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H I G H L I G H T S

Design of a novel multi-energy synergy
system scheduling framework.
Costs of power generation and carbon
emissions of the units and plug-in elec-
tric vehicles are considered.
Binary level-based learning swarm op-
timizer is proposed for solving strongly
coupled unit commitment problems.
Charging and discharging management
of electric vehicles, energy and eco-
nomic benefits are obtained.
Effects of three different scenarios into
the power system are comparatively stud-
ied.
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A B S T R A C T

Multi-energy synergy systems integrating high-penetration large-scale plug-in electric vehicles, distributed
renewable energy generations, and battery energy storage systems have great potential to reduce the reliance
of the grid on traditional fossil fuels. However, the random charging characteristics of plug-in electric vehicles
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Battery energy storage system
Synergy optimization

and the uncertainty of photovoltaics may impose an additional burden on the grid and affect the supply–
demand equilibrium. To address this issue, judicious scheduling optimization offers an effective solution.
In this study, considering charge and discharge management of plug-in electric vehicles and intermittent
photovoltaics, a novel Multi-energy synergy systems scheduling framework is developed for solving grid
instability and unreliability issues. This formulates a large-scale mixed-integer problem, which calls for a
powerful and effective optimizer. The new binary level-based learning optimization algorithm is proposed
to address nonlinear large-scale high-coupling unit commitment problems. To investigate the feasibility of the
proposed scheme, numerical experiments have been carried out considering multiple scales of unit numbers
and various scenarios. Finally, the results confirm that the proposed scheduling framework is reasonable and
effective in solving unit commitment problems, can achieve 3.3% cost reduction and demonstrates superior
performance in handling large-scale energy optimization problems. The integration of plug-in electric vehicles,
distributed renewable energy generations, and battery energy storage systems is verified to reduce the output
power of 192.72 MW units during peak periods to improve grid stability. Therefore, optimizing energy
utilization and distribution will become an indispensable part of future power systems.
1. Introduction

The primary strategy in the energy sector for reducing carbon
emissions has consistently been the global transition to multi-energy
decarbonization, which involves replacing conventional power genera-
tion methods with renewable energy sources [1]. Due to the imbalance
of energy resource distributions [2], major countries, such as China,
are heavily relying on coal-fired power plants for heating and power
supply [3]. The Multi-Energy Synergy System (MESS) seamlessly inte-
grates plug-in electric vehicles (PEV) [4], distributed renewable energy
generations (DRGs) [5] like photovoltaic, and battery energy storage
systems (BESS) [6] into conventional thermal power units. This in-
tegrated framework harmoniously amalgamates various energy types,
leveraging intelligent optimization technologies to efficiently manage
energy transmission, storage, power generation, and consumption [7],
fostering collaborative operation among different system components.
Different from Integrated Energy Systems (IES), MESSs place a greater
emphasis on cultivating deeper synergies and interactions among di-
verse energy sources. The technical design of MESSs is characterized
by its enhanced flexibility, enabling swift adaptation actively to fluctu-
ations in power demand and energy supply. This adaptability proves
instrumental in effectively managing the variability and peak load
demands associated with DRGs.

The large-scale incorporation of multiple energy sources within
the MESSs introduces a significant challenge of pronounced energy
volatility, which can lead to power grid instability. Consequently, the
generating units within the MESSs are compelled to engage in frequent
start and stop operations to uphold energy equilibrium, thereby exac-
erbating the economic burden [8], which is typically referred to as
the unit commitment (UC) problem. Currently, the integration of the
PEVs, DRGs, and BESS modules into the power system, respectively,
along with their rational scheduling optimization, has become a viable
approach to addressing UC problems. Firstly, submodule PEVs in MESSs
can alleviate the load burden on the power grid by avoiding the
overload phenomenon of the grid during the peak period [9] and
implementing intelligent scheduling of the charge and discharge man-
agement [10]. In [11], a constrained optimization approach was pro-
posed to accomplish cost-conscious battery charging from PEV users.
Secondly, DRGs integrated into MESSs [12], such as photovoltaics [13],
may help alleviate the burden on the electrical system [14]. In [15], a
stochastic programming scheduling model was proposed to minimize
the prediction error of photovoltaic, which can improve voltage stabil-
ity of power systems. However, current conventional systems still rely
on non-renewable [16], readily available reserves in order to maintain
a stable supply of on-demand energy and minimize generation during
times of excess energy production [17]. In [18,19], they addressed
the traditional combinatorial optimization problems to manage the
coordinated and uncoordinated charging system of grid-connected EVs
with photovoltaic. Thirdly, similar to DRGs and PEVs, coordinated BESS
in MESSs also brings numerous benefits to the power grid system [20],
2

such as reducing operation costs [21], voltage control [22] and oper-
ating as a reserve of the electrical grid [23]. BESS for MESSs has been
proven to be an efficient means to ensure the efficient, dependable, and
real-time functioning of modern power grids [24]. In [25], a distributed
battery system was proposed to propose a distributed battery system to
reduce required battery capacities through enhanced excess sharing and
storage sharing.

The above research lays a strong foundation on the cutting edge.
The coupling relationship between DRGs, PEVs and BESS within MESSs
creates a coordinated energy ecosystem that promotes the utilization
of renewable resources and enhances the flexibility and reliability of
the grid. Nonetheless, on account of the intermittent nature of the
majority of DRGs, PV is susceptible to weather conditions [26], the
turbulence of the power system will become more distinct in the future
as the ever-growing proportion of DRGs in the power supply struc-
ture [27]. Additionally, the installation cost of BESS is considerably
high, and several BESSs entail additional maintenance expenses [28].
Simultaneously, the unpredictable charging patterns of large-scale PEVs
pose inherent challenges to the reliability [29] and security [30] of the
power grid. With the large-scale popularization and application of elec-
tric vehicles and DRGs [31], the data complexity grows, necessitating
increased inter-module coupling for the MESSs.

For traditional power grid systems that only consider the integration
of PEVs, DRGs or BESS, this is a typical nonlinear mixed integer
optimization problem. Conventional approaches utilized to address this
type of scheduling optimization problems are broadly classified into
the mathematical methods and the meta-heuristic algorithms (MAs).
Widely used mathematical methods such as stochastic mixed-integer
programming [32], parallel dual dynamic integer programming [33],
Lagrange relaxation [34] and Quantum Surrogate Lagrangian Relax-
ation (QSLR) [35] were easy to implement with low-dimensional UC
problems. Different from the mathematical approaches, conventional
MA methods, such as genetic algorithm (GA) [36], differential evolu-
tion (DE) [37], ant colony optimization (ACO) [38], particle swarm
optimization (PSO) [39], firefly algorithm [40] and teaching learning
based optimization (TLBO) [41]. Because of flexible encoding tech-
niques and superior optimization processes, MAs can obtain better
outcomes when tackling UC optimization problems. In addition, several
binary-coded variants of MAs have been proposed to address UC binary
conversion problems, where the start–stop state decision variable of
the generating unit is binary. Binary differential evolution (BDE) [42],
binary particle swarm optimization (BPSO) [8], binary whale optimiza-
tion algorithm (BWOA) [43], binary fish migration optimization [44]
and binary artificial bee colony (DisABC) [45] methods utilized transfer
functions to map the search space. While quantum-inspired particle
swarm optimization (QPSO) [46] and quantum-based sine cosine al-
gorithm (Q-SCA) [47] combined with quantum computing to improve
search ability, as well as some mixed binary code schemes such as
mixed-variable version PSO [48] and etc. Through base conversion,
the binary MA methods can effectively address mixed-integer prob-
lems, showcasing significant potential for handling large-scale MESSs
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Fig. 1. Architecture of MESSs.
integration. As system complexity increases, some novel learning strate-
gies for PSO were developed to improve algorithm performance. The
competitive learning strategy [49], mutation-PSO [50] and the social
learning strategy [51] inspired by competition and cognition in human
society. The tricompetition mechanism [52] was applied for CSO to
reduce the sparsity of optimal solutions. Subsequently, BCSO [53]
and BSLPSO [54] utilized the mechanism that the superior particles
in the present swarm to facilitate the update of other particles so
that enhanced the diversity of the population. Due to the synergy be-
tween different energy flows, MESS optimization becomes a large-scale
strongly coupled mixed integer optimization problem. In [55], a mul-
tispace evolutionary search was proposed to divide up the large-scale
problem into multiple subproblems. The fast-forward selection-based
heuristic algorithm was designed in [56] to facilitate the decomposition
of large-scale problems. Unlike BCSO and BSLPSO which only use the
position of the one better particle to update the positions of other
particles at each iteration, the level-based learning swarm optimizer
(LLSO) [57] divided different particles into different levels and each
particle in each level could update its position according to two better
particles from two randomly selected levels. This strategy not only
improves diversity, but also balances exploration and exploitation.

Based on the aforementioned research, this paper introduces a
multi-energy synergy optimization framework to minimize generation
cost of system components, start–stop costs of units and CO2 emission
costs. The level-based learning strategy is applied for the MESS opti-
mization design to evaluate the influence of incorporating BESS and PV
as distributed generations (DGs), along with the charge and discharge
management of large-scale PEVs within the power system. Moreover, a
binary level-based learning swarm optimization algorithm is developed
in this paper to tackle the binary decision variable encoding problem
in EMS optimization. In this end, three different scenarios have been
performed to validate the feasibility and effectiveness of proposed
MESS scheduling framework. To the best of our knowledge, this MESS
is the first proposed for tackling high dimension combinatorial opti-
mization problems. Several significant contributions of this research are
highlighted as follows:

• A highly integrated MESS scheduling is developed for the first
time to expand from a single energy source to multi-energy inte-
gration of PEVs, DRGs and BESS, considering dynamic real-time
multi-energy management and optimization.
3

• A high-coupling and nonlinear model is formulated, to minimize
power generation costs and carbon emissions under system-wide
and unit-wise constraints.

• A novel binary level-based learning swarm algorithm is proposed
to prevent the curse of dimensionality and binary variables trans-
fer when tackling the large scale MESS optimization problem by
enhancing the population diversity.

The following sections of this paper are arranged as follows: the
MESS problem formulation taking account into DGs and PEVs is given
by Section 2. Section 3 presents the proposed MESSs scheduling frame-
work as well as a full process illustration of the proposed BLLSO
optimization approach. Section 4 shows the experimental results and
provides an in-depth analysis of the findings. The paper’s description
of the main ideas is concluded by Section 5.

2. Problem formulation

In this section, the architecture of the proposed MESSs is illustrated
firstly. To optimize the economic cost of the thermal units and reduce
carbon emissions, the carbon emission and fossil fuel costs are regarded
as the objective function in this paper, and some necessary constraints
should be considered to ensure the safety requirements, such as power
balance constraints, constraints of PEVs and upper and state of charge
(SoC) limit of battery etc. In addition, due to the uncertainties, the ac-
cess of PEVs and DGs will alter the balance of the power grid. Therefore,
the constraints of themselves and how they affect the traditional power
grid should be taken into account.

2.1. Description of MESS

The proposed MESSs architecture is illustrated in Fig. 1, which
comprises PV, thermal units, battery energy storage, large number of
PEVs, and demand load. The solar-powered photovoltaic panels convert
solar energy into electricity and deliver it to the power grid, which
contribute to the energy generation component of the MESS. The BESS
can release excess electricity stored during daytime to supplement peak
energy demand use, when there is a shortage of photovoltaic power.
In addition, PEVs are equipped with rechargeable batteries that can be
charged and store electricity. The batteries of PEVs can be incorporated
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into the power grid to provide or draw electricity from the power
system as needed. This bidirectional power supply and energy exchange
capability allows PEVs to act as mobile energy storage devices, and
provide flexible energy support.

The MESS must balance energy supply (from PV, thermal, and
PEVs) and demand (from various loads) efficiently. For example, when
there is surplus energy from PV, it can be used to charge the PEVs,
provide additional thermal energy, or be stored in the battery for
later use. Conversely, when there is a high demand for energy, the
system can utilize the stored energy in the battery to meet the demand.
This dynamic and real-time coordination of the modules is essential
for a well-functioning multi-energy system. Therefore, MESSs require
coordination, optimization, and management of multiple modules with
different characteristics, dynamics, and requirements, while also taking
into account various external factors and constraints.

2.2. Objective function

In this paper, the modeled objective function 𝐹 is comprised of the
conomic cost of the thermal generating units and distributed energy
torage batteries, as well as the carbon emission cost of the units and
EVs. However, the study neglects to account for the interrelationships
etween hourly expenses. The function is shown as follows:

𝐹 = 𝜔𝐶𝑜𝑠𝑡 + (1 − 𝜔)𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛 (𝑓𝑈𝐶 + 𝑓𝑏𝑎𝑡)
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑚𝑖𝑛(𝑓 𝑒𝑚𝑖

𝑈𝐶 + 𝑓 𝑒𝑚𝑖
𝑃𝐸𝑉 )

(1)

n (1), the cost of generating power from the unit can be separated
nto two components: the costs of using fossil fuels during the process
f units, and the costs of start and stop the units. The costs of carbon
mission include the emissions of thermal unit𝑓 𝑒𝑚𝑖

𝑈𝐶 and PEVs 𝑓 𝑒𝑚𝑖
𝑃𝐸𝑉 .

𝑓𝑈𝐶 =
∑𝑇

𝑡=1
∑𝑛

𝑗=1(𝐹𝑗 (𝑃𝑗,𝑡)𝑧𝑗,𝑡 + 𝑆𝑇𝑗,𝑡(1 − 𝑧𝑗,𝑡−1)𝑧𝑗,𝑡)
𝑓𝑏𝑎𝑡 =

∑𝑇
𝑡=1

∑𝑛𝑏
𝑘=1 𝐶𝑘,𝑡 × 𝑝𝑟

𝑓 𝑒𝑚𝑖
𝑈𝐶 =

∑𝑇
𝑡=1

∑𝑛
𝑗=1 𝐹

𝑒𝑚𝑖
𝑗 (𝑃𝑗,𝑡)𝑧𝑗,𝑡 × 𝑝𝑟𝑒

𝑓 𝑒𝑚𝑖
𝑃𝐸𝑉 =

∑𝑇
𝑡=1

∑𝑛𝑝
𝑝=1 𝐸

𝑃𝐸𝑉
𝑝 × 𝑝𝑟𝑒

(2)

where 𝑃𝑗,𝑡 is the amount of electricity generated by the 𝑗th unit in hour
𝑡. The costs of the fossil fuels depleted during the operation of the units
is indicated by 𝐹𝑗 (𝑃𝑗,𝑡). 𝐹 𝑒𝑚𝑖

𝑗 (𝑃𝑗,𝑡) represents the function that the cost
ssociated with carbon emissions generated by the units. 𝐶𝑘,𝑡 is the

capacity of energy storage 𝑘th battery at each hour. 𝐸𝑃𝐸𝑉
𝑝 represents

the total capacity of PEVs. 𝑝𝑟 and 𝑝𝑟𝑒 represent the price of battery
installation cost and the average trade price of emissions, respectively,
suggested by [58]. 𝜔 is the coefficient of balancing economy and carbon
emissions, which is set to 0.3 in this paper, and the detailed analysis
can been seen in Section 5.

The fuel cost function and the emission cost function are demon-
strated in Eq. (3) and (4):

𝐹𝑗,𝑡(𝑃𝑗,𝑡) = 𝑎𝑗 + 𝑏𝑗𝑃𝑗,𝑡 + 𝑐𝑗𝑃
2
𝑗,𝑡 (3)

𝐹 𝑒𝑚𝑖
𝑗,𝑡

(𝑃𝑗,𝑡) = 𝛼𝑗 + 𝛽𝑗𝑃𝑗,𝑡 + 𝛾𝑗𝑃
2
𝑗,𝑡 (4)

where 𝑎𝑗 , 𝑏𝑗 and 𝑐𝑗 represent the fuel constants of the 𝑗th unit. 𝛼𝑗 , 𝛽𝑗
and 𝛾𝑗 represent CO2 emission constants of the 𝑗th unit.

Considering the characteristics of the unit itself, most generators
may need to adjust the operating state, such as not turning on imme-
diately after shutdown. The start–stop unit consumes more fuel under
the starting condition, so the start-up cost should be considered in the
economic cost, which can be expressed as 𝑆𝑇𝑗,𝑡(1 − 𝑧𝑗,𝑡−1)𝑧𝑗,𝑡, and the
formula is modeled as below.

𝑆𝑇𝑗,𝑡 =

{

𝑆𝑇 ℎ𝑜𝑡
𝑗 , 𝑖𝑓 𝑀𝐷𝑇𝑗 ≤ 𝐶𝐷𝑇𝑗,𝑡 ≤ 𝑀𝐷𝑇𝑗 + 𝑇𝑐𝑜𝑙𝑑,𝑗

𝑆𝑇 𝑐𝑜𝑙𝑑
𝑗 , 𝑖𝑓 𝐶𝐷𝑇𝑗,𝑡 > 𝑀𝐷𝑇𝑗 + 𝑇𝑐𝑜𝑙𝑑,𝑗

(5)

where 𝑧𝑗,𝑡 represents whether the 𝑗th unit is currently in the on or off
4

state at time 𝑡, where the on state is symbolized by 1 and the off is 0. If
the unit was off in the previous time interval but is now on, the startup
cost is incurred and is set to 0 in all other cases. The startup cost can
be classified as either hot start cost or cold start cost, depending on
the duration of time the unit has been inactive before being restarted.
𝐶𝐷𝑇𝑗,𝑡 and 𝑀𝐷𝑇𝑗 represent the continuous shutdown time and the
minimum down time of the 𝑗th unit, respectively. The limitation of cold
start time is represented by 𝑇𝑐𝑜𝑙𝑑,𝑗 . 𝑆𝑇 ℎ𝑜𝑡

𝑗 and 𝑆𝑇 𝑐𝑜𝑙𝑑
𝑗 represent the hot

start mode and the cold start mode, respectively. If the downtime of
the unit exceeds 𝑀𝐷𝑇𝑗 and is less than 𝑀𝐷𝑇𝑗 +𝑇𝑐𝑜𝑙𝑑,𝑗 , then the unit is
considered to be in hot start mode, and vice versa.

2.3. Constraints of the proposed problem

Determining the number of online units required during various
time periods involves taking into account a variety of parameters in
order to optimize performance. These factors include the limitations of
individual units and the interactions between units at different times.
Meeting these constraints is essential to achieve the optimal economic
cost objective. Additionally, the influence of DGs and PEVs is also
considered in constraints.

2.3.1. Power balance constraints
The demand for electricity in industrial power generation is con-

stantly changing. In addition, the integration of DGs and PEVs into the
power grid may have an impact on the energy structure of the grid,
so the power balance constraints need to be considered, which can be
indicated by the following equation:
𝑛
∑

𝑗=1
𝑃𝑗,𝑡𝑧𝑗,𝑡 + 𝑃𝑃𝑉 ,𝑡 + 𝑃𝐵𝑎𝑡,𝑡

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐷𝐺𝑠

= 𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉 ,𝑡 (6)

In (6), the power generated by the whole units at hour t is defined
as ∑𝑛

𝑗=1 𝑃𝑗,𝑡𝑧𝑗,𝑡, 𝑃𝐷,𝑡 is the traditional demand load at time t, the
distributed energy storage system consists of 𝑃𝑃𝑉 ,𝑡 and 𝑃𝐵𝑎𝑡,𝑡, which
represent the Photovoltaic connected to the grid and the output power
of batteries for supply side at hour t, respectively. 𝑃𝑃𝐸𝑉 ,𝑡 represents
the load demand of PEVs during hour 𝑡, which can function in two
modes: grid-to-vehicle (G2V) and vehicle-to-grid (V2G) [59]. The PEVs
draw power from the grid to charge or involve the capability of PEVs to
supply power back to the power grid when needed. In simpler terms,
the demand power of PEVs is represented by a positive number, and
the supply power of PEVs is represented by a negative number for grid
services.

2.3.2. Constraints of generating capacity
Considering the physical constraints of generation units, it is nec-

essary to account for the maximum and minimum bounds of their
generating capacity. Meanwhile, since the DGs are integrated with UC,
the maximum and minimum bounds of photovoltaic and batteries are
also taken into account, which apply the following constraints:

𝑧𝑗,𝑡𝑃𝑗,𝑚𝑖𝑛 ≤ 𝑃𝑗,𝑡 ≤ 𝑧𝑗,𝑡𝑃𝑗,𝑚𝑎𝑥 (7)

0 ≤ 𝑃𝑃𝑉 ,𝑡 ≤ 𝑃𝑃𝑉 ,𝑚𝑎𝑥 (8)

𝑃𝐵𝑎𝑡,𝑚𝑖𝑛 ≤ 𝑃𝐵𝑎𝑡,𝑡 ≤ 𝑃𝐵𝑎𝑡,𝑚𝑎𝑥 (9)

In (7), 𝑃𝑗,𝑚𝑖𝑛 and 𝑃𝑗,𝑚𝑎𝑥 represent the maximum and minimum bounds
of the power generated by the 𝑗th unit, respectively. The generation
capacity of photovoltaic is mainly affected by the external environ-
ment such as solar radiation, and the scale of installed capacity, this
study the installed capacity of the photovoltaic is set in the range of
[0, 𝑃𝑃𝑉 ,𝑚𝑎𝑥], which is shown in (8). 𝑃𝐵𝑎𝑡,𝑚𝑖𝑛 and 𝑃𝐵𝑎𝑡,𝑚𝑎𝑥 denote the
maximum capacity [MW] and minimum capacity [MW] of the battery,

respectively.
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2.3.3. Spinning reserve constraints
In practical situations, reserving enough potential power is neces-

sary to ensure that power demands are met and balance grid load fluc-
tuations and load prediction errors. This is mathematically represented
as below.
𝑛
∑

𝑗=1
𝑃𝑗,𝑚𝑎𝑥𝑧𝑗,𝑡 + 𝑃𝑃𝑉 ,𝑡 + 𝑃𝐵𝑎𝑡,𝑡 ≥ 𝑃𝐷,𝑡 + 𝑃𝑃𝐸𝑉 ,𝑡 + 𝑆𝑅𝑡 (10)

𝑅𝑡 = 𝑚 × 𝑃𝐷,𝑡. (11)

here 𝑆𝑅𝑡 represents the spinning reserve at each hour, and the corre-
ponding formula is shown in (11). The total capacity generated by the
nits and DGs should be greater than or equal to the overall demand
oads, which are the electrical demands of all customers connected to
he system, plus the spinning reserves to maintain a reliable power
upply. This paper adopts the recommendation from [60] to set the
pinning reserve at 0.1 times the conventional load.

.3.4. Minimum up or down time of units
The unit’s shutdown and startup require a specific amount of time

nd cost. If the starting and shutdown time intervals are too short,
he unit will restart and shut down frequently increasing energy con-
umption and cost. The working period of the unit can be sensibly
rranged to decrease energy waste and cost by taking the constraints
nto account, which is calculated by

𝑗,𝑡 =

⎧

⎪

⎨

⎪

⎩

1, 𝑖𝑓 1 ≤ 𝐶𝑈𝑇𝑗,𝑡−1 < 𝑀𝑈𝑇𝑗
0, 𝑖𝑓 1 ≤ 𝐶𝐷𝑇𝑗,𝑡−1 < 𝑀𝐷𝑇𝑗
0 𝑜𝑟 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(12)

n (12), switch status of the unit is represented by 0 and 1, respectively,
here 𝑀𝑈𝑇𝑗 and 𝑀𝐷𝑇𝑗 refer to the minimum duration for which the
nit is on and off, respectively. 𝐶𝑈𝑇𝑗,𝑡−1 represents the continuously
tarting up time and 𝐶𝐷𝑇𝑗,𝑡−1 represents the continuously shutting
own time of units. If the unit remains in the startup state for a duration
horter than the required minimum up time, it should stay in that
ondition, and vice versa.

.3.5. Constraints of PEVs
Given that the demand for PEVs charging is unpredictable, it is

rucial to consider their limitations and restrictions in order to maintain
he grid’s steady functioning. These constraints include the maximum
harging and discharging capacity constraints, as well as the power
equirement restrictions of the PEVs, which can be expressed using
qs. (13) and (14), respectively.

𝑃𝐸𝑉 𝐷,𝑡,𝑚𝑎𝑥 ≤ 𝑃𝑃𝐸𝑉 ,𝑡 ≤ 𝑃𝑃𝐸𝑉 𝐶,𝑡,𝑚𝑎𝑥 (13)

here 𝑃𝑃𝐸𝑉 𝐷,𝑡,𝑚𝑎𝑥 and 𝑃𝑃𝐸𝑉 𝐶,𝑡,𝑚𝑎𝑥 denote the maximum discharge ca-
acity and the maximum charge capacity of the whole PEVs during
ach hour, respectively.
𝑇

𝑡=1
𝑃𝑃𝐸𝑉 ,𝑡 = 𝑃𝑃𝐸𝑉 ,𝑡𝑜𝑡𝑎𝑙 (14)

he Eq. (14) indicates the total electricity requirement necessary to
ustain the regular execution of PEVs over a single day. Meanwhile,
𝑃𝐸𝑉 ,𝑡𝑜𝑡𝑎𝑙 denotes the overall charging demand loads of the whole PEVs
ithin that day.

.3.6. State of charge limit of battery
Due to the physical material of the battery in energy storage system,

ts SoC needs to be considered, the reason is that the over-discharging
nd overcharging can both reduce their longevity. Therefore, it is
ecessary to set a reasonable range for the SoC of the battery, which
an be described as:

𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑘,𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 (15)

here 𝑆𝑜𝐶𝑚𝑖𝑛 represents the minimum state of charge limit of all
atteries in energy storage system, which is set to 10%, and 𝑆𝑜𝐶𝑚𝑎𝑥
epresents the maximum state of charge limit, which is set to 100%.
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. Methodology

The proposed system model of units integrated with DGs and PEVs
as the characteristics of high dimensionality, multi-modality, strong
oupling, and great nonlinearity, which makes traditional optimization
lgorithms difficult to optimize. This paper proposed the binary level-
ased learning swarm optimization framework to tackle this problem.

.1. Original level-based learning swarm optimization

The computational complexity involved with addressing the MESSs
cheduling problem increases as its dimension develops. Simultane-
usly, the search space, which encompasses all possible solutions to
he problem, expands exponentially, becoming increasingly challeng-
ng to explore thoroughly. For the strong-coupling high-dimensional
roblems, the optimization algorithms of SLPSO [61] and CSO [62]
tilize superior individuals in the current population to update other in-
ividuals, which results in improved diversity and makes them effective
n addressing problems with a high number of dimensions. However,
hese two optimizers only select one superior individual to guide the
pdate of individuals and all individuals share the average position
f the population, which hinders the potential for enhancing diversity
uring each update process.

The level-based learning mechanism is employed by level-based
earning swarm optimization (LLSO), which involves dividing the par-
icles into various levels. In addition, it leverages the knowledge of
he two best-performing individuals in the population to instruct the
earning processes of other individuals, thereby improving their ability
o locate the global optimum. Moreover, the scheduling optimization
or MESSs involves a nonlinear mixed-integer problem. The binary
ecision variables are associated with the activation and deactivation of
enerating units. In contrast, the integration of PEVs load management
nd DRGs power generation entails decimal values. Hence, an improved
LSO is developed to optimize the on–off status of the units in this
aper to align with practical requirements.

.2. Improved LLSO

Firstly, the individuals in the population are arranged according to
he ascending order of fitness values, the same as SLPSO. Then, they
re equally separated into different levels (L1, L2, L3 and L4), each
ndividual selects two random individuals from two different higher
evels to update its position.

After the fitness values have been determined and sorted, let us
ssume that the population 𝑁 is divided into M levels, each level being
enoted by 𝐿𝑚 = [𝐿1, 𝐿2,… , 𝐿𝑀 ]. The higher the level, the better the
ndividuals are, and the smaller the level index it has. Such as the
ndividuals from 𝐿3 are better than the individuals from 𝐿4. The size of
he level is defined as S, S = N/M. It is important to highlight that for
he purpose of preventing the most promising individuals from being
pdated incorrectly, the individuals in 𝐿1 are exempt from updates
nd are directly carried forward to the next generation. The learning
trategy to update population position with LLSO is determined by the
ollowing:

𝑑 (𝑡 + 1)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥𝑑1,1 + 𝑣𝑑1,1(𝑡 + 1) 𝑥𝑑1,2 + 𝑣𝑑1,2(𝑡 + 1) ... 𝑥𝑑1,𝑆 + 𝑣𝑑1,𝑆 (𝑡 + 1)

𝑥𝑑2,1 + 𝑣𝑑2,1(𝑡 + 1) 𝑥𝑑2,2 + 𝑣𝑑2,2(𝑡 + 1) ... 𝑥𝑑2,𝑆 + 𝑣𝑑2,𝑆 (𝑡 + 1)

⋮ ⋱

𝑥𝑑𝑀,1 + 𝑣𝑑𝑀,1(𝑡 + 1) 𝑥𝑑𝑀,2 + 𝑣𝑑𝑀,2(𝑡 + 1) ... 𝑥𝑑𝑀,𝑆 + 𝑣𝑑𝑀,𝑆 (𝑡 + 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(16)

n (16), 𝐗𝑑 (𝑡+ 1) represents the population of the 𝑑th dimension. Each
ndividual updates the position according to (17) and (18).
𝑑 (𝑡 + 1) = 𝑥𝑑 + 𝑣𝑑 (𝑡 + 1) (17)
𝑖,𝑗 𝑖,𝑗 𝑖,𝑗
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Fig. 2. The algorithm flowchart of BLLSO.
where 𝑥𝑑𝑖,𝑗 (𝑡) denotes the position of the 𝑗th individual of the 𝑑th
dimension from the 𝑖th level 𝐿𝑖, and 𝑣𝑑𝑖,𝑗 (𝑡) is its velocity at generation
t.

𝑣𝑑𝑖,𝑗 (𝑡 + 1) = 𝑟1(𝑡)𝑣𝑑𝑖,𝑗 (𝑡) + 𝑟2(𝑡)𝛥𝑥𝑑𝑙1 ,𝑗 (𝑡) + 𝜙𝑟3(𝑡)𝛥𝑥𝑑𝑙2 ,𝑗 (𝑡) (18)

with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝑥𝑑𝑙1 ,𝑗 (𝑡) = 𝑥𝑑𝑙1 ,𝑘1 (𝑡) − 𝑥𝑑𝑖,𝑗 (𝑡)

𝛥𝑥𝑑𝑙2 ,𝑗 (𝑡) = 𝑥𝑑𝑙2 ,𝑘2 (𝑡) − 𝑥𝑑𝑖,𝑗 (𝑡)

𝜙 = 0.01 × 𝑛
𝑚

(19)

In (18), 𝛥𝑥𝑑𝑙1 ,𝑗 (𝑡) and 𝛥𝑥𝑑𝑙2 ,𝑗 (𝑡) are what the individual learns from two
different predominant individuals at each generation. 𝑥𝑑𝑙1 ,𝑗 (𝑡) and 𝑥𝑑𝑙2 ,𝑗 (𝑡)
represent two selected individuals from two different selected levels,
𝐿𝑙1 and 𝐿𝑙2, 𝑙1 and 𝑙2 are level indexes from two different higher levels
within [1, i-1], respectively. The indexes 𝑘1 and 𝑘1 are randomly chosen
from the range [1, LS] to represent two different individuals. 𝑟1(𝑡), 𝑟2(𝑡)
and 𝑟3(𝑡) represent all parameters randomly selected from [0,1]. 𝜙 is
the influence factor to control the 𝛥𝑥𝑑𝑙2 ,𝑗 (𝑡), which is determined by
characteristics such as population scale and dimension, and influences
the degree of update for the current individual based on its learning
from an inferior one. It is worth noting that the index of 𝐿2 is greater
than the index of 𝐿1, and both are higher than the index of 𝐿𝑖.

Since the status of the unit to be optimized in the update process is
a binary variable, and the updated particle velocity value is a decimal
variable, in order to make each attribute of the particle have the
same encoding method in the update strategy, the V-shaped function
is employed in this paper to discretely process the particles at each
updated position, the converted LLSO update mechanism is as follows:

𝑥𝑑𝑖,𝑗 (𝑡 + 1) = 𝑥𝑑𝑖,𝑗 + 𝐵𝐶(𝑣𝑑𝑖,𝑗 (𝑡 + 1)) (20)

𝐵𝐶(𝑣𝑖,𝑗 ) = 2 ∗ |

1
1 + 𝑒−𝑣𝑖,𝑗

− 0.5| (21)

from (21), it can be seen that the velocity 𝑣 of the particle has a great
decisive effect on the result of discretization. If the velocity value is
either too large or too small, it is easy to cause the position of the
individual to be concentrated on 0 or 1, so the range of the particle
6

speed is set to [−4,4] in this paper. The corresponding position update
of the individual is as follows:

𝑥𝑖,𝑗 =

{

1, if 𝑟𝑎𝑛𝑑 < 𝐵𝐶(𝑣𝑖,𝑗 )
0, otherwise

(22)

where 𝑥𝑖,𝑗 represents the update position of individual after converted,
𝑟𝑎𝑛𝑑 can generate random numbers ranging within [0,1]. If 𝐵𝐶(𝑣𝑖,𝑗 )
is bigger than the random integer 𝑟𝑎𝑛𝑑, then the particle’s position
attribute value is set to 1, indicating that the unit is in the power-on
state in the UC problem, otherwise, the position attribute value of the
particle is 0, that is, it is in the power-off state.

The level-based learning mechanism might encourage higher-level
learners to engage in more exploitation while lower-level learners
engage in more exploration. On the one hand, it can give rise to a poten-
tial balance between exploitation and exploration for each individual.
On the other hand, the unpredictability properties of level selection
and dominant individual selection contributes to the enhancement of
diversity, which is a crucial factor in large-scale optimization problems.
In Fig. 2, the algorithm flowchart of BLLSO is displayed, we will discuss
the performance of the algorithm and set some specific parameters
in Section 4.

3.3. The specific stages of the proposed algorithm

As the quantity of PEVs continues to increase, large-scale PEVs
charging demand could place pressure on the grid, so effective man-
agement strategies are required to ensure the energy balance and
enhance the reliability and effectiveness of the electrical grid. Simul-
taneously, photovoltaics and batteries are integrated into the grid as
distributed energy storage, which will cause the instability in the
power supply, due to the uncertainty of different energy. Based on
the above questions, a binary level-based learning swarm optimization
method is proposed and the proposed MESSs scheduling framework is
summarized in Fig. 3. And the specific stages of the proposed MESSs
optimization algorithm for UC problems integrated with DGs and PEVs
is as follows:

(1) Data Initialization: Firstly, input and initialize the relevant data
of the units and the real charging information of the PEVs around the
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Fig. 3. The proposed MESSs scheduling framework.
clock, some necessary parameters should also be initialized, such as
maximum/minimum power generation output, hot or cold start cost,
fuel coefficients, and the initial state of the unit. The range of particle
velocity and algorithm parameters that exist during the optimization
algorithm are also objects that need to be initialized.

(2) Constraint Handling: So as to ensure the effectiveness and ac-
curacy of the optimization process, constraint handling is an essential
process. The unit data after initialization should satisfy the minimum
up/down-time limit, otherwise, the on–off state of the unit will be
modified to the limited boundary value. The data of PEVs should satisfy
the constraint conditions (13) and (14). The battery should meet the
limit of SoC to avoid the over discharging and overcharging.

(3) Fitness Calculation: According to formula (1), calculate the fitness
value of each particle, and the lambda iteration method [19] is consid-
ered to obtain the output of each unit. Note that different scenarios may
have different objective functions, details shown in Section 4.

(4) Individual stratification: After calculating the fitness values of all
particles, sort them in ascending order, and then stratify all particles
according to their fitness values. What needs to be reminded is that
the individuals at the level 𝐿1 enter the following iteration without
updating or learning, so as to prevent the most potential individuals
from being incorrectly updated. The individuals at the level 𝐿2 update
the positions in accordance with two predominant individuals, which
are both from the level 𝐿1.

(5) Population update: The optimization algorithm of BLLSO is con-
ducted to optimize the positions of all individuals according to the
fitness values, and the particles whose positions have been updated still
need to judge whether the constraints are satisfied.

(6) Judging the termination condition: If the value of current iteration
is smaller than the value of termination iteration, continue to step
(3)−(5). Otherwise, return the optimized result and stop the procedure.
7

4. Numerical studies and results analysis

Different Scenarios are considered to confirm the efficiency and
feasibility of the proposed optimal framework, in this section. The
first scenario aims to explore the validity of the charge and discharge
management of PEVs on the grid, with the goal of reducing peak and
valley demand. The main focus of the second scenario is to analyze
the performance of the proposed MESSs, as well as to address the role
and potential benefits of each module in the grid. The last scenario
demonstrates the superiority of the LLSO algorithm in resolving the UC
problems under different circumstances involving various numbers of
units. This is accomplished by a comparative analysis of its performance
against four other algorithms.

4.1. Experimental setup

The data of PEVs was obtained on the charging demand of 50,000
electric vehicles in Shenzhen, Guangdong Province, China, on a typical
24-hour day. All experimental results are conducted on a PC with 12th
Gen Intel(R) Core(TM) i7-12700 2.10 GHz CPUs, 32 GB RAM, and a
platform with Matlab R2022b. The parameter configurations of the
generation units employed in this paper were based on [63], and the
details are provided in Table 1. Moreover, it is worth noting that as
the number of units increases, so will the dimension of the system to
be optimized. When the quantity of units is 10, the variable dimension
is 240; when the unit size is increased to 100, the variable dimension
is 2400.

4.2. The influence of management of PEVs charge and discharge on UC
problems

This section investigates the impact of electric vehicles charge and
discharge management integrated into the electrical grid. On the one
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Table 1
UC model parameter settings.

Unit1 Unit2 Unit3 Unit4 Unit5 Unit6 Unit7 Unit8 Unit9 Unit10

Pmax(MW) 455 455 130 130 162 80 85 55 55 55
Pmin(MW) 150 150 20 20 25 20 25 10 10 10
a($ /h) 1000 970 700 680 450 370 480 660 665 670
b($ /MWh) 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c($ /MW2h) 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173
𝛼(ton/h) 103.3908 103.3908 300.3910 300.3910 320.0006 320.0006 330.0056 330.0056 350.0056 360.0012
𝛽 (ton/MW h) −2.4444 −2.4444 −4.0695 −4.0695 −3.8132 −3.8132 −3.9023 −3.9023 −3.9524 −3.9864
𝛾(ton/MW2h) 0.0312 0.0312 0.0509 0.0509 0.0344 0.0344 0.0465 0.0465 0.0465 0.047
MUT(h) 8 8 5 5 6 3 3 1 1 1
MDT(h) 8 8 5 5 6 3 3 1 1 1
𝑆𝑈𝐻 ($) 4500 5000 550 560 900 170 260 30 30 30
𝑆𝑈𝐶 ($) 9000 10 000 1100 1120 1800 340 520 60 60 60
𝑇𝑐𝑜𝑙𝑑 (ℎ) 5 5 4 4 4 2 2 0 0 0
Initial Status(h) 1 1 0 0 0 0 0 0 0 0
Fig. 4. Heat map comparison of unit output under different scenarios.
hand, PEVs provide a variable load that may be programmed to charge
during off-peak times when power consumption is lower, which can
assist control the load on the grid and aid the grid balance to meet peak
demand. On the other hand, batteries play a crucial role in distributed
energy storage systems as they enable the storage of excess energy
when it is available and release it when the demand is high, which
contributes to better power grid stability.

In this paper, it is assumed that the integration model of 10 units
with a total of 150,000 PEVs, the battery capacity of PEVs is set
to 30 KWh [64], the maximum power of energy storage batteries is
5 MW [65], and the total load of PEVs is about 1.114 GWh. Further-
more, the maximum charge and discharge power of PEVs is 153 MW
and −153 MW, respectively, where the available SOC of PEVs is 50%,
the proportion of available PEVs quantity per hour is 20

The optimal results of charge and discharge management of PEVs
integrated into the electric system are displayed in Table 2 and Fig. 7
case 1. According to Table 2, the peak period of power demand is
from 9:00 am to 14:00, and from 20:00 to 21:00 pm, and the peak
power generation periods of the units are also focused on these periods.
Moreover, when the load is in the peak period, the PEVs discharge to
satisfy the electricity demand, and when the load is in the valley period,
the PEVs can charge, thus illustrating the effectiveness of the proposed
optimization algorithm for the charge and discharge management of
the PEVs, and PEVs can realize valley-shaving and peak-filling to steady
the power demand. Moreover, Fig. 4 illustrates the comparison of unit
output with and without PEVs. From Fig. 4(a), it is clear that in the
case of no PEVs integration, compared with other units, Unit 1 and 2
are burdened with heavy output and unbalanced load distribution over
a 24-hour period compared to other units. In contrast, Fig. 4(b) demon-
strates that the PEVs integration into the grid significantly reduce the
output burden for the units and make the overall power system more
stable.
8

4.3. Uncertainty analysis of proposed MESSs

Due to the generation of PV is intermittent and variable, the charg-
ing and discharging behavior of PEV is random, which can be chal-
lenging for the balance of the grid. In order to effectively evaluate
the uncertainty of renewable energy and electric vehicles, this paper
utilizes the Latin hypercube sampling (LHS) method [66] to generate
multi-dimensional parameter space random samples.

In this section, the MESSs with 10 units is considered, and 10 sce-
narios are randomly generated to simulate random photovoltaic power
generation and PEVs charging and discharging to analyze the impact
of uncertainty on the MESSs. The analysis of Fig. 5(a) indicates that
there is a discernible escalation in power demand across all scenarios
at specific intervals, notably prior to 7 a.m. and subsequent to 8 p.m.
These surges are indicative of conventional electricity consumption
patterns that correspond with the morning and evening rush hours,
coinciding with the populace commencing and concluding their work-
related activities. Different from highly random PEVs, the PV power
generation profile presented in Fig. 5(b) demonstrates a pronounced
regularity that is synchronous with the diurnal cycle of sunrise and
sunset, so meteorological conditions are a crucial determinant of the
actual energy yield from photovoltaic. Consequently, it can be sub-
stantiated that this method is efficacious in examining the stochastic
characteristics of PEV power demand and the intermittency inherent
in photovoltaic power generation. Concurrently, the analysis confers
advantages to the power grid management by facilitating accurate
forecasts of power demand and enabling the implementation of req-
uisite adjustments to accommodate the extensive adoption of PEVs and
photovoltaics.

Tables 3 and 4 offer a comparative analysis of the economic costs
associated with the operation of MESS under two distinct operational
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Fig. 5. Scenario generation comparison of MESSs under 10 units.
Table 2
The optimal results of charge and discharge management of PEVs in UC problems.

Hour Unit1
(MW)

Unit2
(MW)

Unit3
(MW)

Unit4
(MW)

Unit5
(MW)

Unit6
(MW)

Unit7
(MW)

Unit8
(MW)

Unit9
(MW)

Unit10
(MW)

Demand
(MW)

PEV Load
(MW)

1 382.78 450.22 0.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 700.00 153.00
2 398.20 455.00 0.00 49.80 0.00 0.00 0.00 0.00 0.00 0.00 750.00 153.00
3 455.00 454.43 73.57 20.00 0.00 0.00 0.00 0.00 0.00 0.00 850.00 153.00
4 418.16 453.57 85.00 45.19 101.07 0.00 0.00 0.00 0.00 0.00 950.00 153.00
5 412.12 444.87 20.00 99.36 162.00 0.00 0.00 0.00 0.00 0.00 1000.00 138.35
6 439.85 384.14 117.58 129.40 88.47 0.00 0.00 10.00 0.00 0.00 1100.00 69.44
7 392.50 408.37 130.00 127.71 162.00 0.00 40.71 10.00 0.00 0.00 1150.00 121.29
8 381.74 409.84 107.39 130.00 126.88 48.02 61.57 0.00 0.00 0.00 1200.00 65.44
9 372.42 401.10 105.27 92.73 108.92 75.95 37.22 36.08 0.00 10.93 1300.00 −59.38
10 404.25 387.05 79.35 130.00 92.46 58.09 77.22 30.41 52.57 18.29 1400.00 −70.30
11 415.26 378.98 130.00 92.02 150.86 39.63 68.57 25.71 37.60 35.34 1450.00 −76.03
12 336.21 434.00 105.49 130.00 122.98 66.40 85.00 10.00 46.92 10.00 1500.00 −153.00
13 450.48 379.66 72.46 89.31 103.81 54.22 57.92 16.69 35.38 45.89 1400.00 −94.19
14 406.35 389.92 110.20 70.01 100.58 56.03 63.77 33.78 19.57 0.00 1300.00 −49.79
15 423.86 435.71 78.88 111.27 138.06 20.00 69.74 0.00 0.00 0.00 1200.00 77.53
16 435.27 385.01 130.00 84.02 82.29 0.00 25.00 0.00 0.00 0.00 1050.00 91.61
17 396.05 378.94 43.34 105.00 123.93 0.00 25.00 0.00 0.00 0.00 1000.00 72.26
18 455.00 328.27 96.41 105.60 162.00 0.00 25.00 0.00 0.00 0.00 1100.00 72.28
19 404.33 438.53 128.99 98.68 109.06 60.42 25.00 0.00 0.00 0.00 1200.00 65.02
20 384.33 399.42 120.74 84.37 93.83 45.24 67.76 20.30 41.06 46.70 1400.00 −96.24
21 421.54 379.37 102.90 75.65 67.68 80.00 85.00 10.00 20.56 0.00 1300.00 −57.30
22 398.00 455.00 45.00 115.92 110.32 0.00 0.00 55.00 0.00 0.00 1100.00 79.23
23 455.00 455.00 0.00 80.00 63.00 0.00 0.00 0.00 0.00 0.00 900.00 153.00
24 455.00 437.75 0.00 0.00 60.25 0.00 0.00 0.00 0.00 0.00 800.00 153.00
Table 3
Economic cost comparison of MESS with PEVs and BESS.

Scenario UC+PEV UC+PEV+BESS

Best Worst Mean Std Best Worst Mean Std

S1 647 388.64 653 603.65 650 496.15 4394.68 665 572.81 666 484.32 666 028.56 644.53
S2 648 506.12 650 687.94 649 597.03 1542.78 664 187.57 668 720.69 666 454.13 3205.40
S3 647 739.10 652 217.38 649 978.24 3166.63 662 696.90 665 028.74 663 862.82 1648.85
S4 649 446.66 650 336.69 649 891.68 629.35 662 305.06 663093.87 662 699.46 557.77
S5 642012.33 651 985.17 646 998.75 7051.87 662 337.04 666 492.47 664 414.76 2938.33
S6 648 150.12 649 885.46 649 017.79 1227.07 656518.51 666 721.72 661620.11 7214.75
S7 644 885.02 647 561.15 646 223.09 1892.31 665 088.08 665 536.15 665 312.11 316.83
S8 642 490.86 647106.92 644798.89 3264.05 662 651.44 667 551.91 665 101.67 3465.16
S9 649 059.24 651 199.52 650 129.38 1513.41 662 032.01 666 764.82 664 398.42 3346.59
S10 645 736.49 649 733.98 647 735.24 2826.65 664 246.01 666 037.63 665 141.82 1266.86
scenarios: PEV scenario and the Photovoltaic scenario. The scenarios
enumerated reflect a variety of MESS operational conditions that were
generated using the LHS method. Empirical observations reveal that
the economic costs incurred in the PEV scenario are markedly lower
than those in the PV scenario. This disparity is likely attributable to
the inherent intermittency of photovoltaic energy generation, which
compromises stability relative to the PEV scenario. Notwithstanding
the scenario, it is noteworthy that the incorporation of BESS engenders
9

an augmentation in economic costs. This increment can be primar-
ily ascribed to the capital expenditure required for BESS installation.
However, the integration of BESS appears to mitigate the variability
of economic costs, as evidenced by the reduction in the standard
deviation. Specifically, the optimal standard deviation in Table 3 with
BESS integration is reduced by 312.52 $∕day compared to the system
without BESS. Similarly, in Table 4, the reduction is 514.02 $∕day.
This diminution in standard deviation underlines the potential of BESS
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Table 4
Economic cost comparison of MESS with photovoltaic and BESS.

Scenario UC+PV UC+PV+BESS

Best Worst Mean Std Best Worst Mean Std

S1 564963.30 578 588.54 571775.92 9634.49 586 661.62 594 626.94 590 644.28 5632.32
S2 575 191.18 584 599.99 579 895.59 6653.03 586020.88 594 113.40 590067.14 5722.28
S3 574 034.24 578582.63 576 308.44 3216.19 593 015.23 593 684.00 593 349.61 472.89
S4 574 399.62 583 692.32 579 045.97 6570.93 593 716.91 595 346.75 594 531.83 1152.46
S5 577 358.98 580 947.11 579 153.04 2537.18 592 458.64 593053.58 592 756.11 420.68
S6 577 478.96 591 066.97 584 272.97 9608.17 593 293.32 595 431.31 594 362.31 1511.78
S7 582 071.00 584 405.47 583 238.23 1650.72 591 695.53 593 784.01 592 739.77 1476.77
S8 579 810.14 586 513.41 583 161.78 4739.92 592 521.90 597 920.51 595 221.20 3817.39
S9 579 836.54 586 517.78 583 177.16 4724.35 595 222.40 600 189.39 597 705.89 3512.19
S10 583 109.88 584 431.75 583 770.81 934.70 592 787.62 597 743.97 595 265.79 3504.66
Table 5
Scenario settings.

Case Scenario description

Case 1 UC model integrated with PEVs
Case 2 UC model integrated with PEVs and PV
Case 3 UC model integrated with PEVs, PV and battery storage system

Fig. 6. The influence of various SOC of battery for UC problems.

to enhance the economic resilience of MESS, particularly in extreme
operational conditions.

4.4. Benefit analysis for proposed MESSs

This section comprehensively studies the impact of photovoltaics
and BESS as DGs, connected to the power grid load and integrated
with PEVs to UC problem model, which will be divided into three cases
to analyze and compare the effect of PEVs, DRGs on the grid system,
and the benefits of MESSs for the grid system, the cases are shown in
Table 5. And the photovoltaic data is experimented within 24 h of a
day in Shenzhen in this research.

Fig. 6 shows the effect of different battery 𝑆𝑂𝐶s on unit load. It
is not difficult seen that when the 𝑆𝑂𝐶 of batteries is 90%, the load
of units is lower than when the 𝑆𝑂𝐶 is 0% in most time periods. This
is because the battery can manage energy intelligently. When it is in
a peak demand period, it can release the previously stored energy. At
the same time, BESS can help reduce carbon emissions from electricity
generated by fossil fuel. Therefore, the integration of PEVs and BESS is
helpful to solve the high coupling UC problems.

The final optimal results of both DGs and PEVs integrated into
UC problems are displayed in Table 7, Fig. 7 and Table 6 illustrates
the comparison results of different UC problems in three cases. From
10
Table 6
Cost comparison for different cases.

Case Economic
cost/($/day)

Difference Carbon emission
cost/($/day)

Difference

Case 1 651 393.15 – 656 881.77 –
Case 2 641 151.03 1.57% 640 398.12 2.51%
Case 3 638 540.54 1.97% 638 998.57 2.72%

Table 6, With respect to the economic cost consumed by unit operation,
the fossil fuel cost and carbon emission cost of case 3 is 638540.54
$∕day, which is 2610.49 $∕day less than case 2 and 12852.61 $∕day
less than case 1. It is clear that the integration of PEVs and DGs can
reduce the power generation cost and CO2 emissions from the grid.

Fig. 7(b), shows the total power generated by 10 units per hour
within 24 h, specifically in case 3, it can be evident that during the peak
of demand at 12:00 am, the power generated by the unit is significantly
lower compared to case 2 by 66.69 MW and case 1 by 102.34 MW,
which validates that the integration of photovoltaics into the grid has
a positive impact and saves power generation costs. Furthermore, it
is observed that the overall trend of case3 is smoother than the other
two cases, which effectively demonstrates that the integration of PEVs
and DGs enhances the reliability of the electric grid system. According
to Table 7, at 12:00am, the peak demand period, the discharge load
of PEV is 78.7 MW lower than that in Table 2, indicating that the
integration of DGs is also advantageous in managing the charge and
discharge of PEVs. Compared with Tables 2 and 7, it is obvious that at
12:00, the generation capacity of the first 5 units in Table 2 exceeds
100 MW, and the generation capacity of the last 5 units is at least
10 MW, while only two units in Table 7 exceed 100 MW, which proves
that DGs can mitigate the demand stress of the units and promote
the reliability of the electrical grid under the premise of satisfying the
demand.

No matter what the case is, the level-based learning method of
BLLSO has a faster convergence speed and superior optimization results
than other algorithms, as shown in Fig. 7(a). The comparative results
between the original demand and the output power of thermal units
in different cases is presented in Fig. 7(c), it is evident that case 3
has a larger gap between the two than cases 1 and 2, indicating that
the proposed scheme can mitigate the demand pressure of traditional
power generation in the grid, and at the same time mitigate the impact
of climate change.

To summarize, the proposed binary LLSO is competitive and effi-
cient when tackling strong coupling, high dimension and complicated
UC problems. Moreover, the proposed system algorithm framework is
conducive to the integration of PEVs charge and discharge management
and distributed energy storage systems into the power system, while
overcoming intermittency challenges, reducing dependence on fossil
fuels and maximizing renewable resource utilization.

4.5. The performance of LLSO algorithm for UC problems

In this section, the focus is on analyzing the effects of the LLSO
algorithm in solving UC problems. According to formula (1), the carbon
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Fig. 7. Comparison of three analytical situations in three cases.
Table 7
The optimal results of UC integrated with PEVs and DGs.

Hour Unit1
(MW)

Unit2
(MW)

Unit3
(MW)

Unit4
(MW)

Unit5
(MW)

Unit6
(MW)

Unit7
(MW)

Unit8
(MW)

Unit9
(MW)

Unit10
(MW)

Demand
(MW)

PEV Load
(MW)

1 401.18 422.59 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 700.00 153.00
2 442.94 431.85 0.00 0.00 25.00 0.00 0.00 0.00 0.00 0.00 750.00 153.00
3 439.50 451.08 45.64 0.00 63.55 0.00 0.00 0.00 0.00 0.00 850.00 153.00
4 445.14 451.45 20.00 0.00 130.57 0.00 52.11 0.00 0.00 0.00 950.00 153.00
5 452.15 455.00 20.00 0.00 162.00 0.00 57.08 0.00 0.00 0.00 1000.00 148.73
6 407.40 383.61 91.29 116.78 154.74 0.00 36.30 0.00 0.00 0.00 1100.00 51.41
7 444.90 387.80 113.31 88.91 139.72 39.66 33.13 0.00 0.00 0.00 1150.00 −16.71
8 336.74 446.93 125.74 115.96 142.38 55.60 73.34 0.00 0.00 0.00 1200.00 −13.15
9 427.39 330.17 96.19 56.35 99.40 43.85 66.73 26.39 0.00 0.00 1300.00 −30.36
10 331.40 393.50 65.81 104.20 101.61 69.40 63.02 43.38 37.60 43.92 1400.00 −30.82
11 421.24 339.97 92.68 75.62 143.96 49.51 41.71 29.43 32.04 29.54 1450.00 −37.33
12 404.70 370.40 97.23 98.97 85.30 51.31 72.94 35.81 38.27 52.35 1500.00 −74.30
13 391.95 399.55 86.99 88.98 86.37 54.33 53.99 28.12 46.38 25.47 1400.00 −10.55
14 412.15 403.79 69.86 93.03 90.95 29.03 60.83 10.00 0.00 0.00 1300.00 −11.13
15 387.85 428.51 130.00 111.23 160.56 20.00 0.00 0.00 37.50 10.00 1200.00 5.92
16 384.47 430.64 121.38 77.76 132.45 0.00 0.00 0.00 0.00 0.00 1050.00 73.36
17 386.85 380.06 107.90 113.55 135.60 0.00 0.00 0.00 0.00 0.00 1000.00 126.30
18 447.66 366.10 96.57 117.01 162.00 0.00 25.00 0.00 0.00 0.00 1100.00 14.44
19 416.93 434.43 119.26 115.98 134.40 26.94 58.34 0.00 0.00 0.00 1200.00 −10.73
20 376.49 349.56 105.55 89.87 139.69 48.18 56.37 46.65 20.55 31.37 1400.00 −0.45
21 356.72 408.68 90.08 117.74 106.24 35.39 43.37 19.29 10.59 0.00 1300.00 −7.10
22 455.00 454.34 94.48 0.00 127.91 20.00 85.00 10.00 0.00 0.00 1100.00 18.72
23 455.00 455.00 0.00 0.00 63.00 80.00 0.00 0.00 0.00 0.00 900.00 153.00
24 455.00 454.74 0.00 0.00 40.54 0.00 0.00 0.00 0.00 0.00 800.00 153.00
emissions of PEVs and the cost of energy storage batteries are embed-
ded in the objective function, which means the optimization goal is not
11
only related to the UC problem. Therefore, to validate the effectiveness
of the LLSO algorithm more accurately, the objective function should
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Fig. 8. Simulation results of different level numbers for the proposed LLSO.
Table 8
The comparison of economic costs between BLLSO and other algorithms ($/day).

Units
Methods BLLSO BPSO BLPSO BCSO NBPSO

10 𝟔𝟒𝟏𝟏𝟓𝟏.𝟎𝟑 660232.42 656059.77 659405.81 661257.79
20 𝟏𝟐𝟗𝟖𝟔𝟖𝟑.𝟎𝟕 1361712.85 1365531.02 1350198.56 1366159.31
40 𝟐𝟗𝟑𝟐𝟗𝟑𝟎.𝟕𝟎 3033901.32 3036362.36 3027874.59 3045861.33
60 𝟓𝟎𝟑𝟏𝟐𝟕𝟔.𝟕𝟏 5081598.26 5120236.23 5176234.85 5141295.51
80 𝟕𝟔𝟓𝟖𝟗𝟖𝟓.𝟗𝟏 7735412.70 7764308.78 7770574.64 7739865.17
100 𝟏𝟎𝟓𝟑𝟐𝟗𝟑𝟏.𝟑𝟐 10661547.12 10701986.46 10694520.02 10753241.4
be modified as below.
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹 = 𝜔𝐶𝑜𝑠𝑡 + (1 − 𝜔)𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛
∑𝑇

𝑡=1
∑𝑛

𝑗=1(𝐹𝑗 (𝑃𝑗,𝑡)𝑧𝑗,𝑡 + 𝑆𝑈𝑗,𝑡(1 − 𝑧𝑗,𝑡−1)𝑧𝑗,𝑡)

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑚𝑖𝑛
∑𝑇

𝑡=1
∑𝑛

𝑗=1 𝐹
𝑒𝑚𝑖
𝑗 (𝑃𝑗,𝑡)𝑧𝑗,𝑡 × 𝑝𝑟𝑒

(23)

Eq. (23) is regarded as the optimization objective, the comparison
experiments were conducted using four PSO variants, namely BLPSO,
BPSO, NBPSO [19] and BCSO [53] to verify that the proposed op-
timization algorithm BLLSO can tackle the aforementioned problem.
The economic cost optimization results of different algorithms and
simulation curves in the evolution of different unit sizes are shown in
Table 8 and Fig. 9. Before that, there are two parameters that need to be
analyzed in detail because of their potential impact on the optimization
results, which are the weight 𝜔 and the number of stratifications 𝐿.
On the one hand, the weights in the objective function control the
balance between generation costs and carbon emissions, so it is possible
that different weighting factors may lead to different optimization
results. On the other hand, different number of levels will lead to
two consequences: if the number of 𝐿 is small, it means that each
level contains more particles, which is beneficial to promote diversity
in selecting higher level particles for learning. At the same time, the
diversity in the selection levels is reduced because the quantity of levels
is small. Conversely, a higher number of 𝐿 causes an increase in the
diversity of level and a decrease in the diversity of selecting higher
level particles.

Considering the above, the quantity of levels may have different
effects on the evolutionary process. The simulation results of different
weights and level numbers under 10-units benchmark problems are
demonstrated in Fig. 8, which can be observed that different levels
yield different results for the optimization results. Fig. 8(a) shows
that the economic optimization value becomes higher as the weights
increase, but the calculation cost is not the same. The difference in
computational cost between weights 0.3 and 0.5 is smaller than other
weight values, nevertheless, when the weight is 0.5, the economic cost
optimization is larger than 0.3. Therefore, the weight is set to 0.3 can
make a good compromise between economic cost and computational
cost. When 𝐿 is 10, from Fig. 8(b) and Fig. 8(c) it can be observed
that the optimization results and convergence speed are not as good
12
as those less than 10. However, when the number of levels is 15, the
optimization quality and convergence speed are obviously improved.
Therefore, determining a reasonable number of levels plays a certain
role in balancing exploration and exploitation.

Then, from Table 8, the economic costs optimized by different
algorithms on the UC problem are compared for the number of units
at 10, 20, 40, 60, 80 and 100, respectively. It is easy to see that the
economic cost obtained by the BLLSO algorithm is always optimal
compared to other algorithms, regardless of the quantity of units. In
addition, the dimension of the UC problems is determined by the
quantity of units, when the quantity of units is 10, the dimension
of the UC problems is 10 (unit) × 24 (h) = 240. The minimum gap
between the economic costs obtained from BLLSO and other algorithms
is 14908.74 $∕day, and the maximum gap reaches 220310.1 $∕day when
the quantity of units increases to 100. This proves that the BLLSO
algorithm has a good potential competitiveness for solving large-scale,
high-dimensional UC problems. Furthermore, from Fig. 9, the BLLSO
algorithm clearly outperforms other algorithms in terms of convergence
speed and optimization quality. This is due to the fact that the level-
based learning strategy of BLLSO can improve the diversity, thereby
mitigating the risks of convergence prematurely and stagnancy. When
the quantity of units increases to 100, the BLLSO still outperforms
other algorithms with regard to convergence speed and optimization
quality. Overall, it can be seen that LLSO not only achieves a favorable
equilibrium between exploration and exploitation abilities, but is also
suitable for large scale optimization scenarios.

5. Conclusion

The integration of plug-in electric vehicles, photovoltaics, and bat-
tery energy storage systems into the power system offers multiple
benefits, including grid stability, peak load management, renewable
energy integration, and optimization of grid infrastructure, generating a
large-scale optimization problem. In this paper, a multi-energy synergy
system scheduling framework is proposed for the problem formulation.
Further, a large-scale binary level-based learning swarm optimizer is
proposed for generating units, taking into account the characteristics
of the unit switching state, with the cost of fossil fuel and carbon emis-
sion optimized as objective functions. In this system framework, the
binary level-based learning swarm optimization algorithm is adopted to
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Fig. 9. Convergence curves of different algorithms with different unit numbers.
optimize the impact of integrating plug-in electric vehicle charge and
discharge management, energy storage batteries, and photovoltaic into
the grid.

To confirm the feasibility and necessity of the proposed scheme,
three scenarios are discussed and their economic benefits to the grid are
analyzed. The results of the experimental analysis demonstrate that the
proposed algorithm is capable of attaining a cost reduction of more than
3.3%, which can reflect a highly competitive ability for solving complex
high-dimensional energy systems. Therefore, the charge and discharge
management of plug-in electric vehicles and distributed energy storage
integration is of great importance in future power systems, with its
low carbon emissions and renewable nature, which can bring economic
benefits, as well as promoting the popularization of renewable energy
and the transformation of the multi-energy synergy systems.
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