
This is a repository copy of An application of domain adaptation for population-based 
structural health monitoring.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214239/

Version: Published Version

Proceedings Paper:
Giglioni, V., Poole, J., Venanzi, I. et al. (3 more authors) (2024) An application of domain 
adaptation for population-based structural health monitoring. In: Journal of Physics: 
Conference Series. XII International Conference on Structural Dynamics, 03-05 Jul 2023, 
Delft, Netherlands. IOP Publishing . 

https://doi.org/10.1088/1742-6596/2647/18/182027

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Journal of Physics: Conference

Series

     

PAPER • OPEN ACCESS

An Application of Domain Adaptation for
Population-Based Structural Health Monitoring
To cite this article: Valentina Giglioni et al 2024 J. Phys.: Conf. Ser. 2647 182027

 

View the article online for updates and enhancements.

You may also like

Investigation of modal damage-sensitive
features of a scaled three-storey steel
frame for vibration-based damage
detection.
Francesca Marafini, Giacomo Zini, Alberto
Barontini et al.

-

Membership Study of Open Cluster NGC
6134 using HDBSCAN Clustering
Algorithm
M Yusuf, D G Ramadhan, A T P Jatmiko
et al.

-

Cahora Bassa vibrations monitoring
between 2010-2022. Analysis of
frequencies using HST statistical models
for effects separation
S Oliveira, P Mendes, M Rodrigues et al.

-

This content was downloaded from IP address 176.253.47.223 on 03/07/2024 at 12:24



Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 182027

IOP Publishing
doi:10.1088/1742-6596/2647/18/182027

1

 

 

 

 

 

 

An Application of Domain Adaptation for Population-Based 

Structural Health Monitoring 

Valentina Giglioni1, Jack Poole2, Ilaria Venanzi1, Filippo Ubertini1, Nikolaos 

Dervilis2 and Keith Worden2 

1 Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 

93, 06125 Perugia, Italy 

 
2 Dynamic Research Group, Department of Mechanical Engineering, University of Sheffield, 

Mappin Street, S1 3JD, United Kingdom 

 

valentina.giglioni1@studenti.unipg.it 

Abstract. In the field of civil infrastructure, Structural Health Monitoring generally suffers from 

a scarcity of labelled damage-state data. To solve this issue, this work adopts a Transfer Learning 

approach for leveraging information from a source structure, characterised by a rich class of 

damage labels, to improve inferences on a target structure with limited knowledge. The goal is 

to train a machine learning algorithm on a bridge undergoing damage and to afterwards transfer 

the available labelled damage-state data across the members of the investigated population. 

Given possible differences exhibited by each structure, a domain adaptation technique in the 

field of statistic alignment, called Normal Condition Alignment (NCA), is applied to match 

different distributions in a shared feature space. The methodology is validated on a 

heterogeneous population composed of two numerical bridges of different geometry and 

materials, representing the Z24 and the S101 benchmark bridges. Finite Element Models are 

built to simulate healthy conditions and several damage cases. The natural frequencies describing 

such scenarios are considered as damage-sensitive features and thus employed to characterise 

the two domains and fed to a supervised learning-based classifier. The presented approach is 

deemed effective to provide mappings that allow the exchange of health-state information from 

source to target datasets, becoming a promising approach to be applied within a population of 

real bridges. 

1. Introduction 

Vibration-based Structural Health Monitoring (SHM) has been in constant evolution to face the urgent 

need to manage and preserve the increasing number of ageing infrastructures. Thanks to improvements 

in sensing technology and computer science, effective strategies are developed to assess structural 
behaviour in operational conditions by exploiting information from the structure’s dynamic response. 

In this context, Statistical Pattern Recognition (SPR) and Machine Learning (ML) stand out among the 

most efficient and popular tools, often adopted in the field of aerospace, civil and mechanical 

engineering [1-3]. In particular, the use of ML algorithms plays a fundamental role for identifying 

meaningful patterns within damage-sensitive feature distributions, which unveil information about the 

structural integrity and the presence of any changes in the monitored system. Therefore, these automated 
techniques, based on unsupervised/supervised learning, attempt to cover multiple SHM levels, with the 

aim to detect, localise and quantify damage during continuous long-term monitoring activities [4-7].  
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However, one of the main challenges is that the implementation of a robust ML algorithm requires large 

amounts of training data. A second drawback is represented by the assumption that both training and 

testing data are generated by the same underlying distribution; this issue means that typical ML 
techniques can be considered as case-specific, since they fail when trained and tested on two different 

structures. Such challenging aspects may cause some limitations when dealing with real monitoring 

scenarios, where data collection might be discontinuous or significantly costly and labels are often 

incomplete and scarce. The lack of available data means that most approaches can only address novelty 

detection or simply the identification of previously-seen conditions. As a solution, Population-based 

Structural Health Monitoring (PBSHM), represents a promising theory to expand the set of labelled data 

to train a supervised learning-based classifier [8]. It consists in transferring health-state information 

across a population of structures, whose features distributions may differ, however, because of variations 

in design, materials or geometry. To address this issue, Transfer Learning (TL), in terms of Domain 
Adaptation (DA), allow one to infer a mapping between two domains that harmonises feature 

distributions within a common latent space [9]. The goal is to improve diagnostic inferences on a target 

domain by transferring knowledge from a completely-labelled source domain. As a particular branch of 
TL, DA attempts to reduce the distance between data distributions using defined statistical metrics [10]. 

In contrast with the most popular TL approaches, such as fine-tuning or those DA techniques aiming to 

learn a nonlinear transformation from the feature space to a Reproducing Kernel Hilbert Space (RKHS), 
the method illustrated in this paper aims at aligning the lower-order statistics of source and target 

domains in the original features space. This idea is called Normal Condition Alignment (NCA), whose 

benefits are extensively described in Poole et al. [12]. Among them, should be mentioned the improved 

interpretability of the results and the easier application to data poor and limited datasets. Starting with 

the new representation, supervised ML classifiers can be trained in the source domain and directly tested 

on unknown target instances using the transformed features.  
 
In the framework of TL, the current paper applies NCA to transfer damage labels between two FEMs, 

representing the Z24 and the S101 benchmark bridges [13-16]. The use of FEMs allows one to generate 

a wide set of labelled data by simulating multiple damage scenarios; this enables to exploit a huge dataset 

to infer important information on the transferability of specific health-state conditions, thus providing a 

substantial support for real-world applications. The investigated models are calibrated given the 

available information on the geometry, materials and dynamic properties and are afterwards employed 

to simulate representative damage scenarios by progressively reducing the concrete’s elastic modulus at 

specific locations. Damage-sensitive features are aligned via DA and then fed into a K-Nearest 

Neighbours (KNN) algorithm for detecting and classifying damage typologies, whose performance is 

assessed in terms of accuracy level. The numerical results show that the proposed approach enables an 
effective knowledge transfer within the population of FEMs, since damage labels gained from the source 

domain can be leveraged to predict and classify new monitoring data from the target domain in a 

supervised-learning context. This tool is particularly promising to become aware of the presence, 
location and type of damage that occurs within a network of bridges equipped with SHM systems.   

2. The proposed Domain Adaptation-based methodology  

The methodology for performing bridge health assessment via TL is outlined in Figure 1; specifically, 

it focusses on the application of DA to merge different data distributions into a shared feature space. 

Prior to feature extraction, FEMs of two monitored bridges are built to simulate damage scenarios 

differing by position and severity. Modal analyses are carried out to extract � natural frequencies, 

aligned with NCA and used as damage-sensitive features to train and test the KNN algorithm. 
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Figure 1. Flowchart of the TL-based methodology.  

2.1. Domain Adaptation: Normal Condition Alignment (NCA) 

Given a source domain �� = {��, �(��)} with a learning task �	 = {
�, ��(∙)} and a target domain �
 ={�
 , �(�
)} with the corresponding learning task �
 = {

 , �
(∙)}, domain adaptation aims at improving 

the target predictive function �
(∙) using knowledge from �� and �	. It is assumed that the feature and 

label spaces are equal, i.e. �� = �
 and 
� = 

, while the marginal probability distribution are 

different, i.e.  �(��) ≠ �(�
), where � = {��}����  is a general finite sample from the feature space. The 

goal is therefore to minimise the distance between source and target domains. Typical DA methods 

match data distributions by using non-parametric distance metrics, thus requiring enough data to 

perform accurate density estimation and find a non linear mapping. Working in a latent space, they are 

also characterised by a limited interpretability of the results. Conversely, this paper focusses attention 

on Statistic Alignment (SA) [12], that provides an alternative solution to find a shared feature 

representation across the domains. In particular, Normal Condition Alignment (NCA) keeps the original 
feature space to align the mean and standard deviation of those data describing normal conditions, which 

should be able to be estimated with a small data set. It also ensures to align data generated from the same 

health-state using engineering prior knowledge. This technique involves the standardisation of the 

source domain according to equation (1), with �� and �� the corresponding mean and standard deviation,  

 

                                                                    ��(�) = ��(�)���
��                                                                               (1) 

 

The alignment of normal conditions of the target domain with those of the source domain is then 

performed using, 
 

                                                          �
(�) = ���(�)���,�
��,�  ��,! + ��,!                                                         (2)                          

 

where (��,! , �
,!) and (��,! , �
,!) indicate, respectively, the means and standard deviations of normal 

condition data from source and target domains. This process means that those data points describing 
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healthy conditions of the two FEMs will be confined in a common cluster after feature alignment, 

assuming they are Gaussian. 

2.2. Supervised damage detection and classification 
Using the new distribution within the original feature space, the KNN is firstly trained to learn the source 

damage labels and then tested to recognize the unknown damage classes in the target domain.  

KNN is a non-parametric supervised ML method that assigns to a certain data point the most frequent 

label among the " nearest neighbors. The Euclidean distance is used as a proximity metric to evaluate 

the distance between two points # and $ in a N-dimensional space and it is defined as: 
 

                                                           %(#, $) = &∑ ($� − #�)*����                                                         (3) 

   

Specifically, this ML algorithm is implemented by setting " = 3 in order to minimise the number of 

misclassifications. Since DA should be able to create well-concentrated clusters, thereby including 

relatively-close data points, low values of K are generally recommended. The effectiveness of 
knowledge transfer is finally evaluated by computing the accuracy before and after DA, based on the 

number of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).                                    

3. Case study: Transfer Learning between the FEMs of the Z24 and the S101 benchmark bridges 

Inferring mappings between structures to share damage labels is a key aspect of PBSHM. In this work, 

source and target domains are represented by the FEMs of two real bridges, namely the Z24 and the 

S101 bridge, which are illustrated hereafter.  

3.1. Z24 bridge: general description and modelling 

The Z24 benchmark bridge was a post-tensioned RC bridge, built in 1963 in Switzerland [13]. The 

structure included a main span of 30 m and two side spans of 14 m, with a global width of 8.6 m. The 
deck’s cross-section was made of two box cells, while two concrete piers, located at the limits of the 

main span, had a rectangular cross-section and were clamped into the deck’s girder. A continuous 

monitoring campaign was carried out from November 1997 to August 1998 (before demolition), using 
several sensors measuring accelerations and several environmental parameters. Further description of 

the experimental data, the monitoring setup and the 14 damage scenarios, progressively applied at the 

end of summer 1998, can be found in [14]. 

A simplified model of the Z24 bridge is built and properly calibrated based on system identification 

results stemming from an Ambient Vibration Test (AVT), which are summarised in Table 1. The deck 

and the pier consist of 40 and 30 beam elements, respectively. Given a stiffness increase on the top of 

the piers, as described in the literature [15], the thickness of the girder plate has been slightly increased 

accordingly. To justify the presence of any additional load, a linear vertical mass and 20 concentrated 

masses are assigned along the deck.  

The model is calibrated by varying the concrete’s elastic modulus -., the mass values and the thickness 

of the girder plate to minimise the difference between the FEM and the real bridge in terms of natural 

frequencies and Modal Assurance Criterion (MAC) values (Table 1).  
 

Table 1. Natural frequencies and MAC values after calibration of the Z24 bridge FEM. 
     

Modes Exp. natural 

freq. [Hz] 

FEM natural 

freq. [Hz] 

Error [%] MAC 

1 3.851 3.815 0.93 0.98 

2 4.911 4.935 0.49 0.90 

3 9.772 9.829 0.58 0.89 
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After calibration, modal analyses are carried out to extract natural frequencies during operational 

conditions, assuming a variation of -. in the range ±1.5%. Moreover, based on the most common 

scenarios suffered by bridges, two damage classes are introduced into the model, named as %�” and “%*” 

(Figure 3).  They consist in applying ~12% and ~40% reduction of the concrete’s elastic modulus, 

respectively, for three meters along the middle span, which is the region that undergoes a stiffness 
reduction and a bending moment reduction, and in proximity of the connection between deck and pier, 

assuming the development of a plastic hinge within a distance equal to 1.5 times the cross-section’s 

height. It should be mentioned that the elastic modulus reduction is simulated in accordance with the 

national technical guidelines for structural design, asserting that cracking phenomena may produce a 

stiffness reduction up to 50% [17]. 

3.2. S101 bridge: general description and modeling 

Built in the 1960s, the S101 benchmark bridge was a post-tensioned RC bridge located in Austria and 

composed of a main span of 32 m and two 12 m long side spans [16]. The cross-section is characterized 

by a 7.2 m wide double-webbed t-beam, with the height varying from 0.9 m in the mid-span to 1.7 m 
over the piers. Before demolition, the bridge was continuously monitored for four days in December 

1998 by using fifteen three-axis accelerometers with a sampling frequency of 500 Hz. After the first day 

in which the bridge was in sound conditions, progressive damage tests, including the lowering of the 
north-western pier and a cut of four tendons, were carried out to evaluate any change in the structural 

dynamic behaviour.  

Regarding the modelling, the deck cross section is composed of shell elements describing two 
longitudinal rectangular beams with variable height, the slab and two rectangular cross beams above the 

piers. On the contrary, beam elements are employed to represent the four rectangular RC piers. The 

model is discretised using 112 shell elements for the deck and 28 beam elements for the piers. The mass 

values and the concrete’s elastic modulus are used as calibration parameters with the aim to minimise 

the differences between the experimental natural frequencies and those estimated from the FEM, shown 

in Table 2.  

 

Table 2. Natural frequencies and MAC values after calibration of the S101 bridge FEM. 
     

Modes Exp. natural 

freq. [Hz] 

FEM natural 

freq. [Hz] 

Error [%] MAC 

1 4.042 4.01 0.79 0.98 

2 6.28 6.322 0.67 0.84 

3 9.713 9.834 1.25 0.86 

 
Although the Z24 and the S101 bridges belong to a heterogeneous population, showing different 

absolute values in natural frequencies, they show some similarities in the modal responses. As inferred 

from Figure 2, they have in common the first three identified modes, including a symmetric (Mode 1) 
and non-symmetric (Mode 3) bending mode and a lateral/torsional mode (Mode 2).  

As described for the FEM of the Z24 bridge, natural frequencies are extracted from modal analysis 

during pristine and damage conditions by considering the same simulated scenarios, in terms of 

extension, location and severity (Figure 3).  

3.3. Domain Adaptation results  

The structural domains, characterised by the first two natural frequencies of the Z24 and the S101 

bridges, i.e. F1 and F2, are represented in a 2D plot in Figure 4a. Such feature distributions allow one 
to identify three clusters, each one associated to the investigated health-state classes, where “0” indicates 

data from pristine conditions. However, the clear shift between the two domain distributions is the 

reason why the classifier exhibits an insufficient performance when it is trained on the S101 and tested 
on the Z24 bridge and vice versa, showing 45% and 27% accuracy, respectively (Table 3). Such an 

outcome remarks the need to perform feature alignment to find a mapping between the two domains. 
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Figure 2. Mode shapes obtained from modal analysis carried out via the FEMs of the Z24 and the 

S101 bridges. 

 

 
Figure 3. Two damage scenarios are introduced into the FEMs: %� and %* indicate ~12% and ~40% 

reduction of -., respectively, in the mid span and at the connection between the deck and the pier. 

 

NCA is therefore applied to align and group healthy data of source and target bridges to make them 

coincide within the single black cluster (Figure 4b), by using Equation (1) and (2). It follows that new 
instances gained by the monitoring system, including healthy and damage data, can be transformed and 

projected onto the shared feature space.  

 

 
Figure 4. The first two natural frequencies of the Z24 and the S101 bridges are plotted in a shared 

feature space before DA (a), and after aligning the normal conditions with NCA (b).  
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By looking at the new distributions, the effectiveness of NCA is demonstrated by the capability to 

identify common clusters including the corresponding data of the two bridges. As a result, using the 

transformed features, the KNN algorithm is firstly implemented one single time to learn the source 
damage labels and afterwards used to identify the same damage classes in the target domain. A single 

ML model can thus supply information on both structural health. Figure 5 illustrates the predictive 

performance by computing confusion matrices, where each row contains the number of instances in an 

actual damage class and each column contains the corresponding number of instances in a predicted 

damage class. The results highlight an accuracy improvement after DA, showing, however, different 

performances if the algorithm is trained using the S101 or the Z24 bridge data. In the first case, the 

alignment produced by the NCA ensures an almost perfect classification, with 95% accuracy and a total 

of 5% misclassifications, mainly occurring when predicting “d2” data. 

 
Table 3. KNN performance, in terms of accuracy, 

before and after NCA using different source domains. 

Source 

domain 

Accuracy 

Before NCA After NCA 

S101 bridge 27% 95% 

Z24 bridge 45% 89% 

 

In the second case, the KNN perfectly predicts those instances belonging to “d2” and “0” classes, while 

all the misclassifications come up when labelling the features of the damage scenario “d1”, leading to a 

global lower performance with 89% accuracy.  

 

 
Figure 5. Confusion matrices when applying the KNN after NCA using as source domain (a) the S101 

bridge or (b) the Z24 bridge.  

 
It should be remarked that these different outcomes strongly depend on the shape of the input data and 

on the aligned distribution after NCA. Further studies will apply and compare other 

supervised/unsupervised ML algorithms and different DA techniques, as well as select the optimal 
number of features to align, in order to analyse how all these parameters affect the final outcome in 

terms of damage classification performance and false predictions. Furthermore, to obtain a reliable TL, 

it is important to underline the importance to ensure the similarity between the investigated structures 

and between the simulated scenarios, allowing TL handle consistent labels and better comprehend the 
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type of transferable information. This is the reason why the FEMs of two continuous-beam bridges, 

having the same static scheme and similar modes, are used as case studies in this work. 

Although the use of FEMs provides an idealised representation of real-world scenarios, the successful 
results suggest that the presented approach could potentially work when expanded to a real population 

of monitored bridges. It should be considered as a promising solution to overcome the limited 

availability of health-state labels. A rich variety of labels gathered from a specific bridge can be 

exploited to help a ML classifier predicting and recognizing, in real time, data of a new bridge that is 

measured by a permanent SHM system. However, practical applications are inevitably characterised by 

some additional challenges that deserve future investigations, such as the influence of environmental 

effects, the presence of signal noise and possible non-linear behaviours. 

4. Conclusions 

This paper proposes a DA-based strategy for damage classification with the aim to provide a population-
level damage detector which leverages health-state information across a population of bridges. 

Especially when dealing with civil infrastructure, the implementation of a robust classifier requires a 

large set of training data from the SHM system, stemming from both healthy and damage conditions, 
which can be significantly costly for the authorities. To address this issue, a labelled source domain can 

be exploited to infer diagnosis on a different target domain, characterised by unknown (unlabelled) 

monitoring data. In this framework, the proposed approach is tested to transfer knowledge between the 
FEMs of two real bridges, namely the Z24 and the S101 benchmarks. The methodology is aimed at 

merging the distributions from both domains using the NCA technique, which statistically aligns 

damage-sensitive features into a shared bi-dimensional space. After the alignment of the first two natural 

frequencies, it becomes easy to identify common clusters helping to discern between healthy and 

simulated damage scenarios. With this aligned space, the KNN is deemed effective to classify specific 

scenarios of a target domain after being trained on a labelled source domain, yielding high accuracies 

and low values of false predictions. Particular attention should be given to the bridges’ similarity 
assessment and to the evaluation of the most suitable features to align via DA, as well as to the challenges 

to be addressed in real-world scenarios. Overall, the possibility to successfully transfer damage labels 

may revolutionise the way to perform SHM of bridges and becomes promising to develop SHM 
strategies at the scale of a network of bridges, that is, move to PBSHM, with the associated savings in 

investment and operation costs of permanent SHM systems.  
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