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Characterisation of negative
social impact risks within
pre-deployment carbon dioxide
utilisation projects

Alex J. K. Newman*, Rachael H. Rothman and Peter Styring*

Department of Chemical and Biological Engineering, Faculty of Engineering, The University of Sheffield,

Sheffield, England, United Kingdom

As the youngest of the three sub-fields within sustainability assessment,

development of social impact assessment lags behind life cycle and techno-

economic assessments. This is manifested in comparatively lacking

methodological maturity. The calculation of impact indicator results, achieved

through the use of characterisation models, is a prime example of the field’s

immaturity. This research initially identifies current methodologies observed

within social impact assessment. This reveals that impact pathway

characterisation models, analogous to those seen in life cycle assessment,

have primarily been neglected; instead, research has been focused on less

reproducible and more subjective reference scale approaches. Redressing this

balance, a set of seven UNEP and SETAC indicators are evaluated, developing

novel impact pathway-based characterisation models. Focussing on the effects

of stimulating and de-stimulating factors on indicators, identifying hotspots

where negative social impacts are likely to arise. The presented

methodologies are tailored to applications involving the assessment of

potential carbon dioxide utilisation (CDU) value chains. This focus results in

open access characterisation models that are indiscriminate of technology

readiness level, requiring no primary process data. Data from the World Bank

and its partner organisations are utilised, generating complete results across all

indicators for 129 countries. Development of these quantifiable characterisation

models delivers significant value in the standardisation of assessment procedure

and facilitates inter-assessment comparability, a benefit to stakeholders ranging

from practitioners to commissioners.

KEYWORDS

sustainability, carbon capture and utilisation, CDU, social impact assessment (SIA),

characterisation methods

1 Introduction

First attempted in 1996 by O’Brien, et al., social impact assessment (SIA) aims to

systematically and repeatably evaluate the social effects of activities, policies, or legislation

(Huarachi, et al., 2020). Alternatively, it can be defined as; “the process of identifying the

future consequences of current or proposed actions, which are related to individuals,

organisations and social macro-systems” (Becker, 2001; McCord, et al., 2021; Newman and

Styring, 2023). This is typically achieved by considering a diverse stakeholder portfolio

containing relevant impact categories and indicators. The idealised outcome of a well-

conducted SIA is the safeguarding, monitoring, and (in many cases) mitigation of social
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pressures associated with sustainable development. Many

assessment frameworks for social performance have been

proposed, the most notable being the United Nations’

Sustainability Development Goals (UN SDGs) (United Nations,

2015a). However, owing to the complexity of societal structures

and human behaviour, accurate characterisation remains a field-

wide challenge. Consequently, methodologies often incorporate

practitioner judgement or other sources of subjectivity, delivering

qualitative or pseudo-quantitative results. In addition, most work

focuses on the assessment of deployed activities, neglecting the pre-

emptive assessment of proposed projects.

In a broader sense, SIA can be seen to represent one of three

‘strands’ within a holistic view of sustainability. Environmental,

economic, and social factors must all be managed responsibly to

deliver long-term sustainable practices. While environmental-

focused lifecycle assessments (LCA) and techno-economic

assessments (TEA) are mature and standardised, social impact

assessment (SIA) is still a relatively underdeveloped field.

Attempts have been made to integrate the three strands, making

significant headway in the form of the Global CO2 Initiative’s (GCI)

combined LCA and TEA guidelines (McCord, et al., 2018), and

McCord et al.‘s Triple Helix Framework (McCord, et al., 2021).

Despite this progress, the lack of consistent, quantitative

methodologies for SIA hinders the meaningful integration of

otherwise parallel assessment strands. SIA’s most notable

shortcoming is a failure to provide transparent and repeatable

characterisation models (CMs) to underpin impact indicator

reporting. This issue has long been solved for LCA (and TEA),

offering numerous robust and broadly accepted CMs such as CML

2002, ReCiPe, TRACI, etc., each with specific use cases. SIA’s lack of

such quantitative impact characterisation prevents comparison

between studies of competing technologies. Such an approach

would also deliver increased transparency and reliability, aspects

that are often dismissed within practitioner judgement-based

scoring scales.

Procedural and methodological divergence within SIA, based on

assessment focus (i.e., technology type or field), is necessary to accurately

refine SIA practices; an observationmirrored in LCAvia the ISOderived,

and sector-specific, ILCD Handbook (European Commission - Joint

Research Centre - Institute for Environment and Sustainability, 2010).

For instance, the assessment of deployed activities can be defined and

supported by primary data, resulting in more straightforward impact

pathway characterisation. In contrast, assessments of proposed future

value chains, or low TRL technologies, cannot rely on such data and

instead requires a risk-based approach that utilises only open-source

data. In theory, this would identify red flags, allowing for the subsequent

implementation of mitigation or monitoring procedures. SIA’s current

focus on deployed activities inherently contrasts its aim of supporting

sustainable development, only quantifying impacts after capital

investment and roll-out. However, if the activity or process is not

intrinsically socially sustainable, deployment should be deferred until

the root issues are resolved. Social sustainability should be attained, or

projected, in the design phase, not retrospectively (Newman, et al., 2023).

This philosophy requires a novel approach that does not rely on the

primary data of a deployed technology or value chain.

Having identified this major gap in assessment capabilities, this

paper focusses on the development of SIA impact characterisation in

the context of carbon dioxide utilisation (CDU). With increasing

cultural and societal relevance, and offering a partial answer to the

climate crisis, CDU is a field in urgent need of such pre-deployment

SIAs. Pieri, et al. conducted a review of CDU focussed sustainability

assessments, concluding that none considered social impacts (Pieri,

et al., 2018). Following this, Chauvy, et al. approach meaningful

consideration of SIA through examination of health and safety

within CDU (Chauvy, et al., 2019). However, the consideration

of social impacts in the field remains lacking. Early assessment

would facilitate the minimisation or avoidance of negative social

impacts prior to occurrence. After all, how efficacious can an

environmentally sustainable technology be if it simultaneously

generates negative social impacts?

The broad catalogue of CDU technologies seen in current

literature, ranging from concrete manufacturing (Li, et al., 2022)

to synthetic fuel production (Dimitriou, et al., 2015), harbour a

diverse range of technology readiness levels (TRLs) and process

types. This diversity demonstrates CDU’s character as a rapidly

developing and forward-looking field. However, it also makes the

derivation and application of social impact characterisationmethods

a complex challenge. Even in cases where primary data is available, a

rare scenario for low TRL CDU processes, it cannot be effectively

used in comparative studies. Higher TRL processes will have

benefited disproportionately from optimisation and scale-up

efficiency gains when compared to theorised or bench scale

alternatives at early R&D phases. Consequently, the development

of flexibly applicable, non-TRL specific, CMs offers significant value

to both CDU researchers and SIA practitioners. Furthermore, this

high-level approach supports application to the full suite of CDU

related technologies, circumnavigating the nuances related to

specific technologies.

In addition, many CDU projects, particularly those at pre-

deployment or low TRL phases, typically suffer from a lack of

geographic specificity regarding operating location (McCord,

et al., 2018). Often, only a vague targeted deployment region can

be defined, informed by investment conditions, market forces, and

labour requirements. However, macro level studies at continental or

sub-continental resolution offer only vague insights. Consequently,

the potential for negative societal impacts must be evaluated on a

geographically meso-level, incentivising the development of

methods adopting a national level scope.

The outlined issues demonstrate that CDU has sector specific

needs that are currently neglected by broader, more general, social

impact characterisation approaches. These can be succinctly

summarised within six methodological requirements, or objectives;

1. Applicability to a broad range of technology types.

2. Pre-emptive identification of likely negative impacts associated

with projects

3. A levelized and comparative consideration of diverse

TRL ranges

4. Reliance on open source (non-primary) data

5. National (meso) level reporting resolution

6. Transparency and repeatability

The proposed national level red-flag philosophy, while less

granular than approaches based on primary data, adds significant

value at project inception or upgrade lifecycle phases. For instance,

many CDU processes are highly energy intensive, a consequence of
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CO2’s inherent thermodynamic stability (Creutz and Fujita, 2001).

A SIA CM focussing on communities’ access to electricity would

augment an organisation’s ability to determine whether existing

energy infrastructure can be utilised, or, if on-site generation is

required to safeguard local communities’ energy needs. A plant

requiring large amounts of grid electricity may not be socially

sustainable if deployed in a country with a scarce or intermittent

energy supply. However, if the project scope was expanded to

include combined heat and power (CHP), photovoltaics, etc.,

sustainability may be realised. Through this approach, SIA does

not exclude countries from consideration, but instead informs the

targeting of remedial action. Furthermore, incorporating this

philosophy within holistic assessments would allow detailed

identification of burden shifting. In the previous example case,

the abatement of social issues around electricity access would

likely be reflected in elevated capital costs associated with CHP.

While not granting the same level of granular insight as LCA

CMs, adherence to these six objectives delivers a value addition to

organisations during the transition towards sustainable industrial

ecosystems. Early identification of potential negative social impacts

leaves time to remedy the causal factors, improving both long- and

short-term sustainability profiles while removing the compromises

associated with post-deployment optimisation. If conveyed

effectively to key stakeholders, the results of such a red-flag

assessment would support strategic industrial decision-making

around CDU process deployment.

2 Review of literature

Previous reviews spanning a broad period reveal that SIA,

constitutes the least standardised strand within sustainability

assessment (Klöpffer, 2003; Jørgensen, et al., 2007; Pollok, et al.,

2021). Impacts are most commonly reported relative to the UN

SDGs (Sustainable Development Goals) (United Nations, 2015b) or

GRI (Global Reporting Initiative) (Stiching Global Reporting

Initiative, 2021). Assessments are typically carried out around

deployed operations, generally neglecting processes residing in

low TRL or R&D lifecycle phases (McCord, et al., 2021), an issue

realised to a lesser but still present extent in LCA. Beyond the UN

and GRI approaches, Kühnen and Hahn (2017) identify the UNEP

(United Nations Environment Programme) and SETAC (Society of

Environmental Toxicology and Chemistry) S-LCA guidelines, SAI

(Social Accountability International) SA 8000, and ISO 26000 as

alternate methodological options. However, the focus on deployed

activities remains a common limitation (Zimmermann and

Schomäcker, 2017).

A small number of sector-specific SIA approaches have been

identified in previous literature (Newman and Styring, 2023),

primarily focusing on the mineral (Azapagic, 2004) and mining

(Mancini and Sala, 2018) industries. Despite this specialisation,

characterisation models analogous to those observed in LCA

remain elusive. Furthermore, in the case of CDU-oriented SIA,

there is no practitioner guidance around the quantitative handling of

impact reporting. McCord, et al., instead, propose practitioner-led

reference scale approaches when aligning CDU-based LCAs, TEAs

and SIAs (McCord, et al., 2021). While superficially aligning the

three strands, the SIA ‘scoring’ methods introduce a much greater

degree of subjectivity than their LCA and TEA counterparts. These

shortcomings are due to both a lack of available data and an

imperfect understanding of the macro societal systems through

which impacts propagate. Where environmental impact pathways

transcend national and cultural borders, social impact pathways are

dynamic, complex, and opaque. At this point, the field appears to

have reached an impasse with respect to assessment specificity.

Stakeholders desire more accurate and granular SIA results, with

practitioners contemporaneously lacking the methodologies

through which these must be generated.

UNEP and SETAC clearly define two typologies of impact

characterisation: the reference scale (formerly called Type I or RS

S-LCA) and impact pathway approaches (formerly Type II or IP

S-LCA). Each have their merits and limitations, reflecting

fundamentally different schools of thought and delivering a

significant methodological bifurcation. Reference scale approaches

aim to “assess social performance or risk”, whereas the impact

pathway approach assesses “consequential social impacts through

characterising the cause-and-effect chain” (UNEP, 2020). Reference

scales usually utilise a five-point scale against which practitioners

score the performance of evaluated alternatives. However, these

scales incorporate several sources of fuzziness and subjectivity.

Examples include the assignment of criteria for each scoring

level, the use of linear versus non-linear scales, and the

qualitative nature of performance ranking against (usually un-

quantified) statements. Furthermore, the approach generates very

coarse results due to the five-point non-continuous scale. In

contrast, the impact pathway approach is more analogous to

methods seen in LCA, allowing for more seamless integration of

the strands within holistic assessments. However, the previously

noted complexities associated with impact pathway modelling result

in broader adoption of the reference scale approach, a conclusion

mirrored in all major practitioner guidelines, including the latest

CDU-focused framework, the triple helix framework (McCord,

et al., 2021).

Reference scale-based tools, such as the Social Hotspot

Database (SHDB) (SHDB, 2022), have been developed to aid

practitioners in the conduction of SIAs. Indeed, the SHDB

facilitates national level assessments scopes such as those

targeted in this work. However, while valuable in many

applications, the adoption of reference scale approaches to

impact characterisation falls short of the methodological

counterparts seen in LCA and TEA; inherently facilitating the

introduction of practitioner subjectivity or bias. If the complete

and meaningful harmonisation of environmental, economic,

and social assessment strands is to be realised, an impact

pathway-based approach must be presented for use by

practitioner, transcending the SHDB’s offering.

Compounding this divergence in characterisation approach, the

SHDB is pay wall protected. This puts it in direct conflict with LCA

and TEA characterisation methods, provided free of charge in all

examined cases (CML 2002, ReCiPe, TRACI, etc.). If SIA is to be

adopted on an equivalent basis, freely accessible impact pathway

characterisation methods must be available to practioners who lack

the backing of well-funded organisations. Failure to provide this

may result in SIA’s stagnation within a second strata of assessments,

requiring database licences that exclude small businesses and

independent practioners.
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GreenDelta’s PSILCA database (GreenDelta, 2022) represents

what is deemed to be the closest analogue to the CMs targeted within

this work. However, despite being based on the UNEP and SETAC

guidelines, and examining a comprehensive 15,000 sectors

(excluding CDU) across a mixture of 69 qualitative and

quantitative risk-based indicators, it is designed to assess

deployed processes and value chains. Therefore, the most

pertinent gap in capability with respect to CDU related SIA, pre-

deployment assessments, remains un-tackled. Furthermore, the

indicator results are reported against a discrete qualitative scale

(based on quantitative background calculations). This consequently

fails to communicate social impact risks on a continuous basis,

instead utilising reference-scale-like scoring points (low risk,

medium risk, high risk, etc.). In addition to these factors, and

similarly to the SHDB, PSILCA is also a paid product, resulting

in the same accessibility issues as previously noted. Finally, the

examination on a sector specific basis adds little value to CDU

projects as it is not currently recognised as an independent industrial

sector within PSILCAs methodology (GreenDelta, 2022). Owing to

their surface level similarities, the PSILCA CMs will be compared to

those developed in this paper within the discussion.

A secondary methodological divergence within SIA thinking can

be observed in the handling and characterisation of positive social

impacts. UNEP and SETAC propose their classification under three

categories (UNEP, 2020): positive social performance going beyond

business as usual (Goedkoop, et al., 2018), positive social impact

through presence (Norris, 2006), and positive social impact through

product utility (Kuhnen and Hahn, 2019). These classifications

again focus on deployed technologies, requiring detailed

knowledge of the local communities. In contrast, a majority of

SIA methodologies focus only on negative impacts (UNEP, 2020).

While the argument can be made for the need to include positive

impacts, the decision should be handled on a case-specific basis;

their inclusion should enhance the insights delivered by a given

assessment, not dilute the resolution at which potential negative

impacts are examined.

The literature review’s findings show that no CDU or value

chain-oriented SIA guidelines further the development of impact

pathway approaches. This paper therefore proposes that more

emphasis should be placed on the impact pathway approach,

aligning its development phase with reference scales to deliver

more quantitative results. Additionally, impact characterisation

through mathematical methods offers a remedy to currently

observed subjectivity and repeatability issues.

3 Methodology

As identified through the literature review, impact pathway-

based SIA lags behind its reference scale counterpart, both in terms

of research effort and maturity. Consequently, herein we target the

generation of initial open-source impact pathway CMs. The

approaches developed primarily focus on applications concerning

comparative assessments of CDU value chains, tackling the specific

challenges identified through the literature review and building

upon McCord, et al.‘s triple helix framework. However, where

McCord, et al. deploy a “qualitative scoring methodology based

on quantitative and semi-quantitative data” (McCord, et al., 2021),

this approach targets purely quantitative assessment. The

methodology aims to highlight elevated social impact risks based

on deployment country. Generated results subsequently support the

efficient allocation of resources for the pre-deployment prevention

and mitigation of impacts through elevated due diligence and

monitoring by the operating organisation.

Assessment indicators, clustered within stakeholder categories,

are typically selected by the SIA practitioner from a broad pool, with

36 identified by Rafiaani, et al. (2019); this process draws on the

assessment’s goal and scope. Despite omitting impact pathway

approaches, the triple helix framework offers significant advances

in CDU SIA methodology in this respect. McCord, et al., building

upon Rafiaani, et al.‘s adaptation of UNEP and SETAC’s guidelines

to CDU technologies (Rafiaani, et al., 2019), streamline the

stakeholder categories considered within assessments. UNEP and

SETAC originally recommend a base set of five stakeholder

categories (UNEP, 2020);

1. Workers/employees

2. Local community

3. Society

4. Consumers

5. Value chain actors

These categories are subdivided into impact categories,

subcategories, and associated impact indicators. The triple helix

framework subsequently reduces this set to the consideration of only

workers, local communities, and consumers (McCord, et al., 2021),

citing the irrelevance of other categories to CDU projects.

Owing to the scope of this work, the reduced set of stakeholder

categories defined within the triple helix framework is adopted as a

basis (McCord, et al., 2021). However, the consumer category can

also be discarded when targeting comparative studies, providing an

assessment scope aligned with cradle-to-gate LCA’s; any products

manufactured by competing CDU value chains should be identical,

resulting in identical social impacts for consumers and reduced

insights. This leaves consideration of only the worker (W) and local

community (LC) stakeholder categories. Within these, seven

indicators are selected for this proof-of-concept exercise. These

reflect both a broad range of social issues, and typical difficulties

experienced in the field (primarily data availability and

reporting quality).

• Risk of Forced Labour (W)

• Risk of Child Labour (W)

• Occupational Health and Safety (W)

• Risk of Change in Access to Electricity (LC)

• Risk of Change in Access to Water (LC)

• Risk of Land Use Change (LC)

• Utilisation of Hazardous Materials (LC)

Due to the targeting of pre-deployment CM applicability, some

common indicators such a fair wages or job creation cannot be evaluated.

Without the specification of an operating location, their evaluation

would result in a degree of uncertainty that negates any benefit of

their assessment. Such gaps in impact coverage represent the first

limitation of the proposed methodology. However, this is necessary

in scenarios where the exact deployment region is unknown.
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To facilitate an impact pathway-based methodology, stimulating

and de-stimulating factors are identified for each indicator and

systematically aggregated, delivering overall risk scores that

highlight potential impact hotspots. The result is an approach

closely aligned with the more thoroughly developed LCA CMs.

Additionally, dependence on detailed process-specific data is

avoided, aiding with technology comparisons over the diverse

TRL range observed within CDU.

In the interest of transparency and reproducibility, only open-

source data is utilised in the developed CMs. However, SIA-focused

databases lag significantly behind their LCA counterparts, such as

Ecoinvent (Newman and Styring, 2023). Several characteristics were

targeted within the data source selection: coverage, currency,

reliability, and consistency. After consideration of multiple

options, including ad-hoc collection, the World Bank is selected

as the primary data source for CM development (also heavily utilised

within PSILCA’s methodology). With 189 participating countries

and 12,000 social development projects (The World Bank, 2023a),

coverage is broad and reliable. Furthermore, constituent national-

level data sets are updated regularly, with a majority reported

annually. Reliability is safeguarded through the use of

transparently audited data from partner organisations and

governments. Finally, consistency is achieved inherently through

the convergence of these prior factors. In some cases, secondary

sources must be used to supplement the World Bank data; however,

as discussed later, these often originate from partner organisations

or constituent data sets. Once national level data for the stimulating

and de-stimulating factors is collated, normalisation procedures are

applied, delivering scores between zero and one through which the

assessed CDU value chain alternatives’ risk levels can be directly

compared. This is a significant departure from the PSILCA

methodology which utilises conversion to reference scales

(discrete) in favour of normalisation (continuous).

Adhering to the red-flag approach, necessitated by the complexity

of impact pathways, only negative social impacts will be considered.

As previously identified, the evaluation and inclusion of positive

impacts is a divisive issue within SIA. The developed CMs aim to

highlight supply chain components with an elevated risk of negative

social impacts, stimulating greater due diligence and monitoring

efforts from the responsible organisation. Furthermore, positive

social impacts should not be compensatory, as seen in LCA and

TEA. That is, positive impacts on one indicator or stakeholder group

cannot be allowed to offset negative performance in another. From a

moral stance, no stakeholder should wield the power to benefit one

community at the detriment of another. Avoiding positive impact

reporting removes such complications while simultaneously achieving

the specified objectives.

Scoring directionality within SIA is also acknowledged by

McCord, et al. as an important methodological decision

(McCord, et al., 2021). That is, should negative social impacts be

reflected through a high or low score? Directionality should be

uniform across all indicators within an assessment, allowing for

easily interpreted parallel reporting. In this methodology, countries

with a high risk of negative social impacts are indicated by low

scores, perceivedly the most intuitive approach.

Note to readers: ESI containing all utilised data and intermediate

handing steps is available for simultaneous reference and the

support of replication studies.

4 Methods development

In this section, the developed SIA CMs are laid out. The

respective stimulating and de-stimulating factors, normalisation

procedures, and attained geographic coverage are detailed. In the

interest of conciseness, the complete datasets generated through

these methods are not fully detailed in this paper, instead focussing

on the G20 nations; however, the full results and utilised data sets for

the 239 examined countries are provided within the

Supplementary Material.

4.1 Risk of forced labour

The risk of forced labour can be summarised as “work that is

performed involuntarily and under the menace of any penalty. It

refers to situations in which persons are coerced to work through the

use of violence or intimidation, or by more subtle means such as

manipulated debt, retention of identity papers or threats of

denunciation to immigration authorities” (International Labour

Conference Protocol to Convention No. 29, 2014).

The proposed CM evaluates the stimulating factors of current

prevalence (per 1,000 population), and future vulnerability. This

delivers keener insights than the sole consideration of prevalence,

incorporating future exposure risk through the evaluation of

additional aggravating factors. This national prevalence and

vulnerability data is collected from a Walk Free Foundation report

(WFF) (Walk Free Foundation, 2018), a partner and contributor to

the World Bank database. Additional contributions were made by the

International Labour Organization (ILO) and the International

Organisation for Migration (IMO).

The estimated prevalence is evaluated using data collected by

WFF through the Gallup World Poll. Complete reporting is

observed for 167 of the World Bank’s 189 participating nations,

providing a high degree of completeness. Estimated values range

from 104.6 people in forced labour per 1,000 population (N. Korea)

to people in forced labour per 1,000 population (Japan), full datasets

are available in the ESI (Walk Free Foundation, 2018).

The prevalence values for each country (collected from the WFF

report)are normalised within the set on a max-zero basis. This approach

is selected to avoid assigning a score of one (indicating perfect

performance) to a country with an estimated prevalence greater than

zero. While this could conceivably cause the artificial grouping of

countries’ scores at the lower end of the scale, it is deemed essential

to anchor the perfect score at zero prevalence. This decision only changes

the highest normalised prevalence of forced labour (NPFL) score (for

Japan) by 0.288% (from one to 0.997). The lower end of the scale moves

dynamically with the highest (i.e., worst) national prevalence value. As a

result, a global reduction in forced labour prevalence makes attainment

of a positive score more challenging, incentivising continued

improvement.

Equation 1 – Calculation of normalised prevalence of forced

labour (NPFL). Where, PFLMax indicates the highest national

prevalence, and PFLi indicates prevalence in country i.

1 −
PFLi

PFLMax

� NPFLi
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Equation 1 converts the full range of theoretical prevalence

values to scores between 0 and one while correcting for desired

directionality. The resulting upper and lower bounds for this

normalised prevalence of forced labour (NPFL) are 0 and

0.99727 for N. Korea and Japan, respectively.

The second stimulating factor within the CM considers

vulnerability to forced labour. This is a complex metric to quantify

as unlike prevalence it cannot be directlymeasured. Consequently, the

WFF’s method evaluates several constituent risk stimulators, utilising

procedures verified through an audit by Ernst and Young (Walk Free

Foundation, 2018).

The full methodology behindWFF’s quantification of vulnerability

can be found in the referenced report (Walk Free Foundation, 2018). In

summary, an initial group of 35 risk stimulators were checked for

collinearity, removing those with a significant correlation, defined as

those with variance inflation factors (VIF) greater than 10 and

tolerance below 1. 12 factors are removed in this process,

eliminating the compounding effects and reduced sensitivity

observed through the inclusion of multiple co-linear factors. The

remaining 23 stimulators are grouped into clustered ‘factors’

through principal component analysis (PCA). The result is five

overarching factors (listed below) that more approachably

characterise a population’s vulnerability to forced labour. An expert

working group, selected by the WFF, was then consulted to assign

weights to the five factors. This utilises the eigenvalues as weightings,

indicating the amount of variance explained by each particular factor

(Walk Free Foundation, 2018). Those possessing greater eigenvalues,

and therefore variance, explain a more significant proportion of the

overall model and, thus, command greater weights. This process

delivers the following factors and weights (detailed in brackets):

1. Governance Issues (5.76)

2. Lack of Basic Needs (3.422)

3. Inequality (2.233)

4. Disenfranchised Groups (2.092)

5. Effects of Conflict (1.938)

With the five constituent factors fully defined, weighted, and

evaluated for each of the 167 countries considered, the raw national

vulnerability scores can be calculated. This yields country-specific

eigenvalue weighted values (EWVi) through Equation 2.

Equation 2 – Calculation of the eigenvalue weighted value for

country i. Where, Fxi indicates the average value of factor x for

country i.

F1i × 5.76( ) + F2i × 3.422( ) + F3i × 2.233( ) + F4i × 2.092( ) + F5i × 1.938( )
0.01 × 5 × 5.76 × 3.422 × 2.233 × 2.092 × 1.938

� EWVi

This EWV represents an overall vulnerability score for each

country, incorporating the 23 identified stimulating factors.

However, this must be normalised, using Equation 3, to facilitate

further use in conjunction with the national prevalence scores. This

is defined as the Normalised Vulnerability to Forced Labour (NVFLi).

FIGURE 1

Flow diagram showing the classification of what constitutes child labour. Adapted from UNICEF and ILO (International Labour Organization and

United Nations Children’s Fund, 2021).
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Equation 3 – Calculation of the normalised vulnerability to

forced labour for country i. Where EWVMin and EWVMax are the

lowest and highest observed EVW across the assessed countries.

100 − 1 − 99 EWVi−EWVMin( )

EWVMax−EWVMin
( )

100
� NVFLi

Having now defined and calculated the normalised national

scores for prevalence and vulnerability, the overall indicator scores

can be obtained through a simple average of the two values

(Equation 4). This approach was adopted to assign equal

importance of current prevalence and vulnerability; although,

with time this weighting strategy can be revisited if supported by

the results obtained through application cases. The national scores

generated by Equation 4 provide a relative ranking of all considered

countries between values of zero and one. Result of this calculation

for the G20 countries gives the national risk profile detailed in

Figure 3.

Equation 4 – Calculation of final risk of forced labour indicator

score for country i.

0.5 NPFLi +NVFLi( ) � Risk ofForced Labour

4.2 Risk of child labour

As with the previous forced labour CM, prevalence and

vulnerability are identified as stimulating factors. In order to

clearly and consistently evaluate the prevalence of child labour,

the classification requirements laid out by the United Nations

Children’s Fund (UNICEF) and the ILO are adopted (shown by

Figure 1). This considers varied factors such as industry sectors,

hazard, age, and duration, providing a widely accepted framework.

With a clear definition achieved, the quantification of national

child labour prevalence is approached. However, data availability

proves a challenge due to lacking geographic resolution. Rather

than at the national level, data is presented in terms of the UN SDG

regions listed below. This clearly reduces the granularity attained.

However, the incorporation of vulnerability as a second

stimulating factor augments the indicator’s overall geographic

resolution.

• Sub-Saharan Africa

• Central and Southern Asia

• Eastern and South-Eastern Asia

• Northern Africa and Western Asia

• Latin America and the Caribbean

• Europe and North America

Examining the reported prevalence data, all identified child

labour between the ages of 5–17 is included. UNICEF

independently report the prevalence of both hazardous and non-

hazardous child labour as a percentage of the nation’s population.

For SIA CM development, both of these types are of significance.

Additionally, the reported values are mutually exclusive, permitting

their additive aggregation through Equation 5 without the risk of

double counting.

Equation 5 –Aggregation of child labour prevalence data for UN

SDG regions. Where, NCLi is the % of children in non-hazardous

labour in country i, HCLi is the % of children in hazardous labour in

country i, and OPCLi is the country’s overall prevalence of

child labour.

NCLi +HCLi � OPCLi

The generated overall child labour prevalence (OCLPi) values

are subsequently normalised using Equation 6. As seen with forced

labour prevalence, this occurs on a max zero basis, both reversing

directionality and ensuring a requirement of 0% child labour

prevalence for a perfect score of 1.

Equation 6 – Normalisation of overall child labour prevalence

(OPCL). Where, OPCLMax is the highest observed prevalence,

OPCLi is the overall prevalence in country i, and NCLPi is the

normalised prevalence of child labour for country i.

1 −
OPCLi

OPCLMax

� NPCLi

With the normalised child labour prevalence (NCLPi)

determined for each UN SDG region, and thus their

constituent countries, vulnerability can be incorporated.

Vulnerability to child labour is not examined by the World

Bank directly, necessitating a secondary data source.

Consequently, the national vulnerability scores utilised within

the forced labour CM (extracted from a WFF report (Walk Free

Foundation, 2018)) are used as a proxy. Given a clear

commonality in stimulating factors between forced and child

labour (International Labour Organization and United Nations

Children’s Fund, 2021), this is deemed a reasonable assumption.

Incorporation of national level vulnerability as the second

stimulating factor allows for upward or downward adjustment

of the UN SDG region-oriented prevalence data, accounting for

intra-region risk variations. The overall effect of this strategy is

greatly improved geographic resolution. Using the previously

processed WFF vulnerability data (NVFLi), the final indicator

value can be determined using Equation 7, delivering the national

scoring profile for the G20 seen in Figure 4.

Equation 7 – Final indicator calculation for the risk of child

labour. Where, NPCLi is the normalised prevalence of child labour

in country i, and NVFLi is the normalised vulnerability to forced

labour in country i.

0.5 NPCLi +NVFLi( ) � Risk ofChild Labour

4.3 Risk of change in access to electricity

In adherence to the methodological approach laid out earlier,

literature was consulted to identify stimulating and de-

stimulating factors with respect to energy access and security.

Stavytskyy, et al. present the only identified list of factors with a

relevant scope, all of which are present within the World Bank

database (Stavytskyy, et al., 2021; The World Bank, 2023b).

This includes;
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• Renewable energy consumption (% of total final energy

consumption) (De-stimulating factor)

• Energy Imports, net (% of energy use) (Stimulating factor)

• Electric power consumption (kWh per capita) (De-

stimulating factor)

• Fossil fuel energy consumption (% of total) (Stimulating)

With the factors identified, their respective data sets are

extracted directly from the World Bank. However, issues around

data completeness are again encountered. Many countries show

patchy reporting with no single year containing all required data

across an acceptable number of countries. To circumvent this issue,

the most recently available data is utilised in each case, generating a

super-set (provided in the Supplementary Material). A hard limit on

data age is implemented, backdating no more than 10 years,

preventing the incorporation of significantly aged data. This

strategy results in complete data coverage for 142 countries, or

65% of those present in the database. Additional gaps cannot be

filled without imputation.

Before normalisation of each factor, skewness is examined (using

Equation 8) to identify any unintended implications of the temporally

diverse data aggregation strategy. Through this, the skewness of

electric power consumption data is revealed to be 4.74 (the only

factor with a skewness <1). When using standard normalisation

techniques, this significantly reduced the utility of collected data,

tightly grouping a majority of countries with a few distant outliers.

Furthermore, the raw energy consumption rate gives little insight to

the more relevant per captia availability. Electric power consumption

was therefore removed from further CM development.

Equation 8 – Method used for the calculation of data skewness.

Where n is the sample size, xi is the i
th value in the sample, �x is the

mean, and σ is the standard deviation.

skewness �
n

n − 1( ) n − 2( )
( ) × ∑n

i�1

xi − �x

σ

( )3

Renewable energy consumption (RECi) is normalised on a zero to

one basis (Equation 9) to deliver national scores reflecting their

renewable grid shares (NRECi), only awarding a perfect score to a

100% renewable grid mix. The upper bound observed within the data

set is the Democratic Republic of the Congo, exhibiting a 96.24%

renewable grid mix, a direct consequence of large hydroelectric and

biogas capacities (International Energy Agency, 2023).

Equation 9 – Normalisation of national renewable energy

consumption. Where, RECi is the renewable energy consumption

of country i (% of grid mix), and NRECi is the normalised renewable

energy consumption of country i.

RECi

100
� NRECi

Normalisation of net energy imports is a more complex task,

ultimately being handled by utility function (Equation 10). Many

exporting countries exhibit highly negative values within this risk

stimulating factor (e.g., Norway). These large-scale exporters

introduce significant skew. Additionally, the export capacity of a

country does not affect its own population’s access to electricity,

rendering it is consideration moot. Consequently, any countries

exhibiting negative percentage import values (NEIi) are assigned a

value of zero, attaining the highest possible normalised value

(NNEIi = 1), signalling ideal performance. Conversely, a value of

100% import will receive a normalised score of zero, reflecting total

dependence on non-domestic sources.

Equation 10 – Normalisation of net energy import (% of

domestic use). Where, NNEIi is the normalised net energy

import for country i, and NEIi is the net energy import of

country i.

NNEIi �

NEIi

100
, for 0<NEIi < 100

1, forNEIi ≥ 100

⎧⎪⎨⎪⎩
The next stimulating factor identified is fossil fuel dependence

(FERi). The simplest of the normalisation cases, it is tackled on a

max zero basis (Equation 11). Normalised scores fossil energy

reliance (NFERi) therefore delivers low scores for nations with

high reliance, with high scores awarded for low reliance. This

rationale, derived in conjunction with the work by Stavytskyy,

et al. (Stavytskyy, et al., 2021), reflects the uncertain energy

futures of fossil reliant nations, owing to increasing fossil energy

scarcity and tariffs.

Equation 11 – Calculation of normalised fossil energy reliance of

country I (NFERi). Where FERi is the fossil energy reliance of

country i.

FERi

100
� NFERi

With the three contributing factors’ scores normalised for all

142 available countries, aggregation into a final score is approached.

Weightings are used, derived through practitioner judgement,

delivering Equation 12. Normalised fossil energy reliance (NFER)

is assigned the highest weighting (0.5), reflecting its notable

influence on energy security in a world where fossil-based

generation is being phased out. The resulting national scoring

profile for the G20 is shown in Figure 5.

Equation 12 – Final indicator calculation for risk of change in

access to electricity.

0.25 NRECi +NNEIi( ) + 0.5NFERi

� Risk ofChange in Access to Electricity

4.4 Risk of change in access to water

Access to water in the context of this work does not solely consider

drinking water, instead examining access more broadly in a divergence

from existing methodologies including PSILCA. This constitutes a

challenge when identifying stimulating and de-stimulating factors,

with a majority of literature focussing on rural access to drinking

water (Mahama, et al., 2014; Ojuka and Tumwebaze, 2022) (Abubakar,

2019). Very little has been published concerning national-level water

access. Consequently, an analogous approach is taken to that used for
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the risk of change in access to electricity. Selected factors, listed below,

are chosen based on their alignment with the UN SDGs (goal 6) and

their focus on use as a function of national availability. Data is supplied

to the World Bank by partner FAO AQUASTAT (Food and

Agriculture Organization of the United States, 2023), and is

extracted directly from the database.

• Freshwater withdrawal as % of total domestic renewable water

resources (Stimulating)

• Water Stress (%) (Stimulating)

Minor issues around skew were identified within the two factors;

however, they are eliminated through utility function comparable to

that used for NNEIi. Therefore, any nation withdrawing more than

100% of its renewable water reserves is automatically considered to

be at a maximum value of 100% (normalised value of zero to reflect

detrimental national performance in the factor); the dataset’s skew is

consequently reduced from an unacceptably high value of 9.71 to a

more acceptable 1.86 (calculated using Equation 8). This strategy

quantifiably scores normalised renewable freshwater withdrawal

(NRFRi) through Equation 13.

Equation 13 - Normalisation of freshwater withdrawals as % of

total domestic renewable water resources. Where, NRFWi is the

normalised renewable freshwater withdrawals for country i, and

RFWi is the renewable freshwater withdrawal of country i.

NRFWi �
1 −

RFWi

100
, for 0%<RFWi < 100%

0, forRFWi ≥ 100%

⎧⎪⎨⎪⎩
The same approach is taken to calculation of normalised

national water stress (NNWSi), capping reporting to a maximum

raw national water stress value (NWSi) of 100%, reducing the skew

from 9.68 to an acceptable 1.45. Having resolved the problematic

skewness and bounds, normalisation between limits of 0–100 is

carried out using Equation 14.

Equation 14 - Normalisation of water stress. Where, NNWSi is

the normalised national water stress for country i, and NWSi is the

water stress of country i.

NNWSi �
1 −

NWSi

100
, for 0<NWSi < 100

0, forNWSi ≥ 100

⎧⎪⎨⎪⎩
With these normalised values for the two stimulating factors

generated over the 177 considered countries, their aggregation is

approached through an average using equal weights (Equation 15).

This gives the final national indicator scores for the risk of change in

access to water.

Equation 15 – Final indicator score calculation for the risk of

change in access to water.

0.5 NRFWi +NNWSi( ) � Risk ofChange in Access toWater

It should be noted that the small number of countries data points

that are artificially capped represent only 6.7% and 9.6% of the

177 considered countries for NRFWi and NNWSi respectively.

4.5 Risk of land use change

The potential risk of land use change was approached through

the consideration of current land use proportions and the associated

classifications. As per the overarching methodology, World Bank

data is utilised directly to populate the inventory. National data was

extracted directly from the World Bank database to quantify the

percentage of land mass occupied by;

• Agriculture

• Forest

• Protected land

These areas are determined to be of both the highest societal

value and risk of repurposing, giving rise to the greatest potential for

negative impact. It is considered that these areas are not necessarily

mutually exclusive, instead harbouring potential overlaps, as

indicated by Figure 2.

The inclusion of protected areas introduces the risk of double

counting, potentially also being classified as areas of forest, or in

current agricultural use. Examples of this can be seen within the

U.K.‘s New Forest National Park under the ‘Farming in Protected

Landscapes’ grant programme (Department for Environment, Food

& Rural Affairs, 2023), or the Wood Buffalo Protected Forest in

Canada (World Resources Institute, 2022). However, due to a lack of

more granular and openly available data, these categories must be

utilised in the most effective manner possible. In an idealised

scenario, or future revisions, factors such as the availability of

brownfield sites would also be incorporated into the CM.

When considering the sum of the three land classifications, the

double counting becomes apparent, with four countries’ values

exceeding 100% of their land area: Micronesia (123%), Marshall

Islands (119%), American Samoa (110%), and Sao Tome and

Principe (105%). A further seven exhibit precisely 100%. A

FIGURE 2

Visualisation of the overlap of land area World Bank data within

the categories of agricultural land, forest, and protected areas.
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solution to the double counting issue is attained through the use of

the larger value of either:

• Agriculture + Forest

• Protected areas

This method (expressed via Equation 16) is deemed acceptable

in the absence of more robust and openly available data, delivering a

lower bound for the nations denied land fraction (DLFi).

Equation 16 – Calculation of denied land fraction (%) of country

i (ALFi).

DLFi � max forest area %( ) + agricultural area %( )( ) ∨ protected area %( )( )( )
With this lower bound of the denied land fraction quantified

(DLFi), the upper bound of each country’s available land fraction

(ALFi) can be determined via Equation 17

Equation 17 –Determination of available land fraction of nation

i (ALFi) via the previously calculated denied land fraction of nation

i (DLFi)

1 −DLFi � ALFi

To account for disparities in population density, Equation 18 is

employed. The result is an estimated upper bound for the available

land per capita (ALPCi) suitable for responsible development,

offering a fair and comparable ranking metric.

Equation 18 – Calculation of available land area per capita for

country i (ALCi). Where, ALFi is the assigned land fraction (%) of

country i, NLAi is the total national land area of country i, and pi is

the population of country i.

ALFi × NLAi

Pi

� ALPCi

Having estimated the available land area per capita for the

204 countries with suitable World Bank data coverage, max zero

normalisation is applied (Equation 19), revealing the normalised

available land area per capita (NALPCi). However, Greenland

presents an outlier, returning an available land area per capita

18.36 times that of the second-highest score (Namibia); it is

consequential exclusion reduces the dataset’s skew from 14.07 to

a more acceptable but still highly significant 5.06 (using

Equation 8).

Equation 19 – Calculation of the normalised available land area

per capita for country i (NALPCi). Where, ALPCi is the available

land area per capita, and ALPCMax is the largest national available

land area per capita.

ALPCi

ALPCMax

� NALPCi

While achieving normalised national scores, the observed skew

of 5.06 is still significant, with a majority of values residing at the

lower end of the range. To combat this, a utility curve is employed.

After consideration of multiple exponents, 0.25 was ultimately

selected (Equation 20). This is owing to the balance observed

between additional resolution achieved at the lower values, while

maintaining a slight skew to reflect the original data character. It is

recognised that the selection of the exponent is, to some extent,

subjective. However, when communicated transparently, this is

deemed acceptable in the interest of heightened utility to

practitioners and assessments. The results of the CM for the

G20 countries can be seen in Figure 7.

Equation 20 – Calculation of the risk of land use change

indicator score. Where (NALCi) is the normalised available land

area per capita for country i

NALC 0.25
i � Risk ofLandUseChange

4.6 Occupational safety and health

Occupational safety and health (OSH) represents a common

impact category within SIA. Typically, this is assessed using primary

data from the process of interest. However, in the pre-deployment

setting of this research, no primary data will be available. Additional

complexity is encountered in the lack of OSH data available through

the World Bank. Several alternative data sources were considered,

with many offering poor coverage (e.g., only 96 countries from

ILOSTAT) (World Health Organisation, 2016; International Labour

Organization, 2023). Suitable alternative data was identified,

through a World Bank partner; ILO’s summary of work-related

mortality (International Labour Organization, 2003).

This ILO data exhibits excellent coverage with 216 countries

fully defined. However, its age is less than optimal, hailing from

2003.With the search for more recent literature returning nothing of

note, progression based on legacy data must be accepted. This

requires the assumption that the proportion of workplace injuries

and illnesses have remained largely proportional across the

examined countries and temporal shift, constituting a current

limitation and opportunity for future development.

Through this ILO data, the following stimulating factors are

extracted at the national level (International Labour Organization,

2003; International Labour Organization, 2003);

• Accidents causing 4 days of absence (Stimulating)

• Work-related disease (Stimulating)

• Work-related mortality (Stimulating)

Data manipulation is required to allow for fair comparison

between countries for each factor. To this end, accidents causing

4 days of absence, work-related disease, and work-related mortality

are converted to occurrence rates by dividing by the national

economically active population as provided within ILO’s data

(per 10,000 workers). These occurrence rates are then normalised

(max zero) and corrected for directionality using Equation 21) and

(22), and Equation 23.

Equation 21 – Calculation of normalised occurance rate of

accident related absence per capita (NORAi). Where, ORAi is the

occurance rate of accident related absence for country i, and

ORAMax is the maximum value observed for occurance rate of

accident realted absence across all countries.
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1 −
ORAi

ORAMax

� NORAi

Equation 22 – Calculation of normalised occurance rate of work

related disease per capita (NORDi). Where, ORDi is the occurance

rate of work related disease for country i, and ORDMax is the

maximum value observed for occurance rate of non-fatal accidents

across all countries.

1 −
ORDi

ORDMax

� NORDi

Equation 23 – Calculation of normalised occurance rate of

fatal accidents per capita (NORFi). Where, ORFi is the occurance

rate of fatal accidents for country i, and ORFMax is the maximum

value observed for occurance rate of fatal accidents across

all countries.

1 −
ORFi

ORFMax

� NORFi

This delivers normalised national scores between 0–1 (higher

scores being preferable) for each stimulating factor. For the

characterisation of each country’s OSH performance, the three

factors are assigned equal weightings, resulting in Equation 24.

The final national scores for the G20 countries can be seen in

Figure 8.

Equation 24 – Aggregation of the stimulating factors

contributing to OSH indicator scoring.

1

3
NORAi +NORDi +NORFi( ) � Occupational Safety andHealth Indicator Score

4.7 Risk from utilisation of
hazardous materials

Characterisation of risk from the use of hazardous materials is

challenging as a consequence of its heavier dependence on the

industrial sector than the country of deployment. Aggravating

this, data is severely lacking. It is proposed that the risk from the

use of hazardous material should be represented through its impacts

rather than raw prevalence in a supply chain. Where these materials

are handled well, under properly enforced and effective regulations

that result in no negative impact, the value chain should not

be penalised.

An idealised characterisation approach would include a

breakdown of fatal and non-fatal incidents caused by the

industrial use of hazardous materials within each sector and

country. However, this scenario is far from being realised.

Furthermore, the World Bank does not provide any datasets

suitable for use as stimulating or de-stimulating factors. In the

absence of such data, an alternate approach is required. The ILO

provides data on the number of work-related deaths from

exposure to hazardous materials (WDHS) in each nation’s

economically active population (EAP) (International Labour

Organization, 2003). Equation 25 delivers a national-level value

for work-related deaths from exposure to hazardous materials per

10,000 workers.

Equation 25 – Calculation of the risk of death from exposure to

hazardous substances for country i (RDHSi), Where, WDHSi is the

workplace deaths from exposure to hazardous substances for

country i, and EAPi is the economically active population of

country i.

WDHSi
EAPi

× 10, 000 � RDHSi

With these risk values determined, normalisation can be carried

out (Equation 26) relative to the set’s maximum value. Directionality

is also reversed to deliver a higher score for lower risk. The resulting

national scores for the G20 (excluding the African and European

Unions) can be seen in Figure 9 (full list of national scores available

in ESI).

Equation 26 – Calculation of the risk from the utilisation of

hazardousmaterials in country i (RUHMi).Where, RDHSi is the risk

of death from exposure to hazardous substances for country i, and

RDHSMax is the highest observed risk of death from exposure to

hazardous substances.

1 −
RDHSi

RDHSMax

� RUHMi

5 Results

Overall, the seven indicators examined within this study show

that it is possible to derive impact pathway-based SIA CMs

analogous to those observed in LCA. However, data reporting

and, therefore, availability is easily identified as the limiting

factor. The results of the CMs developed can be seen in Figures

3–9; for ease of interpretation, only the G20 countries are shown

(excluding the African and European Unions), and the full data set,

including all 239 examined countries, and the underpinning

literature data, is available in the electronic Supplementary

Material (ESI).

The developed SIA CMs exceeded initial ambitions concerning

coverage. However, this coverage was, in places, achieved through slight

methodological compromise (e.g., risk of land use change and risk from

utilisation of hazardous materials). Good geographical coverage is

essential to the development of SIA CMs; a perfectly defined impact

pathwaymodel is of no practical use if it relies on unavailable input data.

In total, 239 countries are listed by the World Bank data sets (The

World Bank, 2023c). Of these, 129 countries are fully defined (~54%),

with a further 32 (~13%) missing only one single data point.

Completeness of coverage is detailed in Table 1, Figure 10.

These calculations reveal that most indicator scoring profiles

(four of seven) exhibit a mean value of 0.5 ± 0.1, the midpoint of the

normalisation scale. These are: the risk of child labour, risk of change

in access to electricity, occupational safety and health, and utilisation

of hazardous materials.

Further examination shows that of these four indicators,

occupational safety and health, and utilisation of hazardous

materials exhibit significant skew (−1.3934 and −1.8647,
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respectively). In both cases, this can be attributed to very low scores

for African nations. While a statistically significant skew, this is not

considered a methodological shortcoming. Instead, it reveals

markedly poor national performance relative to the global

averages. Compopunding this, a correlation between these

indicators is expected. When these final indicator scores are

paired for each country, a correlation of 0.9229 is observed (ref.

Table 3), verifying the previous assumption.

FIGURE 3

Forced labour indicator results.

FIGURE 4

Child labour indicator results.

Frontiers in Energy Research frontiersin.org12

Newman et al. 10.3389/fenrg.2024.1359593



In contrast, three indicators show mean scores with significant

deviation from the midpoint: risk of forced labour (0.7408), risk of

change in access to water (0.7699), and risk of land use change (0.3444).

Of these, only the risk of forced labour has an insignificant skew,

indicating generally high scores for most nations. This is attributed to

two factors: relatively low average national prevalence, and significantly

elevated national prevalence in the DPRK (resulting in a slightly outlying

lower bound for normalisation). The other two cases of deviated means

(risk of change in access to water and risk of land use change) can be

explained by regional concentrations of risk and security respectively,

producing sets of geographically related outlying nations. In the case of

risk of change in access towater, this is attributed to elevatedwater supply

risk in the Middle East, confirmed by the CM results in Figure 6 and the

ESI. The deviatedmean value for land use change, delivering typically low

national scores, is attributed to very low risk in countries with sparse

populations (e.g., Greenland, Iceland, and Australia).

FIGURE 5

Access to electricity indicator results.

FIGURE 6

Access to water indicator results.
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Collinearity of national indicator rankings is characterised within

Table 3, allowing for the identification of potentially related social

impacts. Where high collinearity is identified, the utility of assessing

both indicators may be reduced, helping practitioners and stakeholders

to streamline an assessment’s goal and scope. Several indicator pairs

exhibit a strong correlation: risk of forced labour and risk of child labour

(0.7259), risk of child labour and OSH (0.7609), and OSH and

utilisation of hazardous materials (0.9229). While an interesting

insight into inter-indicator causal relationships, this alone should not

independently drive the omission of an indicator if it is highly relevant

FIGURE 7

Land use change indicator results.

FIGURE 8

Occupational health and safety indicator results.
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to the scope of the SIA.However, itmay aid the selection of indicators in

time-constrained or screening assessments.

Examining the national scores across the CMs developed, some

intriguing findings are revealed. For example, the CM for risk of access

to electricity prescribes the highest overall score to the Democratic

People’s Republic of the Congo (0.9674). Since 2012, the country has

had a relatively stable, forward-looking, 99% renewable electricity mix,

with 96% of this being hydroelectric (Inga I and Inga II dams) (U.S.

Department of Commerce, 2022; International Renewable Energy

Agency, 2023), supporting the result.

FIGURE 9

Utilisation of hazardous material indicator results.

FIGURE 10

SIA characterisation model coverage map.
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When examining OSH, many of the highest-scoring nations are

micronations, such as Nauru, Tokelau and Turks and Caicos (scores

detailed within the Supplementary Material). These high scores are

explained by their import of many goods produced through hazardous

industries, themselves lacking the resources or demand to support

domestic operations. However, the scope of this assessment focuses

on value chains. Consequently, any assessment of goods derived through

hazardous industry would include the producing country, not simply the

country in which end-use resides. For this reason, the highly positive

scores for micronations are deemed accurate, however, do not impact

assessment validity.

6 Discussion

This work represents a first step towards value chain-oriented

impact pathway SIA CMs, delivering a novel development in the

pursuit of harmonised holistic sustainability assessment.

Previously, reference scale approaches have dominated within

parallel lifecycle, techno-economic and social sustainability

assessments (McCord, et al., 2021). This bifurcation in impact

characterisation methods has been identified in previous literature

as a barrier to fully integrated studies (Newman and Styring, 2023).

Through the this set of initial impact pathway SIA CMs, the

difficulties surrounding the integration of SIAs to holistic

assessments are rectified, most notably the subjectivity and

reliance on practitioner judgment observed within previous

reference scale approaches.

TABLE 1 Model coverage based on the number of indicators fully
characterised per nation.

Number of indicators fully defined Country count

7 129

6 32

5 17

4 33

3 1

2 25

1 2

TOTAL 239

TABLE 2 Mean and skewness values for the derived SIA indicator CM data sets.

SIA indicator Mean national score Skew Standard deviation

Risk of Forced Labour 0.7408 −0.8748 0.1387

Risk of Child Labour 0.5561 −0.4756 0.2551

Risk of Change in Access to Electricity 0.4877 −0.1173 0.2292

Risk of Change in Access to Water 0.7699 −1.5603 0.3036

Risk of Land Use Change 0.3444 1.3387 0.1676

Occupational Safety and Health (OSH) 0.5780 −1.3934 0.1844

Utilisation of Hazardous Materials 0.5999 −1.8647 0.2127

TABLE 3 Collinearity between national indicator scores. These values only include the 129 countries for which all seven indicators are fully defined. Green
denotes high collinearity, with red indicating low collinearity.

Risk of Forced Labour 1

Risk of Child Labour 0.7259 1

Risk of Change in

Access to Electricity

-0.3785 -0.4932 1

Risk of Change in

Access to Water

0.1965 0.0528 0.2360 1

Risk of Land Use

Change

0.0072 0.0232 0.1482 -0.0993 1

Occupational Safety and

Health (OSH)

0.4225 0.7609 -0.5255 -0.3091 -0.0120 1

Utilisation of Hazardous

Materials

0.2185 0.5662 -0.3944 -0.2945 -0.0626 0.9229 1

Risk of

Forced

Labour

Risk of Child

Labour

Risk of Change in

Access to Electricity

Risk of Change in

Access to Water

Risk of Land

Use Change

Occupational Safety and

Health (OSH)

Utilisation of

Hazardous

Materials
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Methodologically, the seven selected indicators follow similar

approaches, each utilising open literature to examine appropriate

stimulating and de-stimulating factors. They are then aggregated

using specified formulae. These are derived to both effectively utilise

the collected data, and to normalise the national scores. However, in

the cases of risk of change in access to electricity and risk of change

in access to water, significant skew (up to a magnitude of 14.07) can

be seen in the data sets of the stimulating and de-stimulating factors.

Causation can be traced to the presence of extreme outlier countries.

These are systematically removed by the specification of artificial

normalisation boundaries. Through this, outlier scores are assigned

a normalised value of either one or zero, depending on the direction

in which they exceed the boundaries. Failure to remedy such

extreme skews would lead to either a dampened or amplified

contribution of the factor to the overall aggregated indicator

scores. Positive skews lead to dominant factor behaviour, whereas

negative skews deliver recessive behaviour. Through the use of the

mentioned artificial normalisation boundaries, all indicators exhibit

final skews of < |2| (Table 2). While a magnitude of two is highly

significant, the aim is not to remove all skew; such data character is

often representative of real-life performance differentials.

Consequently, a balance must be struck to deliver meaningful

national indicator score profiles while still representing real

performance data (including a degree of skewness).

Examination of collinearity between indicators (Table 3) shows some

strong links; for example, a correlation coefficient of 0.9229 for OSH and

utilisation of hazardousmaterials.While these are not unexpected, it does

raise interesting questions around the selection of indicators. Should

strongly colinear indicators be assessedwithin the same study, or can their

correlations be used to evaluate factors vicariously?Ultimately, this should

depend on the goal and scopes of specific CM applications.

Several objectives, or requirements, of the CMs were detailed in

the introduction. These were specified to ensure relevance to the

development of novel CDU value chains and included; applicability

to a wide range of TRLs and technology types, assessment of pre-

deployment scenarios, reliance on open-source data, and a national

level geographic resolution. Each of these is discussed, determining

the degree of attainment realised.

The development of CDU oriented value chains, an unavoidable

challenge if such processes are to be commercialised at meaningful

scale, must often occur in the absence of primary or deployed data.

By adopting a red-flag approach, and removing all reliance on

primary process data, the CM procedures are successfully aligned

with the evaluation of CDU projects. Simultaneously, this avoidance

of primary data delivers the desired applicability to the broad TRL

range observed in CDU technologies. Consequently, a ‘level playing

field’ is attained, upon which overly cautious or optimistic low TRL

CDU processes do not receive an undue data-induced penalty or

advantage. Such comparative assessments of CDU projects was

previously identified in literature as lacking (McCord, et al., 2018;

McCord, et al., 2021), directly highlighting the utility and value

addition of the developed CMs.

The requirement to use methodologically prescribed, and open

source, databases (primarily the World Bank) delivers greater

assessment transparency to all stakeholders. If all assessments

were to utilise the same impact pathway reporting methods and

metrics, issues around comparability (as mentioned by

Zimmermann and Schomäcker (2017) in the context of CDU

TEA) would be significantly reduced. The World Bank is also

utilised as a primary data source within the PSILCA

v.3 methodology (Maister, et al., 2022), aligning this work’s

approach to that of methodologies examining deployed systems.

Furthermore, the use of the World Bank database facilitates the

incorporation of temporal updates, allowing the CMs to reflect

ongoing progress or regression at the national level. In effect, the

ranking order of countries against a given indicator becomes

dynamic, mirroring reality through the incorporated range of

real-world stimulating and de-stimulating factors.

Having identified early in the paper that the pre-deployment

state of many CDU projects necessitates impact risk characterisation

on a national level, data is extracted from the World Bank and

applied through the CMs on this basis. Examination of Table 1

shows that 129 countries, a majority of those listed by the World

Bank (53%), are fully defined across all seven indicators. Many

more (32 countries, or 29% of those not fully defined) require

remedial action over only a single data point. In total, only 12% of

nations realise coverage in less than half of the indicators.

Additionally, most countries exhibiting data gaps are, in terms

of land area, very small, or lack unanimous international

recognition (e.g., Taiwan). It is proposed that imputation be

used to remedy these issues where necessary, manually filling

the identified data gaps. However, this practice requires care in

order to select meaningful proxy values. Implemented procedures

should involve the use of data from an analogous nation, with

fitness being based on both the country’s GDP per capita and

geographic proximity. A more simplistic approach, such as the use

of a neighbouring country’s data, can lead to inaccuracies stemming

from factors such as incongruent socioeconomic profiles or the

State’s public spending capacity (e.g., PDRK and S. Korea). In

addition, where this is carried out, resulting studies should

acknowledge the use of proxy data and transparently

communicate the nature of any remedial action taken.

The most notable data coverage issues occur where performance

metrics are evaluated as an average for large geographic areas,

hampering granularity. National-level data is far more valuable to an

assessment practitioner than continental. The only encountered

example of continent-based reporting can be seen in UNICEF’s

child labour prevalence figures; the report also omits Oceania

(International Labour Organization and United Nations Children’s

Fund, 2021). In this specific case, the strong correlation between

causal factors of both forced and child labour permitted the

augmentation of scores using the WFF’s vulnerability score. This

effectively tunes the national performances within each UN SDG

region, delivering a more representative and granular indicator

score. Despite the positive impacts of this strategy, ideally, it will be

superseded in the future by more detailed child labour specific data.

Through these incorporated attributes the methods developed are

seen to be highly applicable in the context of CDUvalue chains, catering

to all of the identified nuances and difficulties. It should be recognised

that these CMs are less granular than LCA CMs, and potentially the

PSILCA database; however, this is currently unavoidable in the

evaluated context (extensive TRL range and pre-deployment). It is

proposed that once CDU as a field reaches maturity and widespread

deployment, more generically applicable SIA approaches can be taken.

However, the application of impact pathway-based methods should be

proliferated in favour of reference scales.
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As demonstrated, impact pathway assessments offer significantly

enhanced repeatability when compared to their reference scale

counterparts, circumventing the utilisation of practitioner judgement.

Using relevant quantitative data and clearly specified calculation

procedures, the delivered CMs are highly comparable to those of

LCA and TEA, with the only major deviation being the previously

noted geographic granularity. Consequently, any practitioner,

irrespective of experience or background, should derive identical

indicator results for the same system and assessment boundary. This

is one of the cornerstone values of LCA and TEA CMs and should be

adopted more comprehensively within SIA. In contrast, the reference

scale approach’s reliance on the practitioner’s placement of alternatives

on statement or criteria-based incremental scales, invites subjectivity and

bias while simultaneously delivering less accountability or justification.

Such benefits to CDU oriented assessments are, however, achieved

at the expense of other aspects. These include but are not limited to local

reporting completeness and practices, quantifying the effectiveness of

remedial actions, and perturbations in geopolitical stability. To fully

understand the net scientific value addition delivered by the proposed

CMs, these factors must be explored, and their implications clearly

communicated.

The utility of, and confidence in, the generated indicator results

would benefit significantly from the inclusion of reporting quality

metrics. It is a reasonable assumption that less industrially

developed nations will have less reliable reporting practices

around many indicators, for example, the utilisation of hazardous

materials. Quantification of reporting completeness is currently

absent from the utilised literature; however, it should be

incorporated as a measure of uncertainty if or when it is available.

Some of the assessed indicators also lack valuable stimulating and

de-stimulating factors due to their absence from open-source data. Key

examples include the percentage of the population with access to reliable

water and electricity. While such information is partially available,

covering specific countries within isolated assessments, a consistent

calculation method and broad coverage remain elusive. Aggregation

of data from independent assessments would result in an unreliable and

incomparable inventory, even in cases where full geographical coverage

can be achieved. If a levelized quantification procedure and results are

made available for these factors in literature, their integration would

significantly augment the insights generated through the CMs.

Despite the CM’s delivery of quantified indicator results, this does

not in itself help organisations to mitigate the risk of negative social

impact hotspots. As a red-flag risk-based assessment, this is expected.

Direct resolution strategies can realistically only be identified in

assessments of deployed activities. While this represents a limit of the

study, it is one that will impact all pre-deployment assessment

methodologies equally. Instead, it is suggested that maximum utility

is extracted from the CMs by using it to focusmonitoring andmitigation

efforts during the deployment phase on areas identified as high risk. This

will allow the operating organisation to plan and optimise CDU value

chains around these high-risk areas, hopefully reducing the final

realised impacts.

Geopolitical stability, or lack thereof, is another growing source of

inaccuracy within SIA. All organisations, including those targeting the

deployment of CDU technologies, are facing more frequent and severe

geopolitical events (The Economist Imapct, 2022). Such incidents can

significantly elevate the risks of negative social impact. While not

typically a consequence of the operating organisations actions, the

accuracy of results is clearly impacted. Where this issue is observed,

it is expected that the organisation would already be suspending

deployment, or at the very least exercising additional due diligence.

In light of this fact, and the case specific nature of such issues, they are

not targeted for resolution.

As noted in the literature review, there are several philosophical

commonalities between this work and the PSILCA database approaches.

The similarities and differences must therefore be assessed from a

methodological stance by consulting the PSILCA database’s

documentation (GreenDelta, 2022); a quantified results-based

comparison would require conduction of an applied case study and

access to the paywall protected database. To this end, the seven

developed indicator calculation procedures have been compared to

their PSILCA counterparts. Initially, it is noticed that several

indicators do not have a PSILCA equivalent and therefore cannot be

compared: access to electricity, risk of land use change, and utilisation of

hazardous material. Additionally, within PSILCA, reporting is not

carried out on a comparable numerical basis. Instead, the indicators

have their own quantified scoring approach which is then transposed to

a risk-based reference scale (e.g., no risk, very low risk, low risk, etc.).

Through this, the methodologies presented in this paper offer more

easily interpreted results and, overall, a greater degree of granularity

through the avoidance of reference scales.

Beyond these cases, subtle but notable divergences in methods can

be observed. The most notable case is seen in the child labour indicator.

Where the approach developed in this work examines both prevalence

and future vulnerability, the PSILCA database focuses on purely

prevalence; inclusion of future vulnerability represents a significant

additional insight. Furthermore, the threshold for what constitutes

child labour is lower within PSILCA’s offering, including anything

above 1 hour of economic activity per week as child labour. In

contrast, the proposed methodology uses the UNICEF definition (see

Figure 1) with more nuanced categorisation considering aspects such as

hazard level.

Forced labour is considered on a broader basis within PSILCA

then this paper’s methodology, incorporating debt bondage, forced

marriage, and child labour within the impact characterisation.While

this expands coverage, there is discussion to be had around whether

these impact mechanisms should fall under the umbrella of forced

labour, or if they deserve consideration within their own indicator.

At their cores, the two methods are procedurally very similar, both

utilising the Global Slavery Index as an initial data source.

Access to water is approached from opposing classification

ideologies. Where PSILCA evaluates access to drinking water, the

methodology developed in this work looks at the more general

availability of water as a resource. The PSILCA approach examines

the local proximity of potable water sources to domestic dwellings, while

generating high resolution insights, the approach conflicts with the lack

of geographic specificity often surrounding CDU projects.

Finally, the occupational safety and health indicator (referred to as

health and safety within PSILCA) is handled very similarly within the

two methodologies. The primary differentiator is aggregation. Within

this paper the non-fatal and fatal accidents are normalised, and the two

values averaged to deliver a single indicator value. In contrast, PSILCA

reports the two scores independently. While granularity is improved

through PSILCA’s approach, this brings with it difficulties in balancing

trade-offs between the two values. Utilisation of the same data sets

ensures highly comparable results between the two methods.
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Future work in the area should include the identification of a

quantified indicator score threshold, below which a clear red flag is

raised, indicating an elevated duty to due diligence. This would allow for

clear and consistent communication of results to non-practitioners.

Furthermore, such a standardised approach would remove the

dependency of hotpot identification on less repeatable practitioner

judgment. Remedial approaches may adopt a relative scale, flagging

results below an nth percentile of national scores. Alternatively, an

absolute threshold may be specified (the more likely solution), removing

the potential for misleading results within indicators exhibiting

significant data skewness.

Sensitivity analysis around the weighting of each CM’s

stimulating and restimulating factors would also add significant

value. Furthering understanding around the factors relationships

and influence on national rankings. Such work may inform a future

revision of weightings.

A final obvious avenue for development is the development of

CMs for additional indicators. As an initial proof of concept, this

work only tackles a sub-set of UNEP and SETAC’s noted impact

sub-categories. To achieve broader applicability to a diverse

range of goals and scopes, the current set must be expanded

relatively significantly. Once completed, a full foundation will

have been constructed for future impact pathway-based

screening SIAs.

7 Conclusion

In conclusion, this proof-of-concept exercise has successfully

demonstrated the utility of impact pathway SIA CMs in the context

of CDU value chain development, while also realising applicability

to more general use cases. The nuances of application scenarios,

usually including integration with LCA and TEA, significantly

reduce the effectiveness of reference scale-based social assessments.

Deployment of the developed methodology can repeatably and

transparently assess international value chains, highlighting likely

impact hotspots. The result is more efficient resource use concerning

impact-related due diligence. Significant value can be seen within the

setting of industrial strategic decision-making, expanding the

understating of social risk, and accelerating mitigation efforts.

As an example of utility in decision-making support, a process

relying on large process water feed rates (e.g., metal surface

finishing) would be more sensitive to deployment in regions

exhibiting poor performance within the ‘risk of change in access

to water’ indicator.With this identified as a potential issue at an early

stage, additional precautions can be taken to ensure that the process

is relocated, or that water demands are not met at the detriment of

social impact stakeholders.

As identified in the literature and earlier sections of this paper, the

complexity of social impact pathways represents a significant and

recognised challenge. An ideal scenario would incorporate hyper-

granular data, detailing every included community, allowing for the

accurate tracing of impact propagations. In this, temporally accurate,

bespoke models would be required for every constituent community,

accurately reflecting cultures, local behaviours, attitudes, and needs. This

is a significant and potentially impossible task. Consequently, this paper’s

proposal of red-flag-based value chain assessments provides a pragmatic

and balanced solution. With risk hotspots identified, more energy and

resources can be accurately deployed to formulate bespoke mitigation

strategies.

Indicator selection is far from uniform within the SIAs

observed in the literature, an unavoidable consequence of

highly diverse goal and scope requirements. However, it is

recommended that the development of impact pathway-

oriented SIA CMs continue to be developed in a manner

aligned with the impact categories and sub-categories found

within the UNEP and SETAC guidelines. These are selected due

to their wide acceptance as the gold standard within SIA

practitioner guidance. Furthermore, the development of

competing CMs, as seen in LCA, often further fragments the

field. If commonality can be achieved in the CMs used by

practitioners, more meaningful inter-assessment comparisons

can be made, adding significant value to all stakeholders.

A final notable step taken in this work is the delivery of fully

quantified impact indicator results, replacing the semi-quantitative

values produced via reference scales. In this, a greater degree of

granularity is realised through the use of a continuous scoring scale.

Differences between competing alternatives can, therefore, be

examined in higher resolution, avoiding the (typically) five-point

scales seen in existing work.

While significant future work is required to reach the maturity

seen in LCA CMs, the concept can be viewed as proven, albeit on a

modest scale.
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