0.6 0.8 1.0
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Figure 9. Comparison of various methods to calculate the components T1 and T2 of the T-matrix of a cylinder filled with

sound-soft particles. The solid red line is our EWM (equation (4.21)), the black points are from the MC method (equation

(5.2)) and the dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (4.23)).

The general expression of the effective T-matrix matches the MC results. The EWM-MA method only matches well with the

MC for low frequencies. All graphs were generated with a volume fraction n = 0.05 of particles with radius a = 1 inside the

cylinder of radius R = 20.
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Second, the assumption equation (3.4) is not necessarily valid for densely packed particles, and
more effective wavenumbers (kp ≠ k⋆) are required, such as shown by the decompositions used

Accuracy of the method when increasing the volume fraction n
n = 0.1

n = 0.2

Dirichlet
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Figure 10. These graphs show similar plots as shown in figure 2 with increased volume fraction, n = 0.1 (top) and n = 0.2

(bottom). The solid red line is our EWM (equation (4.21)), the black points are from the MC method (equation (5.2)) and the

dashed blue line is our method when only monopole scattering is accounted for (EWM-MA) (equation (4.23)). The EWM-MA

method is expected to match the MC results only in the case of sound soft particles (Dirichlet) and at low frequencies. Overall,

the accuracy of EWM and EWM-MA for predicting MC decreases as the volume fraction increases. All graphs were generated

with particles of radius a = 1 inside the cylinder of radius R = 20.

Table 1. Relative errors ϵn are defined by equation (5.5) in the cases of sound hard particles. The particles are of radius 1 and

confined in a circular area of radius 20. The computations are mode for different volume fractions n = 0.05, 0.1, 0.2.

ϵ0 ϵ1 ϵ2 ϵ3 ϵ4

n = 0.05 2.66e−2 2.43e−2 2.33e−2 2.35e−2 2.27e−2

n = 0.1 6.69e−2 5.92e−2 6.21e−2 5.43e−2 8.51e−2

n = 0.2 1.34e−1 1.28e−1 1.24e−1 1.14e−1 1.19e−1
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in [19,42]. These multiple effective wavenumbers contribute to a boundary layer that has been
neglected in this present work and plays a more important role at higher volume fractions.

6. Conclusion

Main goal. Our main goal was to describe how an incident wave is scattered from a cylinder
filled with smaller cylinders, which we have called particles, that are placed in a disordered
but correlated way. We describe this correlation through the inter-particle pair correlation, see
equation (2.11). The literature so far has focused on plane waves scattered from a halfspace
or plate filled with a particulate [17]. There has been at least one paper on solving this sce-
nario, but used an ad hoc method, whereas here everything is deduced from first principles
making only two assumptions: such as the QCA [15], and expressing the average field as a
sum of effective waves, which has been shown to be the analytic solution [42]. One of the
key advantages of describing the scattering from a cylinder with two-dimensional particles is
that it is far easier to validate this scenario with direct numerical simulations. Validation is
still necessary as the theory requires the use of QCA, whose level of accuracy has not been
thoroughly investigated yet. Additionally, confirming this scenario also supports the accuracy
of the predicted effective wavenumbers for any material geometry [19].

Modal scattering. We used this method to simplify both the theoretical and MC simulations.
By leveraging all present symmetries, we solved for each polar mode of the incident wave
separately, which allowed us to streamline the validation process for this work. This simple, but
effective technique, leads us to an effective T-matrix given by equation (4.21) that can be used
to calculate the average scattered wave from any incident wave, see §3 for a brief overview.
We note that we were able to describe the scattered field without calculating the average
transmitted field. In future work, this may be interesting to do, for example, to clearly identify
when different effective wavenumbers are excited [17].

Effective T-matrix. The result of our theoretical work is summarized by the T-matrix
equation (4.21). Beyond using just QCA, to calculate this T-matrix, we also assumed that only
one effective wavenumber k⋆ is excited. This is true for a wide range of parameters, but it is not
always the case. In particular, it appears that very strong scattering at moderate frequencies can
trigger more than one effective wavenumber to be excited [17,19,41]. One possible extension to
our work is to include the effect of more than one effective wavenumber.

Monopole scatterers. One surprising result is that if the particles only scatter monopole
waves, then the effective T-matrix greatly simplifies and becomes equation (4.23). This form
is exactly the same as the T-matrix for a homogenous cylinder, one with constant material
parameters. We hypothesize that any material filled with monopole scatterers would, on
average, respond like a homogeneous material. Monopole scatterers are a good approximation
for many types of resonant particles [31]. Figure 9 compares the results for the monopole
scattering approximation with MC results for sound-soft particles, which does not assume the
particles scatter like monopoles.

Table 2. Relative errors ϵn are defined by equation (5.5) in the cases of sound soft particles. The particles are of radius 1 and

confined in a circular area of radius 20. The computations are mode for different volume fractions n = 0.05, 0.1, 0.2.

ϵ1 ϵ2 ϵ3 ϵ4

n = 0.05 6.74e−2 4.59e−2 5.40e−2 6.45e−2 7.45e−2

n = 0.1 4.58e−2 4.89e−2 5.43e−2 4.29e−2 6.36e−2

n = 0.2 3.07e−1 3.18e−1 2.40e−1 2.00e−1 2.35e−1
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Monte Carlo. Beyond deducing an effective T-matrix for a particulate cylinder, we also
developed an efficient MC method, which matched our theoretical predictions very accurately
(see figures 2 and 9). Our numerical validation was for a broad frequency range, but we did
not cover a broad range of parameters. Doing this would be valuable future work and could
help clearly identify the limits of QCA and different approximations for the inter-particle
pair-correlation.

A prototype for new materials. The setting we deduce is the ideal case to test new disor-
dered particulates. That is, to use exotic inter-particle pair-correlation to achieve effects such
as band gaps, or impedance matching. The scenario of a cylinder filled with two-dimensional
particles is ideal for testing new types of particles, and inter-particle pair-correlations, because
they can be easily validated with MC methods. When designing new materials with exotic
responses, and stretching the limits of the theory, we need to have a way to validate those
predictions. This article provides such a framework that we recommend for the advancement of
innovation in material designs.
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Appendix A. Bessel functions and translation matrices

Given two points x, y ∈ ℝ2, we have the following identities where d = y − x

(A 1)

(i) Vn(y) = ∑
n′ = − ∞

+∞
Vn − n′(d)Vn′(x), for all x,d ∈ ℝ2

(ii) Un(y) = ∑
n′ = − ∞

+∞
Vn − n′(d)Un′(x), for all |x| > |d|

(iii) Un(y) = ∑
n′ = − ∞

+∞
Un − n′(d)Vn′(x), for all |x| < |d| .

The above formulas are direct consequences of Graf’s theorem (see [35, Th. 2.11–2.12] for
instance).

Appendix B. Ensemble averaging

B.1. Definitions

Here we give a brief overview of ensemble averaging so that this article is more self-contained.
For more details, see [19,35] and the references within. To simplify computations, we represent
one particle configurations with:
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Λ = r1, λ1…rJ, λJ, Λ(1) = r2, λ2…rJ, λJ,

Λ(1, j) = r2, λ2, …, rj − 1, λj − 1, rj + 1, λj + 1, …, rJ, λJ .

Using these definitions, we define the ensemble average, and conditional ensemble averages, of
a quantity A, which can depend on the positions and properties of all the particles, as

(B 1)⟨A⟩ := ∫A(Λ) p(Λ) dΛ ⟨A⟩(ri, λi) := ∫A(Λ) p(Λ(i) | riλi) dΛ(i),

(B 2)⟨A⟩(ri, λi; rj, λj) := ∫A(Λ) p(Λ(i, j) | ri, λi; rj, λj) dΛ(i, j),

where the domain of integration for Λ is over all possible particle positions and properties. The
term ⟨A⟩(ri, λi; rj, λj) is the ensemble average of A conditional to (r1, λ1, r2, λ2).
Taking an ensemble average defined by equation (B 1) on both sides of equation (2.16) leads to

(B 3)⟨Fn⟩ = ∑
i = 1

J

∑
n′ = − ∞

+∞ ∫ ( − 1)n − n′Vn − n′(kri)⟨fn′
i ⟩(ri, λi)p(ri, λi) dridλi

= J ∑
n′ = − ∞

+∞ ∫ ( − 1)n − n′Vn − n′(kri)⟨fn′
1 ⟩(r1, λ1)p(r1, λ1) dr1dλ1

where we used the definition of conditional probability: p(Λ) = p(ri, λi)p(Λ(i)), the definition of

conditional average as in equation (B 2) to introduce the term ⟨fn′
i ⟩(ri, λi), and that particles are

indistinguishable.6 Finally, using equations (2.10) and (2.12) leads equation (B 3) to formula
(2.18).

B.2. Average governing equation

Here we briefly show how to reach the averaging governing equation by using just one
assumption, the QCA. For more details, see [19].
Taking the conditional average, defined by equation (B 1)2, of equation (2.5) with i = 1 gives

(B 4)

⟨fn
1⟩(r1, λ1) = Tn(λ1)∑

n′
Vn′ − n(kr1)gn′

+Tn(λ1) ∑
j ≠ 1

∑
n′
∫Un′ − n(kr1 − krj)fn′

j (r1, λ1)p(Λ(1) | r1, λ1) dΛ(1) .

We can simplify the above by using the definition of the conditional average defined by
equation (B 2) of fn′

j (r1, λ1; rj, λj), using equation (2.12), and that particles are indistinguishable to
obtain

(B 5)⟨fn
1⟩(r1, λ1) = Tn(λ1)∑

n′
Vn′ − n(kr1)gn′

+ Tn(λ1)∑
n′
∫
S
n(λ2)∫ℛ2

Un′ − n(kr1 − kr2)⟨fn′
2 ⟩(r2, λ2, r1, λ1)g(r1, λ1; r2, λ2)dr2dλ2 .

However, this equation is not a closed-form equation for ⟨fn
1⟩(r1, λ1), and an extra assumption is

required to proceed further.
A standard solution found in the literature to tackle the problem mentioned above is to use the
QCA, which is a standard closure approximation [46]. It is stated as follows:

(B 6)⟨fn
2⟩(r1, λ1; r2, λ2) ≈ ⟨fn

2⟩(r2, λ2), |r1 − r2| ≥ a12 (QCA).

See [34] for a brief discussion on this approximation.

6Said in another way, the variables of integration ri and λi are just dummy variables which can be all changed to r1 and λ1.
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Finally, we use that particles are indistinguishable, which implies that ⟨fn
1⟩(r1, λ1) = ⟨fn

2⟩(r2, λ2)
when r1 = r2 and λ1 = λ2 to substitute

(B 7)⟨fn
2⟩(r2, λ2) = ⟨fn⟩(r2, λ2) and ⟨fn

1⟩(r1, λ1) = ⟨fn⟩(r1, λ1),

into equation (B 5), which together with QCA given by equation (B 6) leads to the average
governing equation (2.19).

Appendix C. The effective waves method

C.1. Derivation of two ensemble equations

Here we show how to use the effective wave assumption to rewrite the governing equation (4.1)
into two separate equations: the effective wave equation and the effective boundary condition.
To achieve this, we define for y ∈ ℛ and a > 0 the set

D(y, a) := {x ∈ ℛ: |x − y| ≤ a} .

Using the decomposition of the pair correlation function given in equation (2.13), we split the
domain of integration in the governing equation (2.19) into two integrals: one over D(r1,a12),
another one over ℛ2 ∖ D(r1, a12) in the form

(C 1)⟨fn⟩(r1, λ1) = Tn(λ1)∑
n′

VN − n(kr1)gn′ + Tn(λ1)∑
n′
∫
S
n(λ2)∫ℛ2 ∖ D(r1, a12)Un′ − n(kr1 − kr2)⟨fn′⟩(r2, λ2)dr2dλ2

+ Tn(λ1)∑
n′
∫
S
n(λ2)∫D(r1, a12, b12)Un′ − n(kr1 − kr2)⟨fn′⟩(r2, λ2)δg(|r1 − r2 | , λ1, λ2)dr2dλ2,

where D(r1,a12, b12) := D(r1, b12) ∖ D(r1, a12) and the annulus D(r1,a12, b12) is completely contained
within ℛ2 when

(C 2)dist(r1, ∂ℛ2) ≥ b12 .

In this section, and in this article, we only solve equation (4.1) for r1 that satisfies the above. This
avoids the boundary layer [41,42], which greatly complicates the solution and is only needed
when there is a large particle volume fraction, moderate frequencies and strongly scattering
particles.
The last integral in equation (C 1) can be simplified by changing the variable of integration to
r = r2 − r1, which leads to the integral

(C 3)Kn′n(r1, λ2) := ∫D(0, a12, b12)Un′ − n( − kr)⟨fn′⟩(r + r1, λ2)δg(r, λ1, λ2) dr .

The first integral over r2 in equation (C 1) can be further simplified by using Green’s theorem
to replace the volume integral over ℛ2 ∖ D(r1, a12) by surface integrals: given any two function
smooth functions u, v which satisfy
Δu(r) + k⋆u(r) = 0 and Δv(r) + kv(r) = 0, over a set Ω we have that

(C 4)(k2 − k⋆2 )∫Ω
uvdr = ∫Ω

Δuv − uΔv dr = ∫∂Ω
∂νuv − u∂νv ds(r) .

With u(r2) substituted for ⟨fn′,N⟩(r2, λ2) and v(r2) substituted for Un′ − n(kr1 − kr2), we can use the
above to deduce:

(C 5)∫ℛ2 ∖ D(r1, a12)Un′ − n(kr1 − kr2)⟨fn′⟩(r2, λ2)dr2 = ℐn′n(r1) − Jn′n(r1)
k2 − k⋆2

,

where we defined
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(C 6)ℐn′n(r1) := ∫∂ℛ2
Un′ − n(kr1 − kr2)

∂⟨fn′⟩(r2, λ2)
∂ν2

−
∂Un′ − n(kr1 − kr2)

∂ν2
⟨fn′⟩(r2, λ2)dA2,

Jn′n(r1) := ∫∂D(0, a12)Un′ − n( − kr)
∂⟨fn′⟩(r + r1, λ2)

∂ν −
∂Un′ − n( − kr)

∂ν ⟨fn′⟩(r + r1, λ2)dA .

Finally, substituting equations (C 3) and (C 5) into the governing equation (2.19) gives

(C 7)⟨fn⟩(r1, λ1) = Tn(λ1)∑
n′

Vn′ − n(kr1)gn′

+ ∑
n′

Tn(λ1)∫
S

ℐn′n(r1) − Jn′n(r1)
k2 − k⋆2

+ Kn′n(r1) n(λ2)dλ2 .

The above now can be split into two separate equations by noting that the functions ⟨fn⟩(r1),
Jn′n(r1) and Kn′n(r1) satisfy the wave equation with wavenumber k⋆, while Vn(kr1) and ℐn′n(r1)
satisfy the wave equation with wavenumber k. Since solutions of the Helmholtz equation with
different wavenumbers are independent, see [19] for details, equation (C 7) can be split into
the ensemble wave equation (3.2) containing the terms with wavenumber k⋆ and the ensemble
boundary condition (equation (3.3)) containing the terms with wavenumber k.

C.2. The effective eigensystem

Here, we deduce a general eigensystem that can be used to determine the effective wavenumber
k⋆ and write ⟨fn⟩(r1, λ1) in terms of eigenfunctions.
Since ⟨fn⟩(r1, λ1) satisfies the wave equation (3.1), it can be decomposed into the modes

(C 8)⟨fn⟩(r1, λ1) = ∑
n1
Fnn1(λ1)Vn1(k⋆r1),

where Vn1 is defined in equation (2.3).
The unknowns k⋆ and Fnn1(λ1) can be determined by substituting equation (C 8) into (3.2),
which requires the term

(C 9)⟨fn⟩(r + r1, λ2) = ∑
n1n2

Fnn1(λ2)Vn1 − n2(k⋆r)Vn2(k⋆r1),

where the right side is a result of using Graf’s addition theorem (equation (A 1), i) in (3.4).
By substituting equation (C 9) in Kn′n(r1) (C 3), we can use the orthogonality of the cylindri-
cal Bessel functions to remove the sum over n2, because only the cases (n1 − n2) = (n − n′) are
non-zero.
Likewise, we can perform the same simplification by substituting equation (C 9) in Jn′n(r1) (C 6).
The simplifications result in

(C 10)Kn′n(r1) = 2πWn′ − n(k, k⋆)∑
n1
Fn′n1(λ2)Vn1 + n′ − n(k⋆r1), Jn′n(r1)

= − 2πNn′ − n(ka12, k⋆a12)∑
n1
Fn′n1(λ2)Vn1 + n′ − n(k⋆r1),

where we introduced the notations

(C 11)Wl(k, k⋆) := ∫a12

b12
Hl(kr)Jl(k⋆r)δg(r, λ1, λ2)rdr, Nl(x, y) := xHl′(x)Jl(y) − yHl(x)Jl′(y) .

Finally, substituting equation (C 10) in the ensemble wave equation (3.2), and again using the
orthogonality of the cylindrical Bessel functions, we reach equation (3.5) where the following
term appears:

(C 12)N l
12(k, k⋆) = 2π Nl(ka12, k⋆a12)

k⋆
2 − k2 − 2πWl(k, k⋆) .
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Appendix D. Boundary condition for effective waves

The eigensystem equation (3.5) is not enough to fully determine the Fnn1, to do so we need to
substitute equation (3.4) into the ensemble boundary condition equation (3.3). To achieve this,
the first step is to use Graf’s addition theorem (equation (A 1), iii) with x = r1 and y = −r2 to
obtain

(D 1)Un′ − n(kr1 − kr2) = ∑
n3

Vn3(kr1)Un′ − n − n3(−kr2) = ∑
n2

Vn2 − n + n′(kr1)U−n2(−kr2),

where we used the change of variable n2 = n + n3 − n′, and that |r1| §lt; |r2| because for ℐn′n the
variable r2 is on the boundary ∂ℛ2, whereas r1 satisfies equation (C 2). Substituting equation
(3.4) in ℐn′n defined by equation (C 6) and using the above equation (D 1) gives

(D 2)ℐn′n(r1) = ∑
n2n1

Fn′n1(λ2)ℬn1n2Vn2 − n + n′(kr1),

where

(D 3)ℬn1n2 = ( − 1)n2∫∂ℛ2
U−n2(kr2)

∂Vn1(k⋆r2)
∂ν2

−
∂U−n2(kr2)

∂ν2
Vn1(k⋆r2) dA2,

then substituting equation (D 2) in (3.3) leads to

(D 4)∑
n′

Vn′ − n(kr1)gn′ + ∑
n′n2n1

∫
S
Fn′n1(λ2)Vn2 − n + n′(kr1)

ℬn1n2

k2 − k⋆2
n(λ2) dλ2 = 0.

We can further simplify the above by using the orthogonality of the functions Vn to obtain

(D 5)gN + ∑
n′n1

∫
S
Fn′n1(λ2)

ℬn1(N − n′)

k2 − k⋆2
n(λ2) dλ2 = 0,

which holds for every N.
When all particles are in a disk, then ∂ℛ2 is a circle and the above simplifies. This is the only
case we completely resolve in this article. Let R2 be the radius of the disk ℛ2, then n2 = n1 in
equation (D 3), which reduces to

(D 6)ℬn1n2 = −2πδn1 − n2Nn1(kR2, k⋆R2),

where Nn1 is defined by equation (C 11). Substituting this into equation (D 5) leads to (3.8).

Appendix E. Elementary proof that the effective T-matrix is diagonal

We provide an elementary proof that T is diagonal when the particles are confined in a disk
of radius R. To this end, we consider the scattering from the modal source uinc

N  obtained for
gn = δn − N:
The notation Fn,N is the corresponding Fn to the specific incident field with gn = δn − N (compare

with equation (2.16)). We then denote by fn,N
i (σ) the resulting solution of equation (2.5) for the

specific configuration σ = r1, …, rJ. The rotation by angle ϕ of the particles r1, …, rJ corresponds
to another valid configuration (because the random material is cylindrical), for which the
solutions are given by

(E 1)fn,N
i (Rϕσ) = ei(N − n)ϕfn,N

i (σ) .

This tells us how the rotation of a configuration modifies the coefficient Fn,N, using equation
(2.16):
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(E 2)Fn,N(Rϕσ) = ∑
i = 1

J
∑

n′ = −∞

+∞
Vn − n′(kri)ei(N − n)ϕfn′,N

i (σ) .

Consequently,

(E 3)⟨Fn,N⟩ = ∫
σ
Fn,N(σ)p(σ) dσ = ∫

σ

1
2π ∫0

2π
Fn,N(Rϕσ)p(σ) dσdϕ = δn − N∫

σ
Fn,N(σ)p(σ) dσ,

where δn is defined by equation (2.20). Finally, we deduce

(E 4)Tn,N = δn − N∫Fn,N(r1, …, rJ)p(r1, …, rJ) dr1, …, drJ .

This analysis proves that only the diagonal terms of the effective T-matrix are non-zero and can
be estimated by Tn,n = ⟨Fn,n⟩.
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