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Abstract. Vibration-based Structural Health Monitoring (SHM), exploits a variety of
approaches for novelty detection. In particular, many data-based methods try to recognise
patterns by exploiting analogies with the human body’s natural defences at a cellular level.
These algorithms fall within the Artificial Immune System (AIS) class and can be chosen,
according to their peculiarities, to solve specific problems in diverse application areas. This
study investigates the damage-detection process in different operational conditions, obtained by
applying structural modifications to a laboratory-scale aeroplane, which follows the geometric
features of the GARTEUR benchmark project. Damage identification is performed by exploiting
the Negative Selection Algorithm (NSA), already applied by some of the authors on numerically-
simulated case studies, and chosen for its capability of self/non-self discrimination under varying
operational or environmental conditions. The research is expanded by using sparse autoencoders
for feature dimensionality reduction. The method is applied to an experimental dataset acquired
via Scanning Laser Doppler Vibrometer (SLDV) measurements, to identify consistent damage-
sensitive features from the frequency response functions, and to obtain a reliable fault-detection
performance.

1. Introduction

Several Structural Health Monitoring (SHM), approaches have been developed to ensure the
safety and reliability of engineering structures, according to different levels of insight. The first
objective is to identify the presence of anomalies or damage in the behaviour of a target system
or structure. For this purpose, vibration-based methods are often adopted to assess damage con-
ditions, exploiting their wide applicability and low intrusiveness. Vibration-based SHM often
requires the use of a large variety of data correlated to different environmental and operational
conditions to ensure robustness and to aid the interpretation of results. Regardless, the scarcity
of such data often limits the extent of their applicability, which can be improved by adopting
population-based approaches. In the SHM framework, computational models frequently draw
inspiration from biological systems and the human immune system for solving optimisation
issues for data-based novelty detection or pattern recognition. These models fall within the
Artificial Immune System (AIS) class, which comprises Negative Selection Algorithms (NSA),
the Immune Network Model, and Clonal Selection [1].
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The NSA is a family of algorithms relying on the immune system’s capability to discriminate
between self and non-self cells. It has already been applied for SHM unsupervised novelty
detection, adopting time-series features [2]. Subsequently, Surace & Worden explored the use of
NSA for features based on transmissibility functions [3]. These damage-sensitive features can
be extracted from the structure’s dynamic response only. Thus, they could be used for in-flight
monitoring, when any excitation is unknown [4]. Furthermore, by examining different paths for
evaluating transmissibilities, these functions could not only indicate the presence of the anomaly
but also gain insight into its location. An important feature of the negative selection approach is
the possibility to consider different configurations associated with normal structural behaviour,
which may occur because of changes in environmental or operational conditions; it was examined
in [3], using two numerical case studies regarding an offshore platform and an aircraft wing.
This study aims to verify the algorithm applicability to an experimental case study regarding a
steel aeroplane laboratory structure. Experimental modal analysis has been performed using
a Scanning Laser Doppler Vibrometer (SLDV), which allows one to acquire the dynamic
response on a dense grid of measurement points. The Frequency Response Functions (FRFs)
obtained have been used to calculate Transmissibility Functions (TFs) between points of the
monitored structure. Two normal conditions of the aeroplane have been analysed considering
two diverse configurations of the winglets, and damage has been simulated in several locations
on the structure by the introduction of concentrated masses. Negative selection algorithms
have been examined in the literature, and some doubts emerged concerning their suitability for
specific applications [5, 6, 7]. Some concerns relate to the dimensionality of the feature space.
Accordingly, a sparse autoencoder is proposed for reducing the feature dimensionality before
generating the detectors.
The layout of the paper is as follows. Section 2 presents the negative selection algorithm and the
approach for feature dimensionality reduction. Section 3 describes the experimental case study
regarding the aeroplane’s dynamic response in different normal conditions (NCs), and damaged
conditions (DCs), and the novelty detection results. Section 4 provides a discussion and some
conclusions.

2. Methodology

The following section presents the main routine developed to implement the novelty detection
algorithm.

2.1. Negative Selection Algorithm

The Negative Selection algorithms are biologically inspired one-class classifiers introduced by
Forrest et al. [8]. They are inspired by the vertebrate adaptive immune system and its ability to
distinguish self and non-self cells (pathogens), and consequently attack the latter. The immune
system includes specific white blood cells, i.e., the lymphocytes, which are differentiated into B-
cells and T-cells. T-cells are lymphocytes provided with T-cell receptors (TCR), also known
as recognition units. They mature in the thymus to learn how to recognise antigens and
consequently trigger an immune response. The process occurs via a randomly-based adaptive
rearrangement, proliferation, and negative selection. The cells not involved in recognising
antigens are destroyed via apoptosis, and new lymphocytes are generated. Thus, the negative
selection produces a continuous and adaptive turnover, guaranteeing a remarkable capability of
identifying antigens using a limited number of antibodies.
NSAs form a family of unsupervised algorithms which develops following these concepts. They
consist of two main phases. First, there is the generation of detectors, those features selected so
that they do not match the initial features (or normal condition) to cover the complementary
space with respect to the normal condition feature space. The NSA features can be explained
as hyperspheres, and the detectors are those hyperspheres surrounding the self-set. The self-set,
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S, is examined via a self-matching rule to determine the distance between the different normal
conditions, λs, and to establish the S radius, rs, which is used as the matching threshold.
The value of rs should be sufficiently greater than λs to avoid false positives, but not too
great, to avoid false negatives. The NSA then generates pseudo-random candidate vectors and
compares them to the self-set to keep only those which do not fall within the matching threshold
and computes each one’s radius, rid, similarly as previously outlined. This phase, called the
censoring phase, ends when the required number of detectors is reached. Afterwards, there is
the monitoring phase, in which it is analysed whether the novelty detectors bind with the new
candidate features for identifying anomalies or damage. The NSA algorithm is explained in the
flowchart shown in Fig 1.
The NSA is frequently applied to binary features. Instead, this study adopts the Real-Value
Negative Selection (RVNS). The features are experimentally-obtained transmissibility functions
subjected to appropriate encoding for dimensionality reduction. The RVNS is less explored than
the NSA involving binary features, as the detector search space is continuous, and the generation
of detectors is more difficult. However, it enhances interpretability, and it is necessary for some
applications [9].
The effectiveness and sustainability of this method have been discussed in [5, 6], and some
concerns arose regarding the runtime complexity, especially for high-dimensional features, the
estimation of the right number of detectors, and their coverage of the non-self space. Therefore,
a simple way to assess the detector’s coverage consists of introducing a limit to the maximum
number of consecutive attempts that fall in the already-covered area, as done in [9].
As previously outlined, the algorithm computes the radius, rid of each detector in D. This radius
could be considered a hyperparameter that may be adjusted to improve space coverage. However,
in this study, the V-detector approach [10] is adopted, i.e., the radius is variable to enhance the
NSA performance. This type of algorithm strongly depends on the choice of matching rule(s)
used in the censoring and monitoring phases. The rule choice varies according to the type of
feature being analysed. Considering ℓ-dimensional vectors, either the Euclidean distance or the
Mahalanobis distance could be used. In this study, the cosine similarity is used, as in [3], as it
ignores the magnitude difference between the two vectors:

sim(x,y) =

∑l
i=1 xiyi

√

∑l
i=1 x

2
i

∑l
i=1 y

2
i

(1)

The cosine similarity is equal to 1 when the vectors are alike, and, consequently, the distance
between two vectors is given by:

dist(x,y) = 1− sim(x,y) (2)

2.2. Feature dimensionality reduction

The first concerns about the negative selection approach regard the curse of dimensionality
[6]. Therefore, the original self-set is subject to dimensionality reduction to address algorithm
runtime issues and simplify classification.
The noise-contaminated transmissibility functions are used to train a sparse autoencoder, a
particular symmetric neural network, which consists of an encoder and a decoder. The encoder
learns how to represent the input feature by mapping it on a low-dimensional hidden layer,
or bottleneck, and the decoder learns how to reconstruct the original feature vectors. This
architecture can also be helpful for different applications, such as feature extraction, image
compression or denoising, and novelty detection. When the autoencoder training is complete,
the encoder is used to extract low-dimensional features, which can be used as input in the NSA,
to generate the self-set S, and the monitored set M.
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Figure 1. Negative Selection Algorithm flowchart.

The simultaneous training of the encoder and decoder consists of minimising a loss function
representing the difference between the original feature and the reconstructed one. In sparse
autoencoders (SAE), the loss function also includes a sparsity regularisation term (to limit the



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 192004

IOP Publishing
doi:10.1088/1742-6596/2647/19/192004

5

number of neurons that are activated at the same time), and a weight regularisation term.
SAE uses sparsity, in addition to reducing the hidden-layer dimension, to create an information
bottleneck, thus forcing the model to learn the essential characteristics of the input.

3. Experimental case study

3.1. Case study characteristics and experimental modal analysis

In order to verify the applicability of the NSA to an experimental case study, a steel laboratory
structure has been considered. This is part of a broader population of similar structures, which
mainly follows the geometry of the benchmark study conducted by the Structures and Materials
Action Group (SM-AG19) of the Group for Aeronautical Research Technology in EURope
(GARTEUR) [11]. The structure examined, simulates the dynamic behaviour of an aeroplane,
and consists of a thin-section box fuselage, a single rectangular plate for realising the wings, and
shorter plate elements for the winglets, the vertical tail and the horizontal tail. The fuselage’s
length is 1.50 m, the wing span is 2.00 m, and all plate elements have a 8.00 mm thickness. The
aeroplane top view is shown in Fig 2.

Laser vibrometer scanning points

Additional mass positions
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Figure 2. Garteur aeroplane top view, showing laser-vibrometer scan points in red, and
simulated-damage locations in blue.

The experimental tests have been carried out in the “LAQ-AERMEC Aeromechanical Structural
Systems” laboratory of the Department of Mechanical and Aerospace Engineering, Politecnico
di Torino. The same structure has been analysed in two different configurations for investigating
the novelty detection approach under varying operational conditions. These configurations have
been achieved by performing an experimental modal analysis on the structure with and without
the winglets. The aeroplane has been suspended, simulating free boundary conditions, and has
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been excited by an electrodynamic shaker, which has been connected to the aeroplane using a
stinger at the rear of the fuselage. The applied signal is a 1 V Amplitude Periodic Chirp in the
0-100 Hz frequency range.
The vibration response of the structure has been measured via a Polytec PSV-I-500 SLDV for
identifying the natural frequencies and the main vibration modes. Experimental modal analysis
based on SLDV allows one to quickly scan the velocity of a sufficiently dense grid of points.
Subsequently, it is possible to obtain the response in terms of a time history, or in the frequency
domain, compute the FRFs, extract modal parameters, and calculate a broad set of TFs. Tests
have been repeated for each configuration, simulating damage via applying additional masses
(around 2% of the aeroplane mass) in multiple positions over the entire structure. It can be
assumed that true damage causes a change in the structure’s stiffness, which can be simulated in
Finite Elements models by locally reducing the Young’s modulus [12]. Therefore, it is common
to experimentally simulate damage by adding discrete masses, as it is a simple and reversible
way of introducing changes in the dynamic properties of the structure. Indeed, the additional
masses cause an eigenfrequency decrease, which is equivalent to the effect of a local stiffness loss
[13, 14]. As shown in Fig 2, 23 damage locations have been tested in the configuration with
the winglets, while 19 damage locations were considered for the no winglets configuration, i.e.,
excluding the four locations corresponding to winglet damage (see points 9, 11, 21, 23 in Fig 2).

3.2. Application of the algorithm and results

Among the set of experimentally-computed TFs, the NSA is applied to the transmissibility
between the wingtips. It is a sufficiently wide feature to guarantee global damage sensitivity.
Furthermore, the lower stiffness of the wings, compared to the fuselage, implies that the
behaviour of the wings is the main actor in the entire dynamic response of the aeroplane.
The original features consisted of 3200 spectral lines; however, only 2000 spectral lines were
analysed. It was possible to neglect the final part of the spectrum, above the highest measured
natural frequency, and the initial portion, because, for frequencies approaching zero, spectra are
affected only by the structure’s rigid body motions.
The self-set S, includes 1000 feature vectors obtained by making 500 identical copies of the TFs
corresponding to the undamaged structure for each operational condition. Each feature has
been contaminated differently with samples of multiplicative Gaussian noise of unitary mean and
standard deviation, s=1%. The resulting set is used for autoencoder training. Afterwards, the
trained encoder is used to extract eight-dimensional features from the noise-contaminated normal
condition vectors for assembling the low-dimensional self-set S. Similarly, 100 copies of feature
vectors from each normal and damaged condition of the two configurations are contaminated by
noise and subjected to the encoder for assembling the monitored set M. The NSA is applied to
the low-dimensional self-set S, to compute the detectors xd

j . Subsequently, the match between
each monitored feature xm

i, and the set of detectors is evaluated via a novelty index NI, which
is defined as follows:

NI(i) = minj [dist(xm
i,xd

j)− r
j
d] (3)

A negative value of NI implies that the corresponding feature is novel or anomalous. The Novelty
index is shown in Fig 3. The novelty index is shown for the monitored set, M, including the
normal and damaged conditions of the two configurations investigated. For each configuration,
the first 100 points represent the indices of the polluted normal conditions, and 99.5% are
correctly identified as not anomalous. Data from 101 to 2000 present the novelty indices of
the damaged conditions in the no-winglet configuration, and data from 2101 to 4400 represent
the damaged conditions in the winglet configuration. It can be observed that the novelty index
is negative, and all these conditions are correctly classified as novelties. For further detail, it
should be noted that the damaged conditions are ordered to have the first two DCs on the tail,
followed by the 6 DCs relative to the two portions of the fuselage observed by the vibrometer,
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Figure 3. Novelty Index NI, for the monitored set M. The feature vectors regard the
transmissibilities between the wingtips. The first 2000 features correspond to the configuration
with no winglets, the subsequent ones correspond to the configuration with winglets.

and finally, the DCs of the wings from left to right, as shown in Fig 2.
By considering the transmissibility function along the fuselage, finding corresponding results can
be more complex. This issue may be because of the lower sensitivity of the fuselage response
to the simulated damage. Thus, achieving suitable damage-sensitive features may present a
demanding challenge. Focussing on the wings, it is also possible to analyse more localised
features, such as the one presented in Fig 4, which shows the novelty index corresponding to a
transmissibility function between two points near the wingtip on the left side. By considering the
transmissibility between two neighbouring points close to the wingtip, the feature is less sensitive
to damage applied to the fuselage. Therefore, it can not be used for global damage assessment.
However, the algorithm properly identifies damage in proximity of the area covered by the
feature, i.e., data from 1701 to 2000, corresponding to the wingtip in the first configuration,
and data from 3901 to 4300, corresponding to the wingtip in the second configuration. This
characteristic suggests the possibility of exploiting a set of local transmissibilities to obtain
further information on the damage conditions. A symmetric result can also be obtained by
studying the novelty index corresponding to the transmissibilities between two points near the
wingtip on the right side, as shown in Fig 5.
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Figure 4. Novelty Index NI, for the monitored set M. The feature vectors regard the
transmissibilities between two points near the wingtip on the left side. The first 2000 features
correspond to the configuration with no winglets. The subsequent ones correspond to the
configuration with winglets.

4. Discussion and conclusion

This study analyses the capabilities of the negative selection algorithm for identifying multiple
damage conditions from two different normal configurations of the same structure. A real-
value negative selection algorithm is proposed, which adopts vibration-based features, i.e., TFs,
as proposed in [3]. This methodology takes into account the operational or environmental
variations to which structures may be subjected.
Despite concerns about the applicability of this family of algorithms [6], NSA provides
satisfactory damage-identification performance for the analysed features, and the high runtime
issue is solved using autoencoders for dimensionality reduction. However, the algorithm critically
depends on the choice of some parameters, such as the radii of the hyperspheres, in the self-
set and the detectors set. Different approaches could be explored to derive them, and various
distance measurements could be used, depending on the source features. In addition, the space-
filling efficiency of detector hyperspheres, as pointed out by [9], is non-trivial to quantify. Thus,
it is an issue that could be further addressed.
Given the features’ dimensionality reduction, the NSA is extended to an experimental case study.
The feature vectors are extracted from the experimental modal analysis of a laboratory-scale
aeroplane model in two different configurations. These are considered two initial investigations to
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Figure 5. Novelty Index NI, for the monitored set M. The feature vectors regard the
transmissibilities between two points near the wingtip on the right side. The first 2000 features
correspond to the configuration with no winglets. The subsequent ones correspond to the
configuration with winglets.

extend the study to similar structures and additional operational conditions. It is observed that
the transmissibility function between the wingtips enables clustering of all damage conditions.
Furthermore, by using a more local feature (e.g., a feature vector measured between two
neighbouring points on the wing), it can be appreciated how, although the NSA loses the ability
to identify all damage conditions, it can detect the anomalies located close to the measured
points. Therefore, the choice of features remains of primary concern, but combining different
feature vectors could help in retrieving further information about the anomaly’s location.
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