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Abstract
Already threatened by deforestation, the Brazilian Cerrado—a complex and biodiverse 
tropical savannah that provides important ecosystem services—could experience cli-
mate warming of 1–5°C by 2100. This could negatively impact sexual reproduction 
(considered particularly sensitive to temperature stress) in native plant species, po-
tentially limiting the production of viable pollen, fruits, and seeds; however, such im-
pacts are largely unstudied in wild tropical species. To investigate the potential effects 
of higher temperatures on Cerrado species reproduction, developing inflorescences 
of common and widespread tree Byrsonima pachyphylla (Malpighiaceae) were pas-
sively heated in situ from an early bud stage (by 3–4°C during the daytime). Viability 
of pollen samples (analyzed through in vitro pollen germination and differential pol-
len staining) and fruit set (the proportion of hand-pollinated flowers that developed 
into mature fruit) were compared between heated and control (ambient temperature) 
inflorescences, hypothesizing that both would be lower in heated inflorescences. 
However, higher daytime temperatures had no impact on viable pollen production, 
suggesting a strong resilience to warming. Nevertheless, fruit set was significantly 
reduced, which could have serious implications for future species recruitment and 
potentially Cerrado community structure, insect and animal food chains, and human 
populations, especially if representative of other Cerrado species. To the best of our 
knowledge, this experiment is the first manipulative warming of Cerrado vegetation 
in situ. It provides initial insights into the effects that increasing temperatures could 
have on future reproductive success and demonstrates the importance of consider-
ing reproduction when evaluating the possible impacts of climate change on tropical 
ecosystems.
Abstract in Portuguese is available with online material.
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1  |  INTRODUC TION

The Cerrado, the second largest biome in South America (origi-
nally covering around 2 million km2; Ratter et al., 1997), extends 
from the southeastern border of Amazonia across much of Brazil, 
making it vital for maintaining large South American watersheds 
(Lima & da Silva, 2007). Although considered a tropical savannah, 
it comprises a range of vegetation types, from dense grassland 
to shrubland and woodland (Ratter et al., 1997), containing such 
high levels of species richness and endemism—while facing signif-
icant anthropogenic pressure—that it is categorized as a “hotspot” 
for biodiversity conservation (Klink & Machado,  2005; Myers 
et al., 2000). Nevertheless, historically undervalued, the Cerrado 
remains understudied, and less protected than the Amazon region 
(Murphy et  al.,  2016; Overbeck et  al.,  2015). Remaining intact 
vegetation is under immediate threat from agriculture-driven de-
forestation (Garcia & Ballester, 2016; Strassburg et al., 2017) and 
potentially climate change (Silva et al., 2019; Velazco et al., 2019). 
Regional climate models predict temperature increases of 1–5°C 
across the Cerrado biome by 2100 (IPCC, 2013), and significant 
temperature increases have already been detected (Hofmann 
et al., 2021).

High temperatures can impact many aspects of plant growth 
and function (Hasanuzzaman et  al.,  2013); one of the most 
temperature-sensitive developmental stages being sexual repro-
duction (Hedhly,  2011). As a species' ability to persist depends 
largely on continued reproduction and recruitment (i.e.,  produc-
ing, dispersing, and germinating seeds, and establishing seedlings), 
habitat suitability is partly determined by the environmental 
conditions required for these processes (the regeneration niche; 
Grubb,  1977). Changes in temperature can alter the timing and 
extent of flowering and fruiting events (reproductive phenology; 
Butt et al., 2015; Mendoza et al., 2017) and potentially take spe-
cies outside of their regeneration niche, limiting reproductive 
success (Rosbakh et  al.,  2018; Sage et  al.,  2015). Such changes 
can have further consequences for species interactions (e.g., 
with other plants, pollinators, herbivores, or seed dispersers; 
Butt et  al., 2015; Rabeling et  al.,  2019; Vilela et  al.,  2018), spe-
cies persistence, community structure, and ecosystem functioning 
(Brooker, 2006; Vilela et al., 2018). Investigating the potential im-
pacts of increasing temperatures on Cerrado species reproduction 
is therefore necessary to better predict the future composition 
and function of native plant communities, and perhaps strengthen 
the evidence base for minimizing climate warming.

How temperature affects reproduction has been extensively 
studied in crop species (often cultivated for their fruits and seeds). 
Elevated temperatures can inhibit floral bud initiation (Albrigo & 

Galán Saúco, 2004) or alter or accelerate floral tissue development 
(Distefano et  al.,  2018; Prasad & Djanaguiraman,  2014; Rodrigo 
& Herrero,  2002), adversely affecting pollination or ovule fertil-
ization and frequently leading to reduced crop quality or yield 
(Jagadish, 2020; Shafqat et  al.,  2021). While the heat-sensitivity of 
many stages of both male and female reproductive development—
from pre- to post-anthesis (flower opening)—has been demonstrated 
across a variety of species (reviewed in Lohani et  al.,  2020; Sage 
et al., 2015), male development has often been identified as the most 
vulnerable (Lohani et al., 2020; Pacini & Dolferus, 2016; Santiago & 
Sharkey, 2019). High temperatures can, for example, induce irregular 
development or degradation of male reproductive tissues or pollen 
grains (Bennici et al., 2019; Raja et al., 2019), particularly affecting mi-
crosporogenesis (early pollen development; Iovane & Aronne, 2022; 
Liu, Zhou, et al., 2023); disrupt the supply of water, nutrients, or me-
tabolites to tissues and developing pollen (Pacini & Dolferus, 2016; 
Paupière et al., 2014); or disturb reactive oxygen species homeosta-
sis, leading to oxidative damage (Djanaguiraman, Perumal, Jagadish, 
et al., 2018). Such effects can lead to lower quantities or viability of 
pollen grains released at anthesis or thermotolerance post-anthesis 
(Lohani et al., 2020; Paupière et al., 2014). Reductions in reproductive 
success—often measured as fruit set (the proportion of flowers that 
develop into fruit)—at high temperatures have therefore been largely 
attributed to losses in pollen viability leading to fertilization failure 
(Rosbakh et al., 2018; Sage et al., 2015).

In non-crop species, and particularly tropical species, the ef-
fects of temperature on reproduction are far less well studied. 
In situ warming experiments can provide valuable insights into the 
temperature responses of established plant communities (Ettinger 
et  al.,  2019), and several studies have documented warming-
induced changes in the reproductive phenology or output of wild 
temperate species (although complex and species-specific; De 
Frenne et al., 2011; del Cacho et al., 2013; Hovenden et al., 2007; 
Jacques et al., 2015; Kudo & Suzuki, 2003; Lambrecht et al., 2007; 
Liu et al., 2012; Marchin et al., 2015). However, such experiments 
focus predominantly on short-stature species (herbs and shrubs) as 
environmental manipulation is more challenging for larger woody 
species (trees; Chung et al., 2013). These are often studied instead 
as juveniles in controlled environments (Drake et al., 2019; Johnsen 
et al., 1995; Webber et al., 2005). Nonetheless, a recent global meta-
analysis of simulated warming experiments found evidence of an 
overall decline in fruit production under warming (Zi et  al., 2023), 
although no tropical studies were included.

Research on the reproductive responses of wild tropical species to 
temperature has focused mainly on phenological changes (e.g., Numata 
et al., 2022; Vilela et al., 2018), and studies on Cerrado species are 
largely limited to seed experiments (reviewed in Daibes et al., 2022) 
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or those utilizing ecological gradients (such as between the edge and 
center of vegetation fragments; Athayde & Morellato, 2014; Camargo 
et  al.,  2011; Melo et  al.,  2014; Vogado et  al.,  2016). Nevertheless, 
since high temperatures have been shown to negatively impact repro-
duction in a number of tropical tree crops (including peach, mango, 
date palm, Annona, and Citrus species; Alves Rodrigues et al., 2018; 
Distefano et al., 2018; Hedhly et al., 2005; Liu, Xiao, et al., 2023; Lora 
et al., 2011, 2012; Nava et al., 2009; Shafqat et al., 2021; Slavković 
et al., 2016; Sukhvibul et  al., 2000), it is plausible that wild tropical 
woody species, including those native to the Cerrado, would also be 
negatively affected.

To investigate how increasing temperatures might affect the 
reproduction of woody Cerrado species, we carried out a direct 
heating experiment in situ on inflorescences of native tree species 
Byrsonima pachyphylla A.Juss. (Malpighiaceae) using novel passive 
heating chambers. To the best of our knowledge, this was the first 
direct heating experiment attempted in situ on any native Cerrado 
vegetation. We hypothesized that inflorescences that developed 
at higher temperatures would: (a) produce pollen of lower viability 
than those at ambient temperatures (analyzed through two com-
plementary techniques of in  vitro pollen germination and stain-
ing); and (b) have lower percentages of fruit set (given manual 
pollination).

2  |  METHODS

2.1  |  Study site and species

This study was conducted between June and November 2019 in an 
area of Cerrado típico or “typical Cerrado” (a subcategory of Cerrado 
sensu stricto; Ribeiro & Walter, 2008) in the Bacaba Municipal Park 
reserve (14°42′28.8″ S, 52°21′03.9″ W) in Nova Xavantina, Mato 
Grosso, Brazil. Typical Cerrado is a dominant vegetation type of 
the reserve (Mews et al., 2011), comprised of tree and shrub wood-
land with 20%–50% tree cover of average height 3–6 m (Ribeiro 

& Walter,  2008). The climate is classified as Aw (Köppen system; 
Peel et al., 2007), with a pronounced wet (mid-October–April) and 
dry season, with peak temperatures coinciding with the end of the 
dry season (August–October; Figure  S5). The region is character-
ized by 1300–1500 mm annual precipitation and average monthly 
temperatures of 25°C (Brazilian Meteorological Service; Marimon 
et al., 2010), although it has experienced recent and rapid warming 
(Marimon et  al., 2020; Tiwari et  al.,  2021). According to the long-
term ERA5-Land dataset (Muñoz Sabater,  2019; data assimilation 
based dataset with 9 km resolution, see Supporting Information 
Appendix S1 for details), 2010–2020 mean annual daytime and night-
time temperatures locally were 28.6 ± 0.2°C (SD) and 24.6 ± 0.2°C 
respectively.

Byrsonima pachyphylla (also known by synonym Byrsonima 
crassa; Francener,  2023) is a widespread tree of the Cerrado 
biome (Bridgewater et al., 2004) and among the 10 most common 
species of the typical Cerrado vegetation in Bacaba Park (Mews 
et al., 2011). Its pollen and floral oils are collected by specialist pol-
linators (predominantly bees of the genera Centris and Epicharis; 
Boas et al., 2013); its fruits are consumed by animals, for exam-
ple, birds (Purificação et  al.,  2014) and to some extent humans 
(Passos,  2023); and its leaves and bark have medicinal proper-
ties (Guilhon-Simplicio & Pereira, 2011; Sannomiya et  al., 2005), 
making it both socially and ecologically important. Flowering can 
occur throughout the dry season, but peaks in July and August 
(Silvério & Lenza, 2010). The fruits begin to develop soon after 
flowering, maturing in November. Flowers are zygomorphic with 
five yellow petals, oil glands at the base of the calyx, and a diam-
eter of ~13 mm (Figure 1a); bisexual with ten stamens and three 
carpels; and borne on terminal, racemose inflorescences ~8 cm 
long (Figure 1c). Most flowers open in the morning around 06:00 h 
and are receptive for 1 day (Boas et al., 2013), changing color to 
orange and red on the days after anthesis. Byrsonima pachyphylla 
is self-incompatible (Boas et al., 2013), with stigmas covered by a 
thin cuticle that prevents pollen from adhering and germinating 
unless broken by pollinators.

F I G U R E  1 Byrsonima pachyphylla, 
showing (a) individual flower; 
(b) developing inflorescence at the stage 
at which the heating chambers were set 
up; and (c) inflorescence during flowering 
with yellow buds nearing anthesis, yellow 
flowers open on the day of anthesis, and 
orange and red flowers that have opened 
on previous days.

(a)

(b)

(c)
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2.2  |  Heating experiment

To heat inflorescences in  situ, we developed an elevated open-
topped chamber (25 × 25 cm) with a telescopic support structure 
(Figure S1b), designed to passively heat the air surrounding the in-
florescences (and developing flower buds) during sunny periods. 
Each chamber was comprised of two parts, a square base 75% 
covered with black polythene (part A; Figure S1a), and a transpar-
ent acetate upper section (part B; Figure  S1a), with the top left 
completely uncovered. See Supporting Information (Appendix S1) 
for a more detailed description and discussion of this heating 
methodology.

Five healthy, mature B. pachyphylla individuals were selected 
(>20 m apart; dimensions in Table S4), each displaying at least six 
inflorescences at the same, early developmental stage (Figure 1b; 
the earliest stage possible given delays initiating the experiment). 
Between June 12th and 18th, heating chambers were installed 
around three developing inflorescences per individual (treatment 
inflorescences; T1–T3). Three further inflorescences per individ-
ual were chosen as unheated controls (C1–C3), each physically 
close to a treatment (heated) inflorescence (although not on the 
same branch) to reduce variation in microclimatic variables (other 
than temperature) between corresponding treatment and control 
inflorescences.

2.3  |  Measurement of climatic variables

On each B. pachyphylla individual, temperature sensors (Maxim 
DS18B20+; accurate to ± 0.5°C) were placed at two treatment 
(heated) inflorescences and at their two corresponding control inflo-
rescences, while temperature and relative humidity (RH) were meas-
ured together (using Adafruit DHT22 sensors; accurate to ± 0.5°C 
and ± 2%–5% RH) at the third treatment inflorescence and its cor-
responding control. All sensors were housed in custom radiation 
shields (see Figure S1b). Data were recorded every minute.

2.4  |  Experimental temperatures

Between the initiation of heating and the end of flowering (ap-
proximately 8 weeks), control inflorescences experienced av-
erage daytime (6:30–18:30 h local time; BRT = UTC-3) and 
night-time (18:30–6:30 h) air temperatures of 29.4 ± 1.5°C (SD) 
and 18.7 ± 2.1°C respectively, reaching mean maximum (daytime) 
temperatures of 36.7 ± 2.1°C (Table S1). Treatment (heating cham-
ber) air temperatures correlated closely with controls (Figure  2a) 
but rose on average 2.7 ± 1.0°C higher in the daytime (Table S1). 
The strongest and most consistent period of heating (peak heat-
ing) occurred between 9:00 and 17:00 h each day, when treatment 
temperatures rose to 4.0 ± 1.4°C above controls (Table S1). Mean 
treatment temperatures were 32.1 ± 2.0°C in the daytime and 

36.8 ± 2.5°C during peak heating, reaching mean maximum tem-
peratures of 42.3 ± 2.9°C (Table S1).

Following flowering, temperatures rose seasonally throughout 
August towards the wet season (Figure  S4a; Table  S3), reaching 
mean daily maxima of 42.0 ± 2.4°C in September (controls). Despite 
increasing cloud cover, the chambers continued to produce a strong 
heating effect (Table  S3), exposing treatment inflorescences to 
even higher maximum temperatures of 47.4 ± 2.5°C on average in 
September (during fruit development).

According to the ERA5-Land dataset since 2010 (see Supporting 
Information Appendix S1 for details), 2019 was a warmer than av-
erage year (Figure S5). Furthermore, the standard deviation around 
monthly mean daytime temperatures (interannual variation) over the 
last 10 years was on average ± 0.9°C (and lower for the study period, 
June–September; Figure  S5). Therefore, the treatment chambers 
produced temperatures above those frequently experienced locally 
during the same period of previous years.

F I G U R E  2 Mean diurnal patterns of (a) temperature and (b) 
relative humidity (RH) for control and treatment inflorescences, 
with differences in temperature and RH calculated between the 
treatment inflorescences and their corresponding controls. Values 
averaged across every 5 min interval of each day of recorded data, 
between the initiation of heating and the end of flowering. Faded 
lines show mean diurnal patterns for each inflorescence.
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2.5  |  Pollen sampling and analysis

To investigate the effect that heating during floral develop-
ment had on B. pachyphylla pollen viability, pollen samples from 
treatment (heated) and control flowers were analyzed using 
two complementary techniques (detailed below): in  vitro pollen 
germination (successfully germinated pollen grains presumed 
viable) and differential staining of aborted and non-aborted pol-
len grains (non-aborted pollen grains presumed viable; Dafni & 
Firmage, 2000). Flowering began on June 24. On each day from 
July 3 to 19, pollen samples (anthers) were collected (before 
10:00 h and preceding hand-pollinations) from any experimental 
inflorescences displaying flowers at anthesis. From each of up to 
three newly opened flowers per inflorescence, two anthers were 
collected for analysis by pollen staining, and two for analysis by 
pollen germination. Although aiming to collect at least five repeat 
samples (on different days) from each inflorescence, variations in 
flowering resulted in 2–10 repeats per inflorescence (6 on aver-
age). Treatment flowers had undergone heating for 14–35 days (25 
on average) prior to sampling.

2.5.1  |  In vitro pollen germination

Prior to experiment initiation, a protocol for in vitro pollen germina-
tion was developed based on the hanging-drop method (Shivanna 
& Rangaswamy, 1992) and variations of the classic Brewbaker and 
Kwack  (1963) pollen germination medium and germination con-
ditions were tested and optimized for B. pachyphylla (Table  S5). 
Pollen germinated well at 30°C (as in some other tropical species; 
Hebbar et al., 2018; Reddy & Kakani, 2007; Youmbi et al., 2011). Pre-
hydration of pollen was not required.

During the experiment, each sample (anthers) taken for analy-
sis by germination was macerated with the germination medium 
(Table  S5) and 40 μL drops of each solution were transferred to 
petri dishes and inverted over moistened filter paper. By 12:00 h the 
same day, dishes were sealed with petroleum jelly and incubated at 
30°C in the dark for 24 h. Drops were then transferred to micro-
scope slides and observed under an Eclipse E200 microscope (Nikon, 
Tokyo, Japan) paired with a Nikon DS-Fi2-U3 camera system at 
100× magnification. At least four images (unique microscopic fields) 
were taken per sample (Figure S6a) and all grains were counted per 
image (mean of 51). Pollen grains were classified as germinated if 
possessing a pollen tube of length at least equal to the grain diam-
eter (Dafni & Firmage, 2000). Sample viability was estimated as the 
percentage of germinated grains in each image, averaged over all 
images per sample.

2.5.2  |  Differential pollen staining

Prior to experiment initiation, a modified version of Alexander's stain-
ing solution (Peterson et al., 2010) was optimized for B. pachyphylla 

pollen and local lab conditions (Table S6). During the experiment, each 
sample taken for analysis by staining was macerated with the staining 
solution and 30 μL of this mixture was transferred to a microscope 
slide, heated gently (protocol as in Peterson et al., 2010), and observed 
using the same microscope and camera system as above to differenti-
ate between aborted (cell walls stained blue/purple) and non-aborted 
(presumed viable; cell protoplasm stained orange/red) pollen grains 
(Figure S6b). At least four images were taken per sample, and all grains 
counted per image (mean of 134). Sample viability was estimated as 
the percentage of all grains per image that stained orange/red (non-
aborted), averaged over all images per sample. Image analysis (pol-
len grain classification and counting) was carried out manually using 
ImageJ software (Version 1.51; Rasband, 2018).

2.6  |  Hand-pollination and fruit set analysis

Every day during the flowering period (June 24–August 9) any flowers 
at anthesis on each of the experimental inflorescences were counted 
and hand-pollinated to provide them with an equal chance of receiv-
ing compatible pollen. The pollen for this was collected fresh each day 
from two newly-opened flowers on each of three non-experimental 
individuals of B. pachyphylla (six flowers in total), using the same three 
individuals throughout (located >80 m from the experimental individ-
uals). The pollen was mixed together using a thin paintbrush (mixture 
on the first day showing 78% viability analyzed by staining) and ap-
plied vigorously to break the stigmatic cuticle (necessary for fertiliza-
tion). Care was taken not to damage the flowers.

Following flowering, experimental inflorescences were contained 
within net bags (sold for agricultural fruit protection) to prevent fruit 
loss through falling or herbivory. Heating chambers remained in 
place. Mature fruits were collected and counted in November. Fruit 
set for each inflorescence was calculated as the percentage of polli-
nated flowers that developed into mature fruits.

2.7  |  Data analysis

Samples containing less than 200 pollen grains were excluded 
from further analysis due to low reliability. Reliability of the pol-
len analysis methods was evaluated by comparing viability results 
for each sample, estimated through germination and staining, using 
linear regression. For both the pollen germination and staining re-
sults, mean pollen viability for each inflorescence (15 control and 15 
heated treatment inflorescences) was calculated from repeat sam-
ple results, and averaged to estimate treatment-level results. Tree-
level (n = 5) means were calculated from the inflorescence results, 
weighted by the number of samples taken per inflorescence. Fruit 
set results were calculated at the inflorescence level and simply av-
eraged to estimate tree- and treatment-level results. Coefficients 
of variation (CV) were calculated for tree-level control results to 
quantify spread in pollen viability and fruit set values relative to 
their means.
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Due to the small sample sizes and highly variable tree-level re-
sults, paired Wilcoxon signed-rank tests were used to evaluate the 
differences between treatment and control results. As our hypothe-
ses were directional—that the heating treatment would induce losses 
in pollen viability and fruit set—we used one-tailed tests. Tests were 
repeated considering both inflorescences (n = 15) and trees (n = 5) 
as independent units, as although separate inflorescences on one 
tree are physically connected, uncertainty exists about the extent of 
autonomy of tree branches (Auzmendi & Hana, 2020). Additionally, 
Slavković et  al.  (2016) demonstrated that separate inflorescences 
on one tree can respond independently to different temperature 
treatments, supporting the idea that they can be considered as inde-
pendent reproductive units. To evaluate whether length of heating 
influenced treatment sample pollen viability, we examined the slope 
of regression between the two variables for each tree. All data anal-
yses were carried out in R version 4.1.1 (R Core Team, 2021).

3  |  RESULTS

3.1  |  Pollen viability

Pollen viability was variable and clearly influenced by the individual 
tree (Figure 3), with high CV in tree-level control results, whether 
estimated by pollen germination or staining analysis (39% and 38%, 
respectively). Pollen viability was generally lower when estimated 

through germination than through staining (Figure 3). Nevertheless, 
the viability estimates for each sample analyzed by both methods 
showed a strong linear relationship (R = 0.89, p < 2.2e−16; Figure S7), 
demonstrating their complementarity and providing confidence in 
the results when taken together.

Mean pollen viability for the control and treatment (heated) in-
florescences was 53.4% ± 4.8% (SE) and 53.9% ± 5.8%, respectively, 
when estimated by germination, and 72.8% ± 6.5% and 72.5% ± 6.6% 
when estimated by staining (Table 1). The heating treatment had no 
significant impact on pollen viability, whether estimated by germina-
tion or staining, and whether considering inflorescences (n = 15) or 
individual trees (n = 5) as independent units (all p-values >.5; Table 1).

One of the five trees studied showed a significant negative cor-
relation between heating length and treatment flower pollen viability 
(p < .01; Figure S8). However, the tree displaying a significant correla-
tion differed depending on the pollen analysis method (tree B for ger-
mination, E for staining; Figure S8) and all other relationships varied 
in strength and direction (Figure S8), suggesting no overall impact.

3.2  |  Fruit set

Fruit set was low in all inflorescences (maximum 52%) and influ-
enced by tree (CV of 90% in tree-level control results; Figure  4). 
Mean fruit set was 16.6% ± 4.1% (SE) in the control inflorescences 
and 8.0% ± 3.3% (more than halved) in the treatment (heated) 

F I G U R E  3 Pollen viability for the three control and three treatment inflorescences on each tree (A–E) based on in vitro pollen 
germination (left) and pollen staining (right) analyses. Tree-level control and treatment means (yellow diamonds) were calculated from the 
inflorescence values, weighted by the number of repeat samples taken per inflorescence.
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inflorescences (Table  1). This difference was significant whether 
considering inflorescences (p = .01, n = 15) or trees (p = .03; n = 5; 
Table 1) as independent units.

4  |  DISCUSSION

This study was the first direct investigation of the impacts of higher 
temperatures on the reproductive success of any Cerrado species. In 
line with mid-range predictions of future warming across the Cerrado 
(IPCC, 2013), our novel passive heating chambers effectively heated 
developing B. pachyphylla inflorescences and fruits by 3–4°C during 
the day, exposing them to daytime temperatures above those often 
experienced during the same period of previous years. Contrary to 
our first hypothesis, viable pollen production was unaffected by 
higher daytime temperatures during floral development. In contrast, 
fruit production was negatively affected by warming, which could 
have a significant impact on the success of B. pachyphylla reproduc-
tion and recruitment in a future, hotter Cerrado.

4.1  |  Pollen viability

Pre-anthesis temperatures above 25°C have been shown to disrupt 
viable pollen development in many species, including several tropi-
cal tree crops (Bennici et al., 2019; Distefano et al., 2018; Higuchi 
et al., 1998; Kozai et al., 2004; Lora et al., 2012; Nava et al., 2009). 
Although control temperatures during bud development in our study 
frequently rose above this threshold, all control inflorescences pro-
duced viable pollen (Figure 3). Furthermore, our elevated treatment 
temperatures unexpectedly had no impact on pollen viability. This 
suggests that, in local individuals of B. pachyphylla, male reproduc-
tive tissue and pollen grain development can be maintained at unu-
sually high temperatures (compared to previously studied species) 
and up to a very high threshold (>40°C).

The Cerrado experiences strong seasonal warming towards the 
wet season (Figure S5)—daily maxima in September 2019 reached 
~42°C—and fires are also common (Miranda et  al., 2009). Many 
native species are therefore physically and physiologically adapted 
to withstand extreme temperatures (Araújo et al., 2021; Simon & 
Pennington, 2012), which could explain why heating of 3–4°C did 
not impact pollen development. It is also possible that B. pachy-
phylla individuals have developed an effective heat stress response 
and acquired thermotolerance following previous exposure to 
extreme temperatures (Giorno et al., 2013; Qu et al., 2013). Our 
heating treatment may have activated elements of this response in 
the treatment inflorescences during floral development, prevent-
ing damage, and maintaining physiological homeostasis (and viable 
pollen production; Raja et al., 2019; Rieu et al., 2017).

Alternatively, aspects of our heating methodology may have 
mitigated its impact on pollen viability. Reproductive development 
is energy-demanding, relying on foliar photosynthesis and metab-
olite transport (Liu et al., 2021), processes which can be disrupted 
by high-temperature impacts on vegetative or reproductive tissues 
(Ferguson et al., 2021). While we chose to heat only inflorescences 
to allow pairwise comparisons between treatment and control inflo-
rescences on the same tree (having anticipated high variability in pol-
len viability and fruit set values at the tree level; Augspurger, 1983; 
Melo et  al.,  2014), this also excluded any potential effects of 
heating vegetative tissues from the experiment. Furthermore, 

Pollen viability analyzed by

Fruit setGermination Staining

Controls 53.4 ± 4.8 72.8 ± 6.5 16.6 ± 4.1

Treatments 53.9 ± 5.8 72.5 ± 6.6 08.0 ± 3.3

Differences 00.6 ± 2.1 −0.4 ± 1.4 −8.5 ± 3.6

n = 5 p = .69
V = 6
R = .18

p = .59
V = 7
R = .06

p = .03**
V = 15
R = .91

n = 15 p = .70
V = 51
R = .13

p = .72
V = 50
R = .15

p = .01**
V = 89
R = .59

**Strongly significant result (p < .05).

TA B L E  1 Mean values of pollen 
viability and fruit set (% ± SE) for 
the control and treatment (heated) 
inflorescences, including the mean 
differences between the treatment 
inflorescences and their corresponding 
controls; showing the results of paired 
Wilcoxon signed-rank tests (p, V, R; one-
tailed) used to evaluate the significance 
of these differences, considering either 
trees (n = 5) or inflorescences (n = 15) to be 
independent units.

F I G U R E  4 Fruit set for the three control and three treatment 
inflorescences on each tree (A–E).

0

10

20

30

40

50

A B C D E
Tree

Fr
ui

t S
et

 (%
)

Mean Control Treatment

 17447429, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/btp.13359 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [30/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 13  |     WERKMEISTER et al.

elevated night-time temperatures (alone) can impact pollen viability 
(Djanaguiraman et al., 2013) but were unattainable through passive 
heating. Continuous heating of entire trees might therefore have 
elicited a different response in pollen viability. Nevertheless, we can 
still infer that daily exposure of B. pachyphylla inflorescences to very 
high maximum temperatures did not disturb reproductive tissue de-
velopment enough to disrupt pollen development, or indeed metab-
olite transport from vegetative tissues.

It is also possible, however, that the initial and most temperature-
sensitive stages of pollen development (namely microsporogenesis; 
Hedhly,  2011; Sage et  al.,  2015) were unaffected by our heating 
treatment. While treatment inflorescences were heated from an early 
stage, we could not commence heating entirely prior to bud devel-
opment and the timing of microsporogenesis in B. pachyphylla is un-
known. However, as racemose inflorescences develop successionally, 
buds that opened later in the experiment were heated from an earlier 
developmental stage. Nevertheless, length of heating had no clear 
impact on treatment sample viability (Figure S8), indicating that the 
timing of heating initiation did not reduce its impact on pollen devel-
opment. We can therefore surmise that viable pollen development in 
B. pachyphylla is indeed resistant to very high temperatures.

As Nova Xavantina is at the higher end of temperatures experi-
enced within the Cerrado (Araújo et al., 2021), our results suggest that 
pollen viability of B. pachyphylla in other areas will not be affected 
by increasing daytime temperatures for some time. Sustained pollen 
viability could be advantageous for the continued reproductive suc-
cess of B. pachyphylla—and nutrition of its associated pollinators (Boas 
et al., 2013; Yeamans et al., 2014)—into the future as temperatures 
increase. This is especially true considering the possibility of plant-
pollinator mismatches or potential reductions in pollen availability due 
to phenological changes and the impacts of further habitat fragmenta-
tion and climate warming on pollinators themselves (Melo et al., 2014; 
Gérard et al., 2020; Giannini et al., 2012; Rabeling et al., 2019).

4.2  |  Fruit set

Agreeing with our second hypothesis, higher daytime temperatures 
negatively impacted fruit set in B. pachyphylla, as reported in a range of 
crop species (Lohani et al., 2020; Sage et al., 2015; Shafqat et al., 2021) 
and in keeping with the trend found in previous non-crop temperature 
manipulation studies (Zi et al., 2023). A lack of viable pollen can lead 
to low fruit set (Knight et al., 2005); however, hand-pollination of all 
experimental flowers using a mixture of fresh conspecific pollen (col-
lected daily from multiple non-experimental individuals) should have 
provided surplus viable, compatible pollen to each.

Nevertheless, high temperatures during pollination can limit 
germination of viable pollen on the stigma or growth of the pollen 
tube, preventing fertilization and fruit set (Distefano et  al., 2018; 
Liu, Xiao, et  al.,2023; Sukhvibul et  al.,  2000). Although B. pachy-
phylla pollen germinated readily in  vitro at 30°C (high for many 
studied species; Beltrán et al., 2019; Sage et al., 2015), experimen-
tal inflorescences regularly experienced temperatures above 30°C 

during flowering, potentially limiting pollen germination (or tube 
growth) in vivo. Treatment inflorescences—which experienced high 
temperatures more often and to a greater degree than controls 
(Figure  S3)—could have been impacted more strongly, leading to 
their lower fruit set. However, pollen germination and tube growth 
in several tropical species can persist (although limited) at tempera-
tures above 40°C (Hebbar et al., 2018; Kakani et al., 2002, 2005; 
Mog et al., 2023). Furthermore, pollen germination is thought to be 
less sensitive to temperature stress than pollen development (Chu & 
Chang, 2022; Distefano et al., 2018; Higuchi et al., 1998), which we 
have shown was resistant to the treatment temperatures. This might 
suggest that reduced fruit set under heating resulted from impacts 
on female development rather than reduced pollen germination.

Male reproductive development is generally considered more 
sensitive to high temperatures than female (Hedhly, 2011; Rosbakh 
et al., 2018); nevertheless, female tissues have been found to be more 
sensitive than pollen in some species (e.g., pearl millet and peach; 
Djanaguiraman, Perumal, Ciampitti, et al., 2018; Gupta et al., 2015; 
Hedhly et al., 2005; Kozai et al., 2004). High temperatures can po-
tentially disrupt the timing of anthesis or the development of female 
tissues, resulting in poorly developed structures; reduced stigma 
receptivity, ovule longevity, or pollen tube attractants; imbalances 
in reactive oxygen species and important hormones; impaired me-
tabolite provisioning; or disruption of complex male/female interac-
tions (Hedhly, 2011; Wang et al., 2021). Individually or collectively 
such impacts can cause reductions in fruit and seed development, as 
observed in several woody tropical and sub-tropical crops (Benlloch-
González et al., 2018; Hedhly et al., 2003, 2005; Nava et al., 2009; 
Rodrigo & Herrero, 2002). A lack of evidence of metabolite limita-
tion during pollen development (discussed earlier) suggests that 
reproductive tissues were not damaged to an extent that impaired 
metabolite transport. However, being unable to test the thermal 
thresholds for B. pachyphylla pollen germination, and having not 
performed microscopic investigation of experimental flowers (e.g., 
examining ovule viability or pollen tube growth in vivo), we cannot 
identify definitively which tissues or development stages were most 
affected to cause the observed reduction in fruit set.

While the mechanism remains undetermined—and although we 
observed no impact on viable pollen production—our results suggest 
that B. pachyphylla will experience a decrease in fruit production 
under increasing daytime temperatures. Furthermore, although un-
achievable given our methodology, we anticipate that elevated night-
time temperatures will intensify these negative impacts of warming 
(Echer et al., 2014; McAusland et al., 2023). This could have serious 
repercussions for reproductive success and recruitment into the fu-
ture as the climate of the Cerrado becomes hotter and drier (Hofmann 
et  al.,  2021), especially considering fruit set in our hand-pollinated 
control inflorescences was already low. Declines in fruit and seed 
production could also limit B. pachyphylla's ability to disperse and mi-
grate in the face of changing environmental conditions (McNichol & 
Russo, 2023), with potential consequences for species persistence, 
and knock-on effects for associated animal and insect species (Butt 
et  al.,  2015; Purificação et  al.,  2014; Rabeling et  al.,  2019), which 

 17447429, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/btp.13359 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [30/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9 of 13WERKMEISTER et al.

includes humans (Guilhon-Simplicio & Pereira, 2011; Passos, 2023). 
Such impacts may be compounded by increased fragmentation 
of suitable habitat (further limiting reproductive success; Melo 
et  al.,  2014), localized heating due to land use change (Rodrigues 
et  al.,  2022), and additional effects of warming and fragmenta-
tion, for example, on reproductive phenology or pollinator species 
(Gérard et al., 2020; Giannini et al., 2012; Rabeling et al., 2019; Vilela 
et al., 2018). Furthermore, higher temperatures are likely to act both 
during and after fruit and seed production and dispersal, potentially 
affecting not only the quantity and quality of seed produced, but the 
longevity and germinability of seeds in the seed bank (well-studied 
in comparison; Daibes et  al.,  2022), and seedling establishment 
(Marimon et al., 2020; Nottingham et al., 2023), further exacerbating 
their effects on successful reproduction and recruitment.

As limited to one species, this study provides only an initial insight 
into the potential impacts of higher temperatures on Cerrado species 
reproduction. However, B. pachyphylla (and Byrsonima as a genus) is 
common and widely distributed throughout the Cerrado (Bridgewater 
et al., 2004; Ratter et al., 2003) giving our findings widespread im-
portance. Cerrado species already show low levels of fertility and 
fruit set (Athayde & Morellato, 2014; Melo et al., 2014; Montesinos 
& Oliveira, 2015), and if reduced fruit set under warming is replicated 
in—even some—other Cerrado species, it could have significant impli-
cations for species persistence and richness, community assemblage, 
and ecosystem function in a future, hotter climate. It is therefore cru-
cial to better understand and integrate the effects of temperature at 
all stages of growth and development—including reproduction—into 
ecological models to help predict the possible consequences of in-
creasing temperatures on Cerrado ecosystem structure and func-
tion (Borghetti et al., 2021; Correa et al., 2021; Ferreira et al., 2022; 
Simon et al., 2013; Velazco et al., 2019). Thus, much could be gained 
by expanding upon this study and employing our methodology to in-
vestigate threshold temperatures for reproduction in other Cerrado 
species and areas, and indeed other tropical ecosystems.
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