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Abstract

This paper studies the event-triggered fuzzy non-fragile control of uncer-
tain DC microgrids subject to false data injection (FDI) attacks, controller
saturation, network delays and premise mismatching. Firstly, a dynamic
event-triggered mechanism (ETM) is proposed, which can save more com-
munication bandwidth than the static ETMs, and remove the complex Zeno-
free computation required by the continuous-time ETMs. Secondly, a fuzzy
time-delay closed-loop system model is established, which provides a unified
framework to study the effects of the dynamic ETM, FDI attacks, uncer-
tainties, saturation, delays and premise mismatching. Thirdly, mean-square
exponential stability criteria are established, and co-design method for the
saturated fuzzy non-fragile (SFNF) controller and the dynamic ETM is pre-
sented. Simulation results confirm that the SFNF controller can stabilize
the unstable DC microgrid, while the dynamic ETM significantly reduces
the triggering rate by 84.98%. Comparisons show that the proposed con-
troller performs better than the non-fragile controller, fuzzy controller and
robust linear controller, and the dynamic ETM achieves a lower triggering
rate than the static ETMs.
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1. Introduction

Table 1: Nomenclature.

CPL constant power load
ESS energy storage system
TTM time-triggered mechanism
ETM event-triggered mechanism
DETM dynamic event-triggered mechanism
SETM static event-triggered mechanism
MIET minimum inter-event time
DoS denial of service
FDI false data injection
LKF Lyapunov-Krasovskii functional
LMIs linear matrix inequalities
FNF fuzzy non-fragile
SFNF saturated fuzzy non-fragile
min minimum function
col column matrix
diag diagonal matrix
I identity matrix
He{A} sum of A and AT , i.e., A+ AT

N natural number set
R real number set
E mathematical expectation
∥ · ∥ Euclidean norm
λmin minimum eigenvalue
* symmetric item in a symmetric matrix

By seamlessly integrating the renewable energy resources into the electric
grid, microgrid provides a suite of operational, technical and economic bene-
fits. Compared with the AC microgrid, the DC microgrid has easier interface
with energy storage systems and many electric loads due to their natural DC
behavior, and issues of harmonics and reactive power are all eliminated [1].
Thus, the DC microgrid has been widely deployed.

In DC microgrids, the tightly regulated power electronic loads often con-
sume constant power, and thus can be seen as constant power loads (CPLs).
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However, the CPLs-induced negative impedance decreases the system damp-
ing and may even lead to instability. To this end, passive damping methods
have been proposed such as adding resistor or capacitor [2], but they are
often costly due to physical constraints. As an energy efficient alternative,
active damping strategies emulate passive elements such as virtual resistor
by modifying converter control loops [3]. However, they can only guarantee
small signal stability due to the usage of small signal models [4]. On the
other hand, T-S fuzzy model works well in characterizing nonlinear systems
[5], and T-S fuzzy control strategy facilitates global stabilization of nonlinear
systems based on the linear control theory, which motivates this paper to
introduce it into the microgrid control.

For a practical DC microgrid, it is often difficult or even impossible to
build the system model, and system parameters often change due to physical
degradation and parameter shifting [6]. During controller implementation,
inaccuracies and uncertainties often happen due to precision limitation of
digital computing, digital-to-analog conversion error and aging. By formulat-
ing a DC microgrid as a Lur’e problem with CPLs induced nonlinear terms
satisfying quadratic bounds, the work [7] designs a robust linear controller
to stabilize the DC microgrid. Although the method [7] brings advantage of
low computational complexity, it does not consider system uncertainties. By
modeling parameter variations and fluctuations of CPLs current and input
voltage as disturbances, the work [8] proposes a H∞ controller to reject these
perturbations. However, the small-signal model based controller [8] may be
difficult to implement due to high order polynomials in the denominator. Us-
ing the parallel distributed compensation scheme and T-S fuzzy model, the
work [9] proposes a fuzzy non-fragile controller, which is resilient to system
and controller uncertainties. However, the effect of communication network
is ignored. As more distributed DC microgrids are implemented, communi-
cation network becomes an important part in control loop. While the com-
munication network brings benefits of high flexibility and low costs, it also
poses serious challenges.

One challenge is the constrained network bandwidth. To facilitate the sys-
tem analysis based on fruitful sampled system theory, most systems adopt
periodic control strategy. However, when the system is running at an oper-
ating point without disturbances, it is often a waste of network bandwidth
to still frequently transmit plant/controller information. To save network
bandwidth, an alternative solution to periodic control mode, namely event-
triggered control strategy, is proposed, which executes control tasks only
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when system needs attention [10]. Due to its distinctive advantage in sav-
ing network bandwidth, ETM is attracting more interests. For instance, in
[11] the converter only transmits signals to its neighbors when the variation
of its controller output surpasses a constant triggering threshold, and the
communication burden can be relieved. However, due to the usage of the
constant triggering threshold, the triggering rate of the ETM [11] is often
high during the transient response. In [12] system states are used to design
the triggering threshold, and the multiple energy storage systems in DC mi-
crogrids communicate only when the triggering condition is satisfied. Due to
the usage of the state-based triggering threshold, the ETM proposed in [12]
can achieve a lower triggering rate than the ETM proposed in [11] during the
transient response. Using both the system states and a constant to design
the triggering threshold, the work [13] presents an event-triggered secondary
control strategy for distributed generation units. Although the ETMs pro-
posed in [11, 12, 13] work well in saving network bandwidth, their triggering
conditions need to be checked continuously, and thus complex computations
are required to exclude Zeno behavior (infinite number of triggering events
within a finite time interval [14]). Besides, due to the usage of the fixed trig-
gering parameters, the performances of these ETMs are conservative. Thus,
to develop a Zeno-free dynamic ETM for uncertain DC microgrids is another
motivation.

Another network-induced challenge is cyber attacks. FDI attacks intend
to inject false data into the original data packets, while denial of service
(DoS) attacks attempt to block data transmission [15]. Since FDI attacks
can often be intentionally designed to bypass the defense systems, they are
more stealthy and destructive, which is drawing increasing attentions. For
instance, for cooperative DC microgrids subject to the FDI attacks and un-
certainties, a sliding-mode observer [16] and adaptive observer [17] are used
to reconstruct and mitigate the false data. However, since these works use the
linear PI controllers, stability can only be guaranteed in a region of attraction
around the equilibrium point. For time-varying FDI attacks, [18] presents an
online identification mechanism and an adaptive model predictive controller
to mitigate attacks. Although the aforementioned works present useful re-
sults under the continuous-time framework, when using the ETM, the re-
sults can not be directly used. Besides, when considering the effect of the
ETM and network delays, it is difficult for the controller and microgrids to
share the same information, which results in the premise mismatching issue.
Further, due to physical restrictions, if the value of control signals surpasses
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the maximum allowable output of actuators, saturated nonlinearity appears
and jeopardizes system performance [19]. Thus, it is necessary to design an
FDI-attack-resilient controller for uncertain DC microgrids while considering
the effects of the ETM, delays, premise mismatching and saturation.

To address the aforementioned issues, this paper study the event-trig-
gered fuzzy non-fragile control of uncertain DC microgrids subject to the FDI
attacks, saturation, delays and premise mismatching. Main contributions are
summarized as follows.

• First, for DC microgrids with CPLs, a novel dynamic ETM is pro-
posed, which can save more network bandwidth than the static ETMs
[20, 21, 22], and remove the complex Zeno-behavior-related computa-
tion required by the continuous-time ETMs [11, 12, 13].

• Second, a fuzzy time-delay closed-loop system model for DC microgrids
with CPLs is established, which makes it possible to study the effects
of the dynamic ETM, uncertainties, FDI attacks, saturation, network
delays and premise mismatching all in one framework.

• Third, mean-square exponential stability criteria for DC microgrids
with CPLs are derived, which establish the relationship between sys-
tem stability and the affecting factors. Co-design conditions for the
SFNF controller and the dynamic ETM are derived, which provide a
framework to make tradeoffs between communication and control per-
formances.

The paper is organised as follows. Section 2 presents the modeling process
of the DC microgrid control system. System stability is analysed in Section 3,
and Section 4 provides the co-design conditions for the SFNF controller and
the dynamic ETM. Section 5 presents case studies to confirm the proposed
method, and conclusion is given in Section 6.

2. Modeling of the DC microgrid

2.1. System description

As shown in Figure 1, a DC microgrid comprises Q CPLs, an energy
storage system (ESS) and a DC source. The CPLs refer to the tightly-
regulated loads drawing constant power from converters. The ESS is used
to inject current, and the DC source maintains the DC bus. Figure 2 shows
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the circuit diagram of the DC microgrid. First, the voltage and current
states of the DC microgrid are sampled periodically. Then, the dynamic
ETM (DETM) determines whether or not to transmit the sampled data.
The SFNF controller receives plant states from the dynamic ETM through
a communication network. The controller output is randomly manipulated
by the FDI attacks.

Figure 1: A DC microgrid with Q CPLs.

Applying the Kirchhoff voltage/current laws to the CPL and DC source
subsystems yields [7]

· jth CPL subsystem:

{

i̇L,j =
1
Lj
vC,s −

1
Lj
vC,j −

rL,j

Lj
iL,j

v̇C,j =
1
Cj
iL,j −

1
Cj

Pj

vC,j
, j = 1, . . . , Q

(1)

·DC source subsystem:

{

i̇L,s =
1
Ls
Vdc −

1
Ls
vC,s −

rL,s

Ls
iL,s

v̇C,s =
1
Cs
iL,s −

1
Cs
ΣQ

j=1iL,j −
1
Cs
ies

(2)

where Lj, Cj and rL,j refer to the inductance, capacitance and resistance
in the jth CPL subsystem, respectively. iL,j and vC,j indicate the inductor
current and capacitor voltage, respectively. The voltage-controlled current
source Pj/vC,j denotes the jth CPL with a constant load power Pj. In the
DC source subsystem, Ls, Cs and rL,s indicate the inductance, capacitance
and resistance, respectively. iL,s and vC,s refer to the inductor current and
capacitor voltage, respectively. Vdc denotes the voltage of the DC source, and
ies represents the injection current of the ESS.
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Figure 2: Circuit diagram of the DC microgrid with Q CPLs.

It follows from (1) and (2) that

{

ẋj(t) = Ājxj(t) + Ājsxs(t)− djhj(xj(t)), j = 1, . . . , Q

ẋs(t) = Āsxs(t) +
∑Q

j=1 Ācnxj(t) + besies + bsVdc
(3)

where xs(t) = col{iL,s, vC,s}, xj(t) = col{iL,j, vC,j}, hj(xj(t)) =
1

vC,j
and







Āj =

[

−
rL,j

Lj
− 1

Lj

1
Cj

0

]

, Ājs =

[

0 1
Lj

0 0

]

, dj =

[

0
Pj

Cj

]

, bs =

[
1
Ls

0

]

Ās =

[

−
rL,s

Ls
− 1

Ls

1
Cs

0

]

, Ācn =

[

0 0

− 1
Cs

0

]

, bes =

[

0

− 1
Cs

]

Using (3), the DC microgrid model can be derived as

ẋ(t) = Āx(t) + Besies(t) + BsVdc −DH(x(t)) (4)

where
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x(t) = col{x1(t), . . . , xQ(t), xs(t)}, H(x(t)) = col{h1(x1(t)), . . . , hQ(xQ(t))}

Ā =








Ā1 . . . 0 Ā1s
...

. . .
...

...
0 . . . ĀQ ĀQs

Ācn . . . Ācn Ās







, Bes =








0
...
0
bes







, Bs =








0
...
0
bs







, D =








d1 . . . 0
...

. . .
...

0 . . . dQ
0 . . . 0








To shift the equilibrium point to the origin, using a coordinate transfor-
mation to (4) yields

˙̄x(t) = Āx̄(t) + Besīes(t) +DH(x̄(t)) (5)

where x̄(t) = col{x̄1(t), . . . , x̄Q(t), x̄s(t)} = x(t) − x0, x̄j(t) = col{̄iL,j, v̄C,j},
x̄s(t) = col{̄iL,s, v̄C,s}, H(x̄(t)) = col{h1(x̄1(t)), . . . , hQ(x̄Q(t))}, and

hj(x̄j(t)) =
v̄C,j

v0C,j(v̄C,j + v0C,j)
(6)

where v0C,j and x0 indicate the equilibrium points of the voltage vC,j and the
DC microgrid, respectively.

2.2. T-S fuzzy modeling of the DC microgrid

Since a microgrid with several CPLs can be modelled as an equivalent
system with one CPL [23], without loss of generality, a DC microgrid with
one CPL is studied here. If −v̄mC,1 ≤ v̄C,1 ≤ v̄mC,1 holds, the CPLs induced
nonlinear term h1(x̄1(t)) in (6) satisfies [24]

Kminv̄C,1 ≤ h1(x̄1(t)) ≤ Kmaxv̄C,1 (7)

where

Kmin =
1

v0C,1(v̄
m
C,1 + v0C,1)

, Kmax =
1

v0C,1(−v̄
m
C,1 + v0C,1)

Using the sector nonlinearity method [25], it follows from (7) that

h1(x̄1(t)) = η1(x̄1(t))Kminv̄C,1 + η2(x̄1(t))Kmaxv̄C,1 (8)

where membership functions satisfy η1(x̄1(t)) + η2(x̄1(t)) = 1 with

η1(x̄1(t)) =
Kmaxv̄C,1 − h1(x̄1(t))

(Kmax − Kmin)v̄C,1

, η2(x̄1(t)) =
h1(x̄1(t))− Kminv̄C,1

(Kmax − Kmin)v̄C,1
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Substituting (8) into (5), the T-S fuzzy model of the DC microgrid is
obtained as

˙̄x(t) =
2∑

i=1

ηi(x̄(t)){Aix̄(t) + Besīes} (9)

where

Ai =

[
Ãi Ā1s

Ācn Ās

]

, Ã1 =

[
−

rL,1

L1

− 1
L1

1
C1

P1

C1

Kmin

]

, Ã2 =

[
−

rL,1

L1

− 1
L1

1
C1

P1

C1

Kmax

]

Remark 1. For the CPLs induced nonlinear term, the work in [7] models it
as disturbances introduced to a Lur’e system, and a robust linear controller
is then designed. As shown in (9), this paper uses a T-S fuzzy model to char-
acterize the CPLs induced nonlinear term, and a fuzzy non-fragile controller
is designed in the following. Since the T-S fuzzy method works well in mod-
eling nonlinear systems, better results can be achieved, which are confirmed
in the simulation studies.

Further, considering the plant uncertainty, it follows from (9) that

˙̄x(t) =
2∑

i=1

ηi(x̄(t)){(Ai +∆Ai)x̄(t) + Besīes} (10)

where ∆Ai = DiFi(t)Ei refers to the plant uncertainty, Di and Ei de-
scribe the uncertainty structure, and the uncertain function Fi(t) satisfies
F T

i (t)Fi(t) ≤ I. D = Di,E = Ei and F (t) = Fi(t) are assumed here.

2.3. Dynamic event-triggered mechanism

To reduce the unnecessary consumption of network bandwidth, inspired
by the work [26], a dynamic ETM is introduced as

dk+1h = dkh+min{jh|∥Φ
1

2Cdk∥
2 > [ρ0 + ρd(t)]∥Φ

1

2 x̄(dkh)∥
2} (11)

where Φ > 0 is a weighting matrix, h is the sampling period, dkh(k, dk ∈ N)
and dk+1h denote the kth and (k + 1)th triggering instants, respectively. Cdk =
x̄(dkh)− x̄(dkh+ jh)(j ∈ N) indicates the state error between the state x̄(dkh)
at triggering instant dkh and the state x̄(dkh+ jh) at sampling instant
dkh+ jh. ρ0 ∈ [0, 1] denotes the static threshold parameter, and ρd(t) = ρ1
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( 2
π
arctan(ϱ∥Cdk∥)) is the dynamic threshold parameter with ρ1 ∈ [0, 1] and

ϱ ≥ 0. Unlike the time-triggered mechanism (TTM) which transmits all the
sampling data, the dynamic ETM only transmits some of the sampling data
which satisfy the triggering condition (11), and thus network bandwidth can
be saved.

Remark 2. For the continuous-time ETMs [11, 12, 13], it is essential to en-
sure a positive minimum inter-event time (MIET). Otherwise, Zeno behavior
appears, which makes the implementation of ETMs intractable. However, it
is not easy for the continuous-time ETMs to exclude Zeno behavior. For in-
stance, the work [27] shows that the popular ETM ti+1 = min{t > ti|∥y(t)−
y(ti)∥ > δT∥y(t)∥} exists Zeno behavior, where ti and ti+1 denote the ith and
(i+ 1)th triggering instants, respectively, y(t) and y(ti) denote measurement
outputs at time instant t and triggering instant ti, respectively, and δT is the
threshold parameter.

To exclude Zeno behavior, one solution is to continuously evaluate the
ETM after a certain time bound. For instance, the work [28] proposes an
ETM as ti+1 = min{t ≥ ti + Ts,min||x(t)− x(ti)| ≥ δT}, where x(t) and x(ti)
indicate system states at time instant t and triggering instant ti, respec-
tively, and the time bound Ts,min provides a built-in lower bound on the
MIET. Another solution is to periodically check the ETM at sampling in-
stants. For instance, the MIET of the proposed ETM (11) is lower bounded
by the sampling period h.

Remark 3. Unlike the static ETMs [20, 21, 22] which only use the fixed
triggering threshold parameter ρ0, the dynamic ETM (11) has an additional
dynamic triggering threshold term ρd(t), which makes it possible to achieve
a lower triggering rate. The dynamic term ρd(t) is a function of the state-
error term ∥x̄(dkh)− x̄(dkh+ jh)∥. During the transient response, the large
state-error term results in a large ρd(t), and thus the dynamic ETM per-
forms much better than the static ETMs. During the steady response, since
the small state-error term leads to a small ρd(t), the dynamic ETM also
performs slightly better than the static ETMs.

Remark 4. There also exist some other DETMs for multi-area power sys-
tems [29, 30], electronic circuit systems [31] and electric vehicles [32]. The
triggering threshold parameter ρ̄ = η(1− a tanh(eT (t)e(t)− θ)) is used in the

DETMs [29, 31], while the threshold parameter ρ̃ = σ1 + σ2e
−ς∥Φ0.5e(t)∥2 is
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adopted in the DETMs [30, 32]. As the state-error term ∥e(t)∥ increases, both
of ρ̃ and ρ̄ decrease, but the threshold parameter ρ̂ = ρ0 + ρd(t) of the pro-
posed DETM (11) increases. Thus, the DETM (11) can achieve a lower trig-
gering rate during the transient response, while the DETMs [29, 30, 31, 32]
can obtain a lower triggering rate during the steady-state response. Namely,
the proposed DETM (11) provides a useful alternative for the event-triggered
control.

Figure 3: Time sequence of the dynamic ETM.

2.4. Closed-loop system modeling

Considering the effects of the dynamic ETM and network induced delays
τk ∈ [τm, τM ], the updating interval of the SFNF controller can be expressed
as [dkh+τk, dk+1h+τk+1), which can be equally divided as [33] (as illustrated
in Figure 3)

[dkh+ τk, dk+1h+ τk+1) =

ςk⋃

ϵk=0

ψdk
ϵk

(12)
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where ςk = dk+1 − dk − 1 and

ψdk
ϵk

=

{

[dkh+ τk + ϵkh, dkh+ τk + ϵkh+ h), ϵk = 0, . . . , ςk − 1

[dkh+ τk + ϵkh, dk+1h+ τk+1), ϵk = ςk

During t ∈ ψdk
ϵk
, define a piecewise-constant function ξ(t) = x̄(dkh) −

x̄(dkh+ ϵkh) and a piecewise-linear function ϕ(t) = t− (dkh+ ϵkh) ∈ [τm, h+
τM) (as shown in Figure 3). Then, the input signal of the controller can be
expressed as

x̂(t) = x̄(dkh) = ξ(t) + x̄(t− ϕ(t)), t ∈ ψdk
ϵk

(13)

Considering the effects of controller uncertainty and saturation, the SFNF
controller can be designed as

îes = sat
{
ǐes

}
, ǐes =

2∑

j=1

η̄j(x̂(t))(Kj +∆Kj)x̂(t), t ∈ ψdk
ϵk

(14)

where
{

η̄1(x̂(t)) =
Kmaxv̂C,1−h1(x̂(t))

(Kmax−Kmin)v̂C,1
, η̄2(x̂(t)) = 1− η̄1(x̂(t))

h1(x̂(t)) =
v̂C,1

v0
C,1

(v̂C,1+v0
C,1

)
, v̂C,1 = v̄C,1(dkh)

and ∆Kj = D c
jUj(t)E

c
j marks the controller uncertainty, D c

j and E c
j indi-

cate the uncertainty structure, and the uncertain function Uj(t) satisfies
Uj

T (t)Uj(t) ≤ I. D c = D c
j ,E

c = E c
j and U (t) = Uj(t) are assumed here.

Remark 5. As shown in Figure 2, due to the existence of the dynamic ETM
and communication network, it is difficult for the controller to share the same
premise with the DC microgrid. Unlike the work [23] which assumes the same
premise in the controller and plant, the SFNF controller (14) considers the
premise mismatching issue, which is more practical.

For an element ǐesj in ǐes ∈ R
nu(j = 1, . . . , nu), the nonlinear saturation

function can be described as

sat(̌iesj) =







ǐsesj , ǐesj > ǐsesj
ǐesj , −ǐsesj ≤ ǐesj ≤ ǐsesj
−ǐsesj , ǐesj < −ǐsesj

(15)
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where ǐsesj indicates the maximum allowable output threshold, and ǐses = ǐsesj
is assumed here.

Defining a dead-zone nonlinear function S(t) = [S1,S2, . . . ,Snu
] = ǐes −

îes, there exists εs ∈ (0, 1) such that [34]

S(t)TS(t) ≤ εsǐ
T
esǐes (16)

Remark 6. Similar to [34], using (14), (15) and (16), when ǐesj > ǐsesj ,

we have S2
j = [̌iesj − ǐsesj ]

2 ≤ εjsǐ
2
esj

, i.e. εjs ≥ (1− ǐsesj /̌iesj)
2, where εjs ∈ (0, 1).

Similarly, when ǐesj < −ǐsesj , ε
j
s ≥ (1− ǐsesj/|̌iesj |)

2 holds. When −ǐsesj ≤ ǐesj ≤

ǐsesj , an arbitrary small εjs satisfies S2
j = 0 ≤ εjsǐ

2
esj

. Considering the above

three cases, there exists εjs ∈ (0, 1) satisfying εjs ≥ (1− ǐsesj/|̌iesj |max)
2, where

|̌iesj |max marks the maximum absolute value of ǐesj . Setting the maximum
value of εjs(j = 1, . . . , nu) as εs = max{εjs}, the inequality (16) holds.

Considering the effect of the FDI attacks [35], the SFNF controller (14)
is manipulated as

{

īes = îes + β(t)A (t), t ∈ ψdk
ϵk

îes =
∑2

j=1 η̄j(x̂(t))(Kj +∆Kj)x̂(t)− S(t)
(17)

where A (t) marks the FDI attack signal, β(t) ∈ {0, 1} is a Bernoulli dis-
tribution with E{β(t)} = β̄. If β(t) = 1, the attack is active, and thus the
controller output is tampered. If β(t) = 0, the attack is sleeping. To avoid
being detected by the defense system, the attacking energy is often limited
as A T (t)A (t) ≤ îTesG

TGîes, where G is the upper bound matrix.
Using the DC microgrid model (10) and the attacked SFNF controller

(17), the fuzzy time-delay closed-loop system model is obtained as

˙̄x(t) =
2∑

i=1

2∑

j=1

ηiη̄j
[
(Ai +∆Ai)x̄(t) + Bes(Kj +∆Kj)(x̄(t− ϕ(t))

+ ξ(t))− BesS(t) + Besβ̄A (t) + Bes(β(t)− β̄)A (t)
]

(18)

where ηi = ηi(x̄(t)) and η̄j = η̄j(x̂(t)).

Remark 7. Considering the effects of controller uncertainty and saturation,

the controller (14) is described as îes =
∑2

j=1 η̄j(x̂(t)) (Kj +∆Kj)x̂(t)− S(t).
Further, considering the effect of the FDI attacks, the controller (14) is ma-

nipulated as īes = îes + β(t)A (t) in (17). Substituting the attacked controller
(17) into the DC microgrid model (10), the system model (18) is obtained.
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3. Stability analysis of the DC microgrid

Definition 1. [36] For any solution x(t) of a system with the initial condition
X , the system is exponentially stable in mean square, if there exist b1 > 0
and b2 ∈ [0, 1) satisfying

E{∥x(t)∥2} ≤ b1∥X ∥2bt2, t ≥ 0 (19)

To simplify the expression, define







Ii = [

i−1
︷ ︸︸ ︷

0 . . . 0 I

7−i
︷ ︸︸ ︷

0 . . . 0 ], i = 1, . . . , 7

χ(t) = [x̄(t), x̄(t− ϕ1), x̄(t− ϕ(t)), x̄(t− ϕ2), ξ(t),A (t),S(t)]T
(20)

Theorem 1. For given sampling period h, plant and controller uncertainty
matrices ∆Ai,∆Kj, network delay bounds τM , τm, dynamic ETM parameters
ρ0, ρ1, saturation scalar εs, attacking expectation β̄, attack-related matrix
G, decay rate µ, and premise-mismatching parameters αj satisfying η̄j ≥
αjηj(j = 1, 2), if there exist positive definite matrices P > 0, R > 0, Q >
0, S1 > 0, S2 > 0,Φ > 0, symmetric matrices Γ1,Γ2, and matrix M satisfying[
S2 ∗
M S2

]

> 0 and

Πij − Γi < 0, 1 ≤ i, j ≤ 2 (21)

αi(Π
ii − Γi) + Γi < 0, i = 1, 2 (22)

αj(Π
ij − Γi) + αi(Π

ji − Γj) + Γi + Γj < 0, 1 ≤ i < j ≤ 2 (23)

where

Πij =







Πij
11 ∗ ∗ ∗

Πij
21 Π22 ∗ ∗

Π31 0 Π33 ∗
Π41 0 0 Π44







Πij
11 = Ξij − Ψij

1

T
(ϕ2

1S1 + ϕ2
21S2)Ψ

ij
1 − β̃2ΨT

2 (ϕ
2
1S1 + ϕ2

21S2)Ψ2 − I T
5 ΦI5 −

β̄I T
6 I6 − I T

7 I7,

Πij
21 =

[
ϕ1Ψ

ij
1

ϕ21Ψ
ij
1

]

, Π31 = β̃

[
ϕ1Ψ2

ϕ21Ψ2

]

, Π41 =





ρ0.5(I3 + I5)
G((Kj +∆Kj)(I3 + I5)− I7)

(Kj +∆Kj)(I3 + I5)



,
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Π22 = Π33 =

[
−S−1

1 ∗
0 −S−1

2

]

, Π44 =





−Φ−1 ∗ ∗
0 −β̄−1 ∗
0 0 −ε−1

s



,

Ψij
1 = (Ai+∆Ai)I1+Bes(Kj+∆Kj)(I3+I5)+β̄BesI6−BesI7,Ψ2 = BesI6,

Ξij = µI T
1 PI1+He{I

T
1 PΨ

ij
1 }+I T

1 RI1−e
−µϕ1I T

2 RI2+e
−µϕ1I T

2 QI2−

e−µϕ2I T
4 QI4+Ψij

1

T
(ϕ2

1S1+ϕ
2
21S2)Ψ

ij
1 + β̃2ΨT

2 (ϕ
2
1S1+ϕ

2
21S2)Ψ2−e

−µϕ1(I1−
I2)

TS1(I1−I2)− e−µϕ2(I2−I3)
TS2(I2−I3)− e−µϕ2(I3−I4)

TS2(I3−
I4)− e−µϕ2He{(I3 − I4)

TM(I2 − I3)}, β̃ = (β̄(1− β̄))0.5, ρ = ρ0 + ρ1,
then, the DC microgrid system (18) under the dynamic ETM, uncertain-
ties, saturation, FDI attacks, network delays and premise mismatching is
exponentially stable in mean square.

Proof. Construct a Lyapunov-Krasovskii functional (LKF) as

V (t) =x̄T (t)Px̄(t) + ϕ1

∫ 0

−ϕ1

∫ t

t+θ

eµ(ϑ−t) ˙̄xT (ϑ)S1 ˙̄x(ϑ)dϑdθ

+

∫ t−ϕ1

t−ϕ2

eµ(ϑ−t)x̄T (ϑ)Qx̄(ϑ)dϑ+

∫ t

t−ϕ1

eµ(ϑ−t)x̄T (ϑ)Rx̄(ϑ)dϑ

+ ϕ21

∫ −ϕ1

−ϕ2

∫ t

t+θ

eµ(ϑ−t) ˙̄xT (ϑ)S2 ˙̄x(ϑ)dϑdθ

(24)

where positive definite matrices P > 0, R > 0, Q > 0, S1 > 0 and S2 > 0,
scalars ϕ1 = τm, ϕ2 = h+ τM , and ϕ21 = ϕ2 − ϕ1.

Computing the derivative of V (t) yields

V̇ (t) ≤ −µV (t) + µx̄T (t)Px̄(t) +He{x̄T (t)P ˙̄x(t)}

+ e−µϕ1 x̄T (t− ϕ1)Qx̄(t− ϕ1)− e−µϕ2x̄T (t− ϕ2)Qx̄(t− ϕ2)

+ x̄T (t)Rx̄(t)− e−µϕ1x̄T (t− ϕ1)Rx̄(t− ϕ1)

+ ˙̄xT (t)(ϕ2
1S1 + ϕ2

21S2) ˙̄x(t) + δ1(t) + δ2(t)

(25)

where {

δ1(t) = −ϕ1e
−µϕ1

∫ t

t−ϕ1

˙̄xT (θ)S1 ˙̄x(θ)dθ

δ2(t) = −ϕ21e
−µϕ2

∫ t−ϕ1

t−ϕ2

˙̄xT (θ)S2 ˙̄x(θ)dθ

Using Jensen inequality [37] and applying the reciprocally convex method
[38] to δ1(t) and δ2(t) yields

{

δ1(t) ≤ −e−µϕ1(x̄(t)− x̄(t− ϕ1))
TS1(x̄(t)− x̄(t− ϕ1))

δ2(t) ≤ −e−µϕ2(ζT1 S2ζ1 − ζT2 S2ζ2 −He{ζT2 Mζ1})
(26)
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where ζ1 = [x̄(t− ϕ1)− x̄(t− ϕ(t))] and ζ2 = [x̄(t− ϕ(t))− x̄(t− ϕ2)].
Using (26), it follows from (25) that

E{V̇ (t)} ≤ −µE{V (t)}+
2∑

i=1

2∑

j=1

ηiη̄jχ
T (t)Ξijχ(t) (27)

Using the triggering, saturation and attacking conditions, it follows from
(27) that

E{V̇ (t)}+ µE{V (t)}

≤
2∑

i=1

2∑

j=1

ηiη̄j
[
χT (t)Ξijχ(t)− ξT (t)Φξ(t)− ST (t)S(t)

− β̄A
T (t)A (t) + ρ(x̄(t− ϕ(t)) + ξ(t))TΦ(x̄(t− ϕ(t)) + ξ(t))

+ εsB
T
B + β̄(B − S(t))TGTG(B − S(t))

≤

2∑

i=1

2∑

j=1

ηiη̄jχ
T (t)Πijχ(t)

(28)

where B = (Kj +∆Kj)(x̄(t− ϕ(t)) + ξ(t)) and
Πij = Ξij −I T

5 ΦI5− β̄I T
6 I6−I T

7 I7+ ρ(I3+I5)
TΦ(I3+I5)+ εs(I3+

I5)
T (Kj+∆Kj)

T (Kj+∆Kj)(I3+I5)+β̄((Kj+∆Kj)(I3+I5)−I7)
TGTG

((Kj +∆Kj)(I3 + I5)− I7).
To handle the premise mismatching issue [39], a zero term

∑2
i=1

∑2
j=1 ηi(ηj−

η̄j)χ
T (t)Γiχ(t) = 0 is introduced. Adding this zero term to (28) yields

2∑

i=1

2∑

j=1

ηiη̄jχ
T (t)Πijχ(t)

=
2∑

i=1

2∑

j=1

ηiη̄jχ
T (t)(Πij − Γi)χ(t) +

2∑

i=1

2∑

j=1

ηiηjχ
T (t)Γiχ(t)

(29)

Using (21) and η̄j ≥ αjηj, if follows from (29) that

2∑

i=1

2∑

j=1

ηiη̄jχ
T (t)Πijχ(t) ≤

2∑

i=1

ηiηiχ
T (t)

[
αi(Π

ii − Γi) + Γi
]
χ(t)

+
2∑

i=1

2∑

j>i

ηiηjχ
T (t)

[
αj(Π

ij − Γi) + αi(Π
ji − Γj) + Γi + Γj

]
χ(t)

(30)
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Substituting (22) and (23) into (30) yields
∑2

i=1

∑2
j=1 ηiη̄jχ

T (t)Πijχ(t) ≤
0. Using this inequality, it follows from (28) that

{

E{V̇ (t)}+ µE{V (t)} ≤ 0

⇒ E{∥x̄(t)∥2} ≤ λ−1
min(P )E{V (0)}e−µt, ∀t ≥ 0

(31)

Using Definition 1, one can derive from (31) that, the DC microgrid (18)
under the dynamic ETM, uncertainties, saturation, FDI attacks, network
delays and premise mismatching is exponentially stable in mean square.

Remark 8. For nonlinear systems, it is hard to find a Lyapunov function
and design a controller to ensure overall system stability. Using the T-S
fuzzy method, this paper models the DC microgrid as a fuzzy binding of
a set of linear subsystems, which facilitates using the linear control theory
to globally stabilize the nonlinear microgrid [4]. Based on the linear control
theory, the LKF (24) and the T-S fuzzy controller (14) are designed. The
proposed controller can ensure global stability with simple procedure, which
overcomes the limitations that the linear controller only guarantees local sta-
bility near the equilibrium point while the design of the nonlinear controller
requires a highly complicated procedure [9]. Due to the simple structure,
the quadratic Lyapunov functions such as the LKF (24) have been exten-
sively used for stability analysis [40]. As suggested in [41], the non-quadratic
Lyapunov functions usually lead to improved convergence and robustness
performance, which is an interesting topic in future.

In Theorem 1, gain matrices Kj(j = 1, 2) of the SFNF controller (14)
are coupled with the matrices (P, S1, S2), which makes the linear matrix
inequalities (LMIs) infeasible. Thus, it is necessary to present the following
controller design method.

4. Co-design of the SFNF controller and the dynamic ETM

Lemma 1. For a positive definite matrix Θ > 0, a matrixW and any scalar
ϵ, the following inequality holds [42]

−WΘ−1W ≤ ϵ2Θ− 2ϵW (32)
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Lemma 2. [43] For a symmetric matrix Λ1 and matrices Λ2,Λ3, if there
exists a scalar ϵ > 0 satisfying

Λ1 + ϵΛ2Λ
T
2 + ϵ−1ΛT

3Λ3 < 0 (33)

then, the following inequality holds for all G (t) satisfying G T (t)G (t) ≤ I

Λ1 + Λ2G (t)Λ3 + ΛT
3 G

T (t)ΛT
2 < 0 (34)

Theorem 2. For given sampling period h, uncertainty matrices D ,E ,D c,E c,
network delay bounds τM , τm, dynamic ETM parameters ρ0, ρ1, saturation
scalar εs, attacking expectation β̄, attack-related matrix G, decay rate µ,
scalars εp, εc, εi > 0(i = 1, . . . , 5), and premise-mismatching parameters
αj satisfying η̄j ≥ αjηj(j = 1, 2), if there exist positive definite matrices
X > 0, R̄ > 0, Q̄ > 0, S̄1 > 0, S̄2 > 0, Φ̄ > 0, symmetric matrices Γ̄1, Γ̄2,

matrices Y1, Y2 and M satisfying

[
S̄2 ∗
M̄ S̄2

]

> 0 and

Π̄ij − Γ̄i < 0, 1 ≤ i, j ≤ 2 (35)

αi(Π̄
ii − Γ̄i) + Γ̄i < 0, i = 1, 2 (36)

αj(Π̄
ij − Γ̄i) + αi(Π̄

ji − Γ̄j) + Γ̄i + Γ̄j < 0, 1 ≤ i < j ≤ 2 (37)

where

Π̄ij =















Π̄ij
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Π̄ij
21 Π̄22 ∗ ∗ ∗ ∗ ∗ ∗

Π̄31 0 Π̄33 ∗ ∗ ∗ ∗ ∗
Π̄41 0 0 Π̄44 ∗ ∗ ∗ ∗
Π̄51 Π̄52 0 0 Π̄55 ∗ ∗ ∗
Π̄61 0 0 0 0 Π̄66 ∗ ∗
Π̄71 Π̄72 0 Π̄74 0 0 Π̄77 ∗
Π̄81 0 0 0 0 0 0 Π̄88















Π̄ij
11 = µI T

1 XI1+He{I
T
1 Ψ̄ij

1 }+I T
1 R̄I1− e−µϕ1I T

2 R̄I2+ e
−µϕ1I T

2 Q̄I2−
e−µϕ2I T

4 Q̄I4 − e−µϕ1(I1 − I2)
T S̄1(I1 − I2) − e−µϕ2(I2 − I3)

T S̄2(I2 −
I3)− e−µϕ2(I3 − I4)

T S̄2(I3 − I4)− e−µϕ2He{(I3 − I4)
TM̄(I2 − I3)} −

I T
5 Φ̄I5 − β̄I T

6 I6 − I T
7 I7,
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Π̄ij
21 =

[
ϕ1Ψ̄

ij
1

ϕ21Ψ̄
ij
1

]

, Π̄22 =

[
ε21S̄1 − 2ε1X ∗

0 ε22S̄2 − 2ε2X

]

,

Π̄31 = β̃

[
ϕ1Ψ̄2

ϕ21Ψ̄2

]

, Π̄33 =

[
ε23S̄1 − 2ε3X ∗

0 ε24S̄2 − 2ε4X

]

,

Π̄41 =





ρ0.5X(I3 + I5)
G(Yj(I3 + I5)− I7)

Yj(I3 + I5)



, Π̄44 =





ε25Φ̄− 2ε5X ∗ ∗
0 −β̄−1 ∗
0 0 −ε−1

s



,

Π̄51 = εpD
TI1, Π̄52 = εp[ϕ1D

T ϕ21D
T ], Π̄61 = EXI1, Π̄55 = Π̄66 = −εp,

Π̄71 = εcD
cTBTI1, Π̄72 = εc[ϕ1D

cTBT ϕ21D
cTBT ], Π̄74 = εc[0 G

T I],
Π̄81 = E cX(I3 + I5), Π̄77 = Π̄88 = −εc, β̃ = (β̄(1− β̄))0.5, ρ = ρ0 + ρ1,
Ψ̄ij

1 = AiXI1 +BesYj(I3 + I5) + β̄BesI6 − BesI7, Ψ̄2 = BesI6,
Γ̄i = ΥΓiΥ(i = 1, 2), R̄ = XRX, Q̄ = XQX, S̄1 = XS1X, S̄2 = XS2X, M̄ =
XMX, Φ̄ = XΦX, Yj = KjX(j = 1, 2),
then, the DC microgrid (18) under the dynamic ETM, FDI attacks, uncer-
tainties, saturation, network delays and premise mismatching is exponentially
stable in mean square, and gain matrices of the SFNF controller (14) can be
obtained as Kj = YjX

−1.

Proof. To decouple the nonlinear terms in Theorem 1, define

X = P−1, Υ = diag{X, . . . , X
︸ ︷︷ ︸

5

, I, . . . , I
︸ ︷︷ ︸

9

} (38)

Using (38), transform the conditions in Theorem 1 as
[
S̄2 ∗
M̄ S̄2

]

= diag{X,X}

[
S2 ∗
M S2

]

diag{X,X} > 0 (39)

Π̌ij − Γ̄i = Υ(Πij − Γi)Υ < 0, 1 ≤ i, j ≤ 2 (40)

αi(Π̌
ii − Γ̄i) + Γ̄i = Υ(αi(Π

ii − Γi) + Γi)Υ < 0, i = 1, 2 (41)

αj(Π̌
ij − Γ̄i) + αi(Π̌

ji − Γ̄j) + Γ̄i + Γ̄j

= Υ(αj(Π
ij − Γi) + αi(Π

ji − Γj) + Γi + Γj)Υ < 0, 1 ≤ i < j ≤ 2 (42)

where






Π̌ij = Π̃ij +He{LT
p1Fi(t)Lp2 + LT

c1Uj(t)Lc2}

Π̃ij =








Π̄ij
11 ∗ ∗ ∗

Π̄ij
21 Π22 ∗ ∗

Π̄31 0 Π33 ∗

Π̄41 0 0 Π44







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with







Lp1 = [DTI1 ϕ1D
T ϕ21D

T 0 0 0 0 0]

Lp2 = [EXI1 0 0 0 0 0 0 0]

Lc1 = [D cTBTI1 ϕ1D
cTBT ϕ21D

cTBT 0 0 0 GT I 0 0]

Lc2 = [E cX(I3 + I5) 0 0 0 0 0 0 0 0 0]

The inequality (40) can be rewritten as

Π̌ij − Γ̄i = Π̃ij − Γ̄i +He{LT
p1Fi(t)Lp2 + LT

c1Uj(t)Lc2} < 0 (43)

Using Lemma 2, (43) holds if the following inequality is satisfied

Π̃ij − Γ̄i + εpL
T
p1Lp1 + ε−1

p LT
p2Lp2 + εcL

T
c1Lc1 + ε−1

c LT
c2Lc2 < 0 (44)

Using Schur complement to (44), and then using Lemma 1 to handle the
nonlinear terms Π22,Π33 and Π44 in Π̃ij, (35) can be obtained. Similarly,
(36) and (37) can be derived. The proof is thus completed.

Remark 9. By computing the LMIs in Theorem 2, gain matrices Kj =
YjX

−1(j = 1, 2) of the SFNF controller (14) and parameter Φ = X−1Φ̄X−1

of the dynamic ETM (11) can be obtained simultaneously, which is more
convenient that the two-step emulation method [44].

5. Case studies

5.1. DC microgrid with one CPL

The DC microgrid in [23] is introduced to verify the proposed method.
The microgrid parameters and system parameters are shown in Table 2 and
Table 3, respectively.

Table 2: DC microgrid with one CPL.

rL,1 1.1 Ω v0C,1 196.64 V Cs 500 µF
L1 39.5 mH v̄mC,1 130.4 V Vdc 200 V
C1 500 µF rL,s 1.1 Ω
P1 300 W Ls 39.5mH
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Table 3: System parameters.

dynamic ETM ρ0 = 0.0004, ρ1 = 0.0006, ϱ = 50

FDI attacks A (t) = −tanh(Gîes), G = 0.3, β̄ = 0.15

plant uncertainty ∆A = sin(t)







−2.2 −2 0 2;
0 0 0 0;
0 0 −2.2 −2;
0 0 0 0







controller uncertainty ∆K = 0.1sin(t)
[
1 1 1 1

]

controller saturation ǐses = 50A, εs = 0.6
sampling period h = 0.05ms
network-delay bounds τM = 0.02ms, τm = 0.01ms
premise mismatching α1 = 0.9, α2 = 0.8
decay rate µ = 10
Lemma scalars εi = 0.000015(i = 1, . . . , 5), εp = 100, εc = 0.1
initial states x̄0 = col{19,−30, 19,−30}

Remark 10. In Theorem 2, Lemma 1 is used to transform the nonlinear
terms −XS̄−1

1 X, −XS̄−1
2 X and −XΦ̄−1X into the linear terms ε2i S̄1 − 2εiX

(i = 1, 3), ε2i S̄2 − 2εiX(i = 2, 4) and ε25Φ̄− 2ε5X, which makes the LMIs fea-
sible. Since the inequality −WΘ−1W ≤ ϵ2Θ− 2ϵW in Lemma 1 holds for
any scalar ϵ, the values of the scalars εi = 0.000015(i = 1, . . . , 5) in Table 3
are reasonable.

By computing the LMIs in Theorem 2, gain matrices of the SFNF con-
troller and parameter of the dynamic ETM are obtained simultaneously as







K1 =
[

10.8143 1.0999 −0.6837 1.6047
]

K2 =
[

10.7676 1.0987 −0.6865 1.5967
]

Φ = 103 ×








3.9605 0.2922 −0.1873 0.2022

0.2922 0.0844 −0.1962 0.0235

−0.1873 −0.1962 1.5221 −0.0505

0.2022 0.0235 −0.0505 0.0278








(45)

Remark 11. In Theorem 2, due to Kj = YjX
−1(j = 1, 2), gain matrices

Kj of the controller (14) can be adjusted by Yj and X. If choosing different
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system parameters, the LMIs in Theorem 2 can generate different controller
gains Kj. For instance, as shown in Table 4, a positive ∆ρ = 0.5× 10−3

results in positive ∆∥K1∥ = 1.7743 and ∆∥K2∥ = 1.7543, where ∆ρ and
∆∥Kj∥(j = 1, 2) denote the variations of ρ = ρ0 + ρ1 in Table 3 and ∥Kj∥
in (45), respectively. Namely, when the triggering threshold increases, the
dynamic ETM transmits less data to update the controller, and thus larger
controller gains are generated. Similarly, a larger attacking expectation (i.e.,
∆β̄ > 0), a stronger uncertainty (i.e., ∆D > 0) or more serious saturation
(i.e., ∆ϵs > 0) has a more significant negative effect on system performance,
where ∆β̄, ∆D and ∆ϵs denote the variations of β̄, D and ϵs, respectively,
and thus larger controller gains (i.e., ∆∥Kj∥ > 0) are generated. On the other
hand, since ∆ρ < 0, ∆β̄ < 0, ∆D < 0 or ∆ϵs < 0 implies less negative effect
on system performance, smaller controller gains (i.e., ∆∥Kj∥ < 0) are pro-
duced.

Table 4: Effect of system parameters on the controller

∆ρ(×10−3) ∆β̄ ∆D ∆ϵs
-0.5 0.5 -0.05 0.05 -0.5 0.5 -0.05 0.05

∆∥K1∥ -1.5793 1.7743 -0.5734 0.6056 -0.3424 0.6722 -0.4757 0.5780
∆∥K2∥ -1.5693 1.7543 -0.5697 0.5941 -0.3316 0.6499 -0.4873 0.5910

Figure 4 shows the voltage and current responses of the DC microgrid
subject to the dynamic ETM, uncertainties, saturation, FDI attacks, delays
and premise mismatching. Although the open-loop system is unstable, the
proposed SFNF controller works well in stabilizing the DC microgrid. As
shown in the data tips, the capacitor voltage vC,1 arrivals at its equilibrium
point v0C,1 = 196.64V , while the inductor current iL,1 also reaches its operat-
ing point i0L,1 = P1/v

0
C,1 = 1.5256A.

As shown in Figure 5, the required injection current becomes smaller when
system approaches the equilibrium point. As shown in the zoomed graphs,
the original injection current is affected by the controller uncertainty. Due
to the effect of the saturation, the large current during the time interval
[0, 0.75ms] is set to the saturation threshold 50A. Further, the saturated
current is tampered by the FDI attacks. Besides, due to the effect of the
dynamic ETM, the injection current holds during each triggering interval.
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Figure 4: Voltage and current responses of the DC microgrid.
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Figure 6 shows the triggering instants and triggering intervals of the
dynamic ETM. The maximum and average triggering intervals are 0.7ms
and 0.33ms, respectively, which are much larger than the sampling period
0.05ms. The minimum triggering interval is 0.1ms, which avoids Zeno be-
havior. Among the 6000 sampling data, only 901 of them are transmitted.
Thus, the triggering rate of the dynamic ETM is computed as Rt = 15.02%,
which implies 84.98% of communication resources can be saved.

Figure 7 shows the relationship of attacking instants of the FDI attacks,
triggering instants of the dynamic ETM and sampling instants. During the
time interval [0, 0.3s], among the 901 triggering instants of the dynamic ETM,
157 of them are attacked by the FDI attacks, and thus the attacking rate is
computed as Ra = 17.43%.

In summary, for the unstable DC microgrid affected by many factors,
the proposed SFNF injection current controller achieves satisfactory control
performance, while the dynamic ETM effectively saves communication re-
sources, which confirm effectiveness of the proposed method.

5.2. Comparison with the non-fragile controller [9]

Using the microgrid parameters in [9], Theorem 2 computes the SFNF
controller as







K1 =
[

0.3911 0.1395 1.2506 1.1086
]

K2 =
[

0.4006 0.1403 1.2318 1.1020
] (46)

Using the non-fragile controller in [9] (i.e.,K1 = [31.8678 62.1220 27.2029
220.2515], K2 = [31.8678 62.8396 27.2029 20.2515]) and the SFNF controller
(46), voltage and current responses of the DC microgrid with initial states
x̄0 = col{0, 15, 0, 10} are shown in Figure 8. The non-fragile controller [9] can
not stabilize the system, since the effects of the FDI attacks, network delays
and premise mismatching are not considered when designing the controller.
On the other hand, since Theorem 2 considers all the affecting factors, the
SFNF controller (46) works well in stabilizing the microgrid.

Besides, the gain norm of the non-fragile controller [9] (i.e., ∥K1∥ =
232.6487, ∥K2∥ = 78.1952) are much larger than that of the SFNF controller
(46) (i.e., ∥K1∥ = 1.7220, ∥K2∥ = 1.7064). Since the controller’s gain norm
corresponds to the energy supplied by the ESS, the SFNF controller (46)
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Figure 8: State responses under the non-fragile controller [9] and SFNF controller (46).

consumes less energy than the non-fragile controller [9]. Moreover, the up-
dating frequency of the event-triggered SFNF controller (46) (i.e., the trig-
gering rate 56.25% of the dynamic ETM) is much lower than that of the
time-triggered no-fragile controller [9] (i.e., 100%). Thus, the power loss of
the SFNF controller (46) is lower than that of the no-fragile controller [9].

5.3. Comparison with different controllers [7, 25]

For the DC microgrid in Section 5.1 only affected by the uncertainties,
using the methods in [7, 25] and Theorem 2, the robust linear controller [7],
the fuzzy controller [25] and the proposed fuzzy non-fragile (FNF) controller
are obtained as follows.

Robust linear controller: K =
[
−1.0549 −0.1585 0.9932 0.1958

]

Fuzzy controller:







K1 =
[

0.8581 0.0420 0.8502 0.1751
]

K2 =
[

0.8562 0.0428 0.8508 0.1751
]
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FNF controller:







K1 =
[

47.1117 7.0906 −22.7814 2.5468
]

K2 =
[

43.8730 6.9902 −22.6965 2.5287
]
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Figure 9: Performances of the robust linear controller [7], fuzzy controller [25] and FNF
controller.

Table 5: Settling time and overshoot under different controllers

Methods
Settling time (ms) Overshoot (%)

vC,1 vC,s iL,1 iL,s vC,1 vC,s iL,1 iL,s

Robust linear controller [7] 66.5 51.4 113 320 98.6 72.7 445 2378
Fuzzy controller [25] 25.6 30.7 57.2 95.3 39.3 49.8 532 1821
FNF controller 21.0 23.2 32.2 38.0 37.6 58.7 220 1685

As shown in Figure 9 and Table 5, the robust linear controller [7] has
the longest settling time and the largest overshoot. The fuzzy controller [25]
works better than the robust linear controller [7], since the T-S fuzzy method
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is more suitable in handling the CPLs induced nonlinear issue, which con-
firms Remark 1. The proposed FNF controller performs even better than
the fuzzy controller [25], since the uncertainties are considered during the
controller design.

5.4. Comparison with the static ETMs [20, 21, 22]
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Figure 10: Comparison between the dynamic ETM and the static ETMs [20, 21, 22] (a),
and effects of the triggering parameters ρ0 (b), ρ1 (c) and ϱ (d).

Figure 10 (a) shows the triggering rates of the dynamic ETM (11)
(ρ0 = 0.0002, ρ1 = 0.0008) and the static ETMs (SETMs) [20, 21, 22] (ρ1 = 0).
Compared with the TTM with a transmitting rate 100%, both of the dynamic
ETM (11) and static ETMs [20, 21, 22] can reduce the transmitting rate. Dur-
ing the transient response [0, 0.07s), since the large state error ∥ξ(t)∥ results
in a large dynamic threshold ρd(t), the dynamic ETM (11) obtains a much
lower triggering rate of 45% than 70% for the static ETMs [20, 21, 22]. During
the steady response [0.07s, 0.15s], the small ∥ξ(t)∥ leads to a small dynamic
threshold ρd(t), and thus the dynamic ETM (11) still achieves a slightly lower
triggering rate of 54% than 55% for the static ETMs [20, 21, 22], which con-
firms Remark 3. During the whole running time [0, 0.15s], due to the addition
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of the dynamic triggering threshold ρd(t), the dynamic ETM (11) obtains a
lower triggering rate of 49% than 62% for the static ETMs [20, 21, 22].

Figure 10 (b), (c) and (d) present the effects of the triggering parame-
ters (ρ0, ρ1, ϱ) on the triggering rate Rt of the dynamic ETM (11). Clearly,
as the parameter ρ0/ρ1/ϱ increases, the triggering rate Rt of the dynamic
ETM decreases, which makes it convenient to adjust the triggering rate of
the dynamic ETM. Besides, according to the definition (11) of the dynamic
ETM and Remark 3, the parameters (ρ1, ϱ) and ρ0 play a major role in re-
ducing the triggering rate during the transient response and steady response,
respectively.

5.5. Comparison with the DETMs [29, 30, 31, 32]
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Figure 11: Comparison with the DETMs [29, 31] and the DETMs [30, 32]

Figure 11 (a) shows ρ̄ of the DETMs [29, 31] (η = 0.0002, a = 4, θ = 0.05),
ρ̃ of the DETMs [30, 32] (σ1 = 0.0002, σ2 = 0.0008, ς = 0.2) and ρ̂ of the
DETM (11) (ρ0 = 0.0002, ρ1 = 0.0008). The triggering rates of these DETMs
are presented in Figure 11 (b). During the transient response (i.e, t ∈ [0, 0.09s]),
since ρ̂ is larger than ρ̃ and ρ̄, the DETM (11) obtains the lowest triggering
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rate 44%. During the steady-state response (i.e, t ∈ (0.09s, 0.15s]), both of
ρ̃ and ρ̄ are larger than ρ̂, and thus the DETM (11) has the highest trig-
gering rate 57%. As shown in Figure 11 (c), these DETMs generally obtain
similar control performances. In detail, as shown in the zoomed graphs, dur-
ing the transient response, since the DETM (11) has the lowest triggering
rate, the system convergence speed is slightly slower. During the steady-
state response, due to the usage of the highest triggering rate, the DETM
(11) ensures smaller steady-state errors, which implies the tradeoff between
control and communication performances. The performances of the DETMs
[29, 30, 31, 32] are opposite to that of the DETM (11). These observations
confirm Remark 4.

Remark 12. In this section, the main performance evaluation indicators
are chosen as follows. For the dynamic ETM, the triggering rate is a critical
index, since it implies how much network bandwidth can be saved. For the
FDI attacks, the attacking rate is a key indicator, since it describes how fre-
quent the control signals are tampered. For the controllers, the settling time
and overshoot of system states are important indexes, since they directly
reflect the controllers’ performance.

Remark 13. Using the type-1 fuzzy method, this paper designs a SFNF
controller for the DC microgrids with known dynamics. For Markov jump
systems with unknown dynamics, the work [45] proposes an optimal fuzzy
control strategy based on the reinforcement learning. To handle the parame-
ters uncertainties in membership functions, the work [46] presents an interval
type-2 fuzzy filter for fault detection. In the future, the methods [45, 46] can
be used to analyse the DC microgrids with unknown dynamics and parameter
uncertainties.

Remark 14. Considering effects of the dynamic ETM, plant and controller
uncertainties, FDI attacks, saturation, network delays and premise mismatch-
ing, it is not easy to build the closed-loop system model (18). Besides, nonlin-
ear coupled terms are induced in stability criteria in Theorem 1, which makes
it difficult to design controller. Thus, although the used theory is not compli-
cated, the system analysis and synthesis are not easy. Simulation shows that,
although the SFNF controller (14) and dynamic ETM (11) are not compli-
cated, they can guarantee satisfied control and communication performances
with low computation burden.
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Remark 15. Unlike this paper which focuses on the DC microgrids with
known dynamics, the work [45] proposes a reinforcement learning based opti-
mal fuzzy control strategy for markov jump systems with unknown dynamics.
Unlike this paper which uses type-1 fuzzy method, the work [46] presents an
interval type-2 (IT2) fuzzy filter for fault detection, and the work [47] pro-
poses an IT2 based fuzzy fault tolerant control method for stochastic switched
systems. Based on IT2 fuzzy neural networks, the work [48] presents a fuzzy
sliding mode control method for DC-DC converters. In future, the IT2 fuzzy
control and optimal fuzzy control methods can be used to study complex
microgrid systems.

6. Conclusion

This paper investigates the fuzzy non-fragile control of DC microgrids
affected by the dynamic ETM, FDI attacks, uncertainties, controller satura-
tion, network delays and premise mismatching. First, a discrete-time dynamic
ETM is proposed. By adding a dynamic triggering threshold, the dynamic
ETM achieves a lower triggering rate than the static ETMs. Since the MIET
of the dynamic ETM is lower bounded by the sampling period, Zeno be-
havior is naturally avoided. Then, using the T-S fuzzy and time-delay mod-
eling methods, a fuzzy time-delay closed-loop system model is established,
which facilitates studying the effects of all the affecting factors in a unified
framework. Next, using the Lyapunov stability theory, criteria for exponen-
tial stability in mean square are obtained, which establish the relationship
between system stability and the affecting factors. Further, using the LMI
technology, parameters of the SFNF controller and the dynamic ETM can
be co-designed. Simulation results confirm the effectiveness of the proposed
method. Based on the results of the single-bus DC microgrid studied in this
paper, the cooperative control of multi-bus microgrids and AC/DC hybrid
microgrids will be studied in the future.
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