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Abstract: Adapting to human-induced climate change is becoming an increasingly important aspect
of sustainable development. To be able to do this effectively, it is important to know how much
human influence has contributed to observed climate trends. Climate detection and attribution (D&A)
studies achieve this by estimating scaling factors usually obtained by performing a least squares
regression of the observed trending climate variable on the equivalent variable simulated by a climate
model. This study proposed instead to estimate scaling factors by using the econometric approach of
dynamically modelling the time series as a cointegrating Vector Auto-Regressive (VAR) time series
process. It is shown that a 2nd-order cointegrating VAR(2) model is theoretically justified if the
observed and simulated variables can be represented as a one-box AR(1) response to a common
integrated forcing. The VAR(2) model can be expressed as a Vector Error-Correction Model (VECM)
and then fitted to the data to obtain the cointegration relationship, the stationary linear combination
of the two variables, from which the scaling factor is then easily obtained. Estimates of the scaling
factor from the VAR(2) model are critically compared to those from Ordinary Least Squares (OLS) and
Total Least Squares (TLS) for annual Global Mean Surface Temperature (GMST) data simulated by a
simple stochastic model of the carbon–climate system and for historical simulations from 16 climate
models in the Coupled Model Intercomparison Project 5 (CMIP5) experiment. Results from the toy
model simulations show that the slope estimates from OLS are negatively biased, TLS estimates are
less biased but have high variance, and the VAR(2) estimates are unbiased and have lower variance
and provide the most accurate estimates with smallest mean squared error. Similar behaviour is
noted in the CMIP5 data. Hypothesis tests on the VAR(2) fits found strong evidence of a cointegrating
relationship with the observations for all the CMIP5 simulations.

Keywords: climate trend; cointegration; detection; attribution; time series; VAR model; TLS;
Error-Correction Model

1. Introduction

Taking urgent action to combat climate change and its impacts is a major goal of
sustainable development. To be able to address this, it is important to be able to accurately
quantify what fraction of a climate trend can be attributed to human influence. This
study explored the accuracy of various approaches to the attribution of trends in Global
Mean Surface Temperature (GMST). GMST is an important variable in attribution because:
(a) changes in GMST can be directly attributed to changes in the Earth’s energy budget;
(b) other climate variables and the risk of weather extremes on global and regional scales
can be predicted using GMST as a climate change index [1,2]; (c) GMST is the metric of
climate change used by policymakers (e.g., the global warming limits of the 2015 Paris
Agreement). Quantifying the effect of different forcing agents on GMST is therefore critical
for informing climate change mitigation and adaptation measures. Furthermore, this study
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is relevant to recent studies that are starting to use attribution for impacts of climate, e.g.,
heat-related trends in human health [3].

Detection and attribution studies assess whether climate change can be detected as
being significantly outside the range expected from natural internal variability and assess to
what extent observed changes can be attributed to external forcings of climate change, both
human-induced and naturally occurring. Hegerl et al. [4] defined the detection of climate
change as a process of demonstrating that the climate or a system affected by the climate
has changed in some defined statistical sense without providing a reason for that change.
Attribution was defined as the process of evaluating the relative contributions of multiple
causal factors to a change or event with an assignment of statistical confidence. The reliable
detection and attribution of changes in the climate is fundamental to our understanding of
climate change and to enabling decision-makers to manage climate-related risk. Moreover,
confidence in the assessment of climate change will be increased when attribution of the
change to a causal factor is robustly quantified and when there is a firm understanding of
the processes that are involved in the proposed causal link [4].

Current approaches to the detection and attribution of an anthropogenic influence
on climate involve quantifying the level of agreement between model-predicted patterns
of externally forced change and observed changes in the recent climate record [5]. Most
previous studies have used a regression approach in which it is assumed that observations
can be represented as a linear combination of candidate signals (the climate model simulated
responses to external forcing) plus noise ([6] p. 712). The regression model has the form
y = Xβββ + εεε, where y = (y1, y2, . . . , yn)T is a vector of observations, matrix X contains the
simulated responses to the external forcings that are under investigation (with one column
for each signal considered), βββ is a vector of slope parameters (scaling factors) that adjusts
the amplitudes of those patterns and εεε represents internal climate variability [5,7–9]. The
unknown scaling factors, βββ, are generally estimated using either Generalized Least Squares
(GLS) or Total Least Squares (TLS) estimation [8,10–16]. Some more sophisticated methods
have also been used more recently (e.g., maximum likelihood, Bayesian inference, alternative
estimators of the internal variability covariance matrix) but many are still essentially fitting a
TLS model [17,18]. For a recent short review of methods, see Section 3.2 of [19].

When regressing trending series on one another, the residuals are not guaranteed
to be stationary, which often leads to estimates and test statistics having non-standard
limiting distributions that diverge as the sample size increases [20]. This gives rise to
what is known as either nonsense or spurious regression [21,22]. For example, one can
easily obtain large significant slope parameters even if trying to attribute/regress time
series of independent random walks on one another (see (Turasie [23] pp. 27–29) for some
simulated examples). To avoid this problem, it is useful instead to search for a linear
combination of the variables that is stationary (a cointegrating relationship) rather than the
one that has the minimum sum of squares ([24] p. 17). It can be shown that a cointegrating
relationship is a necessary condition for least squares estimates to be consistent, i.e., the
estimates converge onto the true values as the sample size increases [25]. It has recently
been proven that model-simulated and -observed climate variables have a cointegrating
relationship under the fairly general assumptions that the forcings are linearly related to
one another and the responses are time-invariant and linear [17], which justifies the use of
least squares regression in detection and attribution studies. Furthermore, scaling factors
can be estimated by fitting a time series model known as an Error Correction Model (ECM)
that instead involves regressing the first differences of a variable on current and past values
of the other variable. The existence of such ECM models for cointegrating variables is
proven by the Granger representation theorem [25].

Although these different estimation methods will converge on the same scaling factor
estimates as the sample size increases to infinity when there is a cointegrating relationship,
they will give different estimates for finite samples. Historical climate time series are
typically short, having sample sizes less than T ∼ 200 years, which raises the important
practical question of which method is most accurate in these situations for estimating
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scaling factors. This study assessed this by comparing the performance of OLS and TLS
estimates and estimates from a theoretically-justified vector ECM using data simulated by
(a) 16 different climate models that participated in the CMIP5 experiment, and (b) a simple
stochastic carbon–climate time series model (where the true value is known). The following
section briefly describes the three different estimation methods and then Sections 3 and 4
show results from these methods for the CMIP5 and stochastic model simulations. Section 5
concludes the paper with a summary and discussion of future directions.

2. Methods for Estimating Scaling Factors

This section briefly describes the three different methods for estimating the scaling
factor that were compared in this study: OLS/GLS, TLS and VAR(2).

2.1. Ordinary Least Squares and Generalized Least Squares (OLS/GLS)

Fixed-effect least squares regression was the first approach used in detection and at-
tribution studies (e.g., [5,26]). In the simplest case, historical observed values of a variable
are related to values simulated by a climate model using the simple linear regression model
yt = β0 + β1xt + εt, where the residuals εt are assumed to have an error covariance structure
that can be estimated from long historical simulations. For the sake of mathematical simplicity,
consider the special OLS case where εt are assumed to be independent, i.e., white noise. The
OLS slope estimate β̂1 is obtained by minimization of the Residual Sum of Squares, given by

RSSols =
T

∑
t=1

ε̂t
2 =

T

∑
t=1

(yt − ŷt)
2 =

T

∑
t=1

(yt − β̂0 − β̂1xt)
2. (1)

Minimizing (1) with respect to β̂1 gives

β̂1 =
Sxy

Sxx
, (2)

where Sxy =
T

∑
t=1

(xt − x)(yt − y), Sxx =
T

∑
t=1

(xt − x)2, y = 1
T

T

∑
t=1

yt, and x = 1
T

T

∑
t=1

xt. This es-

timate, hereafter referred to as β̂ols, has assumed that the model simulated values xt are
non-random fixed effects. This assumption ignores the natural variability present in the simu-
lated series that contributes to Sxx, and causes the slope estimate to be biased towards zero—an
effect known as regression dilution (or attenuation). Furthermore, this bias, caused by ignored
errors in explanatory variables, has been found to be even more severe in GLS fits [27]. For this
reason and the sake of simplicity, we considered only OLS fits in the rest of this article.

2.2. Total Least Squares (TLS)

Total Least Squares (TLS) is a regression method that attempts to account for ob-
servational errors on both predictor and response variables ([28] p. 27) that was first
introduced into detection and attribution by [10]. Suppose that (x∗t , y∗t ) are the true values
of the predictor and response variables while (xt, yt) are values that we observe such that
xt = x∗t + ζt and yt = y∗t + ωt. Assume the unobservable true values are related linearly,

y∗t = β0 + β1x∗t . (3)

Using xt and yt in (3) under the assumption that ζt and ωt have finite variances (σ2
ζ

and σ2
ω, respectively) and zero means, we get:

yt = β0 + β1xt + νt, where νt = ωt − β1ζt. (4)

The OLS method assumes that the predictor variable x is deterministic and measured
without error (that is, ζt = 0 for all t). Thus, all the uncertainty in OLS regression is associated
with the response variable and, hence, one minimizes the sum of squared distances in the
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y-direction of data-points from the fitted line. For TLS, it is sufficient to assume equal noise
variance (σζ = σω) (known as orthogonal regression) since this can always be obtained by
pre-multiplying yt by the ratio σζ /σω (if known and non-zero). TLS minimises the sum of
squared perpendicular distances from the line of best fit:

RSStls =
T

∑
t=1

[(yt − ŷt) cos θ]2, (5)

where the gradient of the line of best fit is tan θ = β̂1. This objective function is mini-
mized when

β̂1 =
(Syy − Sxx) +

√
(Syy − Sxx)2 + 4S2

xy

2Sxy
. (6)

Note that, unlike the OLS slope estimate which tends to zero, this slope estimate,
hereafter referred to as β̂tls, tends to infinity (no solution—see [29]) when the sample
covariance Sxy/T vanishes and Syy 6= Sxx. This singular behaviour can lead to large
values and much uncertainty in the slope estimate, especially when there is only a weak
correlation between x and y, e.g., in the detection and attribution of more variable regional
climate trends.

2.3. A Dynamic Approach: The Cointegrating VAR(2) Model

In the OLS and TLS approaches, the residuals εt will generally not be independent of
one another and so the sum of squared residuals will not be simply related to the likelihood
function. In other words, the least squares estimates are not necessarily maximum likeli-
hood estimates. To obtain maximum likelihood estimates, it is necessary to dynamically
model the serial dependence by specifying and fitting an appropriate bivariate time series
model to the x and y time series. This section will present such a model—the 2nd order
vector auto-regressive model—and show how it can be used to estimate the cointegrating
relationship, and hence the scaling factor.

Based on simple one-box energy balance arguments, one of the most widely used
stochastic models for climate variability and its response to climate change forcing is
the 1st order auto-regressive process, e.g., see Cox et al. [30] for a recent application to
global mean temperature projections. For this model, it can be shown (see Appendix A)
that the vector zt = (yt, xt)T of observed and simulated temperatures responding to a
trending forcing evolves as a second-order Vector Auto-Regressive time series VAR(2)
process given by

zt = µ + Π1zt−1 + Π2zt−2 + εt, (7)

where εεεt is vector of random error terms which are assumed to be independent and nor-
mally distributed with zero mean vector and covariance matrix Σ [31]. The 2× 2 matrices
Π1 and Π2 allow the major sources of auto-correlation in the two series to be represented.
In practice, the random error terms are not strictly independent since climate models are not
perfectly represented by one-box energy balance models [32]. However, the independence
assumption is likely to be much more valid here than the residual assumptions in the OLS
and TLS static regression approaches.

Various cointegrating time series models have been used previously to relate observed
temperature time series to historical estimates of radiative forcing (e.g., [33–37]; and references
therein). For example, by considering two-box energy balance equations, Pretis [36] showed
that historical estimates of surface temperature, ocean heat content, and radiative forcing
could be modelled as a cointegrating VAR(1) process. Unit-root non-stationarity in the process
arises from the radiative forcing that is assumed to be well represented by an I(1) unit-root
stochastic trend process as greenhouse gas emissions have accumulated in the atmosphere
throughout the industrial period. However, because of eventual reabsorption into the land
and oceans, the emissions process is close to unit root rather than being strictly unit root. In
the pre-industrial period, greenhouse gas emissions into the atmosphere were considerably
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smaller than during the industrial period and so the series would drift sufficiently slowly
that there would be time for carbon dioxide and other greenhouse gases to be reabsorbed.

The novelty of our study is that we used cointegrating VAR models to model observed
and climate model-simulated temperatures, which has the advantage of the climate model
providing a physically-based response to the radiative forcing.

The unrestricted VAR model in (7) can be reparameterized in terms of differences, lagged
differences, and levels of the process to give the VECM(2) Vector Error Correction Model

∆zt = µ + Πzt−1 + Γ∆zt−1 + εt, (8)

where Π = (Π1 + Π2 − I2×2), Γ = −Π2. The Π matrix describes the long-run relationship
between variables (yt and xt), and Γ describes transitory effects measured by the lagged
changes of the variables [25,38]. This model can easily be fit to data—see Appendix B for R
code used to find each of the scaling factor estimates.

The rank r of Π controls the non-stationarity properties of the series. When r = 2,
then Π is of full rank and invertible and zt is stationary. When r = 0, then Π = 0 and yt
and xt evolve as two non-cointegrating random walks ([24] p. 115). When r = 1, there is
a stationary linear combination of yt and xt (the cointegrating relationship). In this case,
the long-run coefficient matrix can be written as Π = αααβT, where ααα = (α1, α2)

T (vector of
adjustment coefficients) and βββ = (β1, β2)

T (cointegration vector). The scaling factor is given
by βcoint = −β2/β1. When r = 1, the model has 2 + 3 + 4 + 3 = 12 parameters, which give
the model flexibility to represent the means and serial covariance of the yt and xt series.

If yt can be attributed on xt due to having a common forcing, we expect yt and xt to be
a trending series that has a cointegrating relationship, so r = 1. A formal test for the cointe-
gration hypothesis can be formulated as a reduced rank test on the Π matrix, H0: r ≤ q, for
some constant number q (q = 0, 1, for bivariate model), and the alternative is r > q. The
likelihood ratio-based trace statistic introduced by Johansen [39] was used to test the rank of
Π matrix in this study. For our bivariate case, the null hypothesis of at most one cointegration
vector was rejected in favour of a more than one alternative if the estimated trace statistic
was greater than critical value provided, for instance, in Table 1* of Osterwald-Lenum [40].
Compared to the ECM for only yt used in Cummins et al. [17], Beenstock et al. [41], the
vector ECM has the advantage that it treats both the xt and yt on equal footing [24]. Confi-
dence intervals can easily be calculated for the scaling factor by performing OLS fits of the
restricted VECM, e.g., using the cajorls function in the urca package in R [42].

3. Results from CMIP5 Climate Model Simulations

The three different estimation methods have been applied to historical Global Mean
Surface Temperature (GMST) simulations from 1860–2004 for 16 climate models that partic-
ipated in CMIP5 (see Table 1). Figure 1 shows time series of the GMST anomalies of the
first simulation of each model together with those from the HadCRUT3 gridded dataset
observations. It can be clearly seen that all the series are non-stationary and trending
upwards—using the augmented Dickey–Fuller [43,44] test for unit root, all the series are
found to be integrated of order 1, i.e., year-to-year differences are stationary ([23] Ch. 4).

The model simulated series tend to follow the observed series but there are notable
deviations (e.g., HadGEM2-CC is warmer than the observed series right up until 1940). To
exclude the possibility of spurious regressions, it is important to test whether or not there is
a cointegrating relationship between the observed and each of the simulated temperatures.
Table 2 shows the result of applying the rank test discussed in Section 2.3. The test statistics
under Hr1 : r ≤ 1 are all less than the corresponding 5% critical value of 9.24, while all those
under Hr0 : r = 0 are greater than the corresponding 5% critical value of 19.96. Therefore,
we cannot reject that the rank is less than or equal to 1 but we can reject that the rank is 0,
which implies that the rank is 1 and there is a cointegrating relationship between each of
the simulations and the observed series in contrast to what was found in [41]. We preferred
to use CMIP5 simulations here rather than the more recent CMIP6 simulations, which
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are known to have some overly sensitive models; however, it is worth noting that similar
cointegrating relationships were also found in CMIP6 simulations [17].
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Figure 1. Time series plots of observed (solid lines) and simulated (dashed lines) temperature
anomalies for each GCM over the period 1860–2004. For simplicity, only the 1st simulation from each
GCM has been shown. Temperature anomalies were calculated by subtracting the time mean over
the 1960–1990 base period.
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Table 1. Summary of the CMIP5 models used in this study and the number of available histori-
cal simulations.

Model Institution Simulations

1 bcc-csm1-1 Beijing Climate Center, China Meteorological Administration 3
2 CanESM2 Canadian Centre for Climate Modeling and Analysis 5
3 CCSM4 NCAR Community Climate System Model 6
4 CNRM-CM5 Centre National de Recherches Meteorologiques/Centre 10

Europeen de Recherche et Formation Avancees en Calcul Scientifique
5 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation 10

and the Queensland Climate Change Centre of Excellence
6 EC-Earth23 European Centre for Medium-Range Weather Forecasts 1
7 GISS-E2-R NASA Goddard Institute for Space Studies 10
8 GISS-E2-H NASA Goddard Institute for Space Studies 5
9 HadCM3 Met Office Hadley Centre 1
10 HadGEM2-CC Met Office Hadley Centre 1
11 HadGEM2-ES Met Office Hadley Centre 4
12 inmcm4 Institute for Numerical Mathematics, Moscow, Russia 1
13 IPSL-CM5A-LR Institut Pierre Simon Laplace, Paris, France 4
14 MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo) 1
15 MRI-CGCM3 Meteorological Research Institute, Tsukuba, Japan 5
16 NorESM1-M Norwegian Climate Centre 3

Table 2. Trace test statistics for hypotheses about the rank r of Π for the first runs of the 16 CMIP5
models: Hr1 : r ≤ 1 non-stationary process, Hr0 : r = 0 two independent random walks with no
cointegrating relationship. Hypothesis Hr1 can be rejected at the 5% level if the statistic exceeds 9.24,
and Hr0 can be rejected at the 5% level if the statistic exceeds 19.96.

Simulation
Null Hypothesis

Hr1: r ≤ 1 Hr0: r = 0

M1.1 1.67 33.35
M2.1 1.77 34.49
M3.1 2.01 36.82
M4.1 2.55 29.47
M5.1 3.50 25.70
M6.1 1.91 28.35
M7.1 1.66 28.63
M8.1 2.17 25.78
M9.1 1.79 30.68
M10.1 3.60 29.17
M11.1 3.96 28.23
M12.1 2.10 50.32
M13.1 1.64 32.46
M14.1 3.40 54.99
M15.1 2.20 36.40
M16.1 2.17 43.72

The scaling relationship between the observations and simulations was estimated
using the three different approaches. Figure 2 shows an example of the three different
approaches applied to a simulation from the GISS-E2-R climate model. Figure 3 shows
distributions of the estimated scaling factor for each of the three methods. The OLS method
gives scaling factor estimates that are substantially lower than those from TLS and COINT,
as might be expected due the method not accounting for natural variation in the simulated
temperature variable. The OLS estimates also have the least spread, whereas the TLS
estimates have the most spread with some questionably large scaling factor estimates
exceeding 2. The COINT estimates do not have such outliers and have mean and spread
intermediate between those of the OLS and TLS estimates. These conclusions across models
are confirmed by estimates within multiple runs from individual models (Figure 4).
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Figure 2. Scatter plot of observed temperature anomalies versus model simulated temperatures from
the GISS-E2-R model. Best fit lines are shown for OLS regression (thin dashed lines), TLS regression
(thick dashed line), and the VAR cointegrating relationship (thin solid line).
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Figure 3. Comparison of the three estimates of the scaling factor across all 16 GCMs: (a) estimates
for the first simulation from each of the 16 GCMs: O-OLS, T-TLS, and C-COINT, (b) boxplots of the
scaling estimates over all simulations from each of the climate models, i.e., 70 simulated time series
(see Table 1).
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Figure 4. Boxplots of scaling factor estimates made for all available simulations of each climate model:
(a) OLS estimates, (b) TLS estimates, and (c) cointegrated VAR estimates.

4. Results from Stochastic Carbon-Climate Model Simulations

To further investigate the properties of the different estimation methods, it is useful to
have data generated by a process where we know the value of the true scaling factor. In
this section, this is achieved by showing results from data simulated from a very simple
conceptual model of the carbon–climate system.

4.1. Simple Stochastic Model of the Carbon-Climate System

A simple stochastic model of the carbon–climate system can be constructed as follows.
It is reasonable to assume that the observed (yt) and model-simulated (xt) global mean
temperatures in year t = 1, 2, 3, . . . , T are linear functions of the atmospheric carbon dioxide
concentration ct [45,46] and that the carbon dioxide concentration accumulates by a random
amount from year t− 1 to year t:

yt = γ0 + γ1ct + εt (9)

xt = γ′0 + γ′1ct + ε′t
ct = γc + ct−1 + εc

t ,

where γc > 0 represents constant emissions that arrive in the atmosphere each year and
εt, ε′t and εc

t , are assumed to be independent Gaussian variates with zero means and
constant variances. Therefore, ct is assumed to be a random-walk process with drift, which
is consistent with previous studies that have shown that the time series of global mean
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temperature as well as the atmospheric concentration of CO2 are integrated processes of an
order greater than zero [47–52]. This model is a special case of the model in Appendix A,
having an instantaneous response to forcing (φ = φ′ = 0). The attribution regression
equation and scaling factor can be easily derived for the stochastic model. The expression
for xt in Equation (9) can be used to find ct, which can then be substituted into the equation
for yt to give yt = γ0 − βγ′0 + βxt + εt − βε′t, where the scaling factor β = γ1/γ′1.

4.2. Estimation of Parameters for the Stochastic Model

Figure 5a,b show historical estimates of ct and ct − ct−1 using data from [53]. After
1960, when direct atmospheric measurements were available, the series ct − ct−1 can be
seen to vary randomly around a mean of about 3 GtC/year. Before 1960, the annual changes
were smoother and less variable but were then estimated from ice core data that have no
annual resolution (personal communication, Prof. Pierre Friedlingstein). The sample mean
and variance of the annual differences gives estimates of γ̂c = ct − ct−1 = 1.53 GtC/year
and σ̂2

εc = 1.43 (GtC/year)2.
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Figure 5. Time series plot of historical data over the 20th century: (a) atmospheric concentration of
CO2 (in units of Gigatons of Carbon), (b) year-to-year differences in atmospheric concentration of CO2,
(c) observed global mean surface temperature anomalies, and (d) global mean surface temperature
anomalies simulated by the GISS-E2-R model. Scatter plots of global mean temperature anomalies
versus atmospheric concentration of CO2 (with OLS fits as solid lines) for (e) observations, and
(f) GISS-E2-R simulation. Temperature anomalies were calculated by subtracting the time mean over
the 1960–1990 base period.
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Figure 5c,d show time series plots of historical observed GMST and an example
simulation from the GISS-E2-R GCM. When these are plotted against the historical CO2
values (Figure 5e,f), it can be seen that there are clear linear relationships as assumed
in the stochastic model. OLS fits to these data give estimates of γ̂1 = 0.00486 ◦C/GtC,
γ̂′1 = 0.00279 ◦C/GtC, γ̂0 = −3.41 ◦C, γ̂′0 = −1.96 ◦C, which gives a known scaling factor
of β = γ̂1/γ̂′1 = 1.74. The sample variance of the observed and simulated temperature
residuals was similar and so for simplicity pooled sample variance was used to obtain
σ̂2

ε = σ̂2
ε′ = 0.0203 (◦C)2.

The stochastic model with these parameter estimates was used to simulate K = 50
independent realizations of the time series yt, xt, and ct, where t = 1, 2, . . . , T years. The
realizations resemble the original series, as can be seen in the T = 100 year example shown
in Figure 6.
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Figure 6. A typical example of time series simulated by the stochastic carbon–climate model: (a) at-
mospheric concentration of CO2, (b) observed temperature anomalies, (c) climate model temperature
anomalies, and (d) scatter plot of observed versus simulated temperature anomalies with solid line
showing the OLS fit.

4.3. Scaling Factor Estimates from Simulated Data

Figure 7 shows scaling factor estimates for time series of length T = 100 years for
50 simulations from the stochastic model. The 95% prediction intervals are calculated
from β̂ ± 1.96sβ, where 1.96 is the 97.5th quantile of normal distribution and sβ is the
sample standard deviation of the 50 estimates. Figure 7a shows that the OLS estimates
underestimate the true scaling factor value in all the 50 realizations. Thus the OLS estima-
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tors are strongly negatively biased. By contrast, the TLS estimates in Figure 7b appear to
overestimate the scaling factor (positively biased) sometimes by a factor of two, and are
a lot more variable. These results for OLS and TLS agree with the comparison made in
(Van Huffel and Vandewalle [28] p. 244) for a moderate sample size—TLS estimates have a
mean that is closer to the true value (i.e., are less biased) but have greater variance (i.e., are
less efficient) than OLS estimates. The COINT estimates in Figure 7c are evenly scattered
around the true value with a variance only slightly larger than that of the OLS estimates.
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Figure 7. Scaling factor point estimates (black circles) and 95% confidence intervals (whiskers)
obtained from 50 simulations of 100-years of the carbon–climate model using (a) OLS regression,
(b) TLS regression, and (c) cointegrating VAR model. The true scaling factor of 1.74 is depicted by the
thick horizontal lines.

It is of interest to see how the estimates change with sample size T. Since a cointe-
grating relationship exists in the stochastic model (yt − βxt is stationary), all the estimates
should be consistent and converge on the true value as T → ∞. It can be noted from
Figure 8 that this appears to be the case, although for OLS (panels a and d) there is a sub-
stantial negative bias and the confidence interval does not overlap the true value even for
long time series with T = 250 years. The TLS estimates have very wide confidence intervals
especially for small sample sizes T < 200, which are typical of the sample sizes that have
been used in many previous detection and attribution studies. The COINT estimates appear
to be unbiased for samples with T > 50 and the confidence intervals overlap the true value
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for all sample sizes. Sensitivity tests reveal that these results are robust to the choice of
parameters in the stochastic model (not shown).
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Figure 8. Properties of scaling factor estimates from 50 simulations of time series of lengths from 25
to 250 years. Upper panels: mean scaling factor estimates (black lines) and 95% confidence interval
(grey shading) obtained by using (a) OLS regression, (b) TLS regression, and (c) cointegrating VAR.
The true value of 1.74 for the scaling factor is denoted by the thick horizontal lines. Lower panels
show sample properties of the estimators: (d) Mean Squared Error, (e) bias, and (f) variance.

Figure 8 shows the accuracy of the estimators as measured by Mean Squared Error
(MSE), which is the sum of the squared bias and the variance of the estimators. COINT
is by far the most accurate estimator with the smallest MSE because of having small bias
and small variance. For small sample sizes with T < 100, the OLS estimator is the next
most accurate estimator—despite its negative bias, it has much less variance than the TLS
estimator. The TLS estimator, often used in detection and attribution studies, is the least
accurate estimator of the scaling factor, primarily due to its high variance. Despite the
cointegrating VAR(2) model having more parameters than the TLS regression model, it is
apparent that the VAR(2) estimates have much less variance than those of TLS. This is most
likely related to the problem of the TLS estimates diverging to infinity when the covariance
between yt and xt is small.

5. Conclusions and Discussion

This study investigated the use of a dynamic time series model for obtaining estimates
of scaling factors in detection and attribution and compared the performance to that of more
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traditional OLS and TLS regression approaches when applied to CMIP5 GMST simulations
and simulations of a simple stochastic carbon–climate model. It has been shown that:

• The cointegrating VAR(2) model is a reasonable time series approach to use for mod-
elling pairs of observed and model-simulated time series if one assumes the variables
are AR(1) responses to common integrated forcing;

• Unlike OLS, which gives negatively biased estimates and TLS, which gives positively
biased estimates (and large positive outliers), the cointegrating VAR(2) model gives
estimates of the scaling factor that are unbiased;

• The cointegrating VAR(2) model estimates are much more accurate (in terms of MSE)
than the OLS and TLS estimates;

• The TLS estimates have very large variance, which causes large MSE. They give infinite
slope estimates if the sample covariance between the observed and model-simulated
series is zero.

• Hypothesis tests on the VAR(2) fits for all the CMIP5 models reassuringly found strong
evidence of a cointegrating relationship with the observations, as to be expected for
observations and simulations responding to shared trending forcing.

Hence, we recommend that the cointegrated VAR(2) approach is used in future detec-
tion and attribution studies in order to obtain more reliable estimates of the scaling factor.
In particular, it would be of interest to test its performance in attribution studies with more
than one simulated series.

It is worth noting that the GMST response to forcing involves more than one adjust-
ment timescale and is generally best described by a 3-box energy balance model rather than
a 1-box energy balance model [17,32,54–56]. A vector error correction model can also be
derived for this situation but results in a much less parsimonious VARMA model for the
pair of observed and simulated variables. In fitting to short time series, it is advantageous
to have fewer parameters to estimate, so it is likely that the VAR(2) approach remains more
appropriate for most climate applications.
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Appendix A. Cointegrated VAR(2) Derivation

Let yt and xt be the observed and climate model-simulated AR(1) responses to a
common stochastically trending forcing Ft plus stationary natural variability forcing:

yt = γ0 + φyt−1 + γ1Ft + εt, (A1)

xt = γ′0 + φ′xt−1 + γ′1Ft + ε′t, (A2)

where |φ|, |φ′| < 1 (i.e., stationary AR model). Non-stationarity is assumed to arise from
unit root behaviour in the forcing Ft not from φ or φ′ being equal to 1. An expression for

https://climexp.knmi.nl
https://esgf-node.llnl.gov/search/input4mips/
https://github.com/stormrisk/cointegration
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Ft−1 can be found by rearranging either Equation (A1) or (A2), or more generally, by taking
a linear combination of these two expressions,

Ft−1 =
ρ

γ1
[yt−1 − γ0 − φyt−2 − εt−1] +

(1− ρ)

γ′1

[
xt−1 − γ′0 − φ′xt−2 − ε′t−1

]
, (A3)

where ρ is an arbitrary weighting parameter. Equation (A1) may equivalently be written

yt = γ0 + φyt−1 + γ1[∆Ft + Ft−1] + εt. (A4)

Substituting Equation (A3) into (A4) gives

yt =
(1− ρ)(γ′1γ0 − γ1γ′0)

γ′1
+ (φ + ρ)yt−1 +

(1− ρ)γ1

γ′1
xt−1

− ρφyt−2 −
(1− ρ)γ1φ′

θ′
xt−2 + γ1∆Ft + εt − ρεt−1 −

(1− ρ)γ1

γ′1
ε′t−1.

There exists a similar expression for xt with weighting parameter ρ′. These two equations
together give the vector equation for zt = (yt, xt)T :

[
yt
xt

]
=

 (1−ρ)(γ′1γ0−γ1γ′0)
γ′1

(1−ρ′)(γ1γ′0−γ′1γ0)
γ1

+

 φ + ρ
(1−ρ)γ1

γ′1
(1−ρ′)γ′1

γ1
φ′ + ρ′

[yt−1
xt−1

]
+

 −ρφ − (1−ρ)γ1φ′

γ′1

− (1−ρ′)γ′1φ
γ1

−ρ′φ′

[yt−2
xt−2

]

+

 γ1∆Ft + εt − ρεt−1 − (1−ρ)γ1
γ′1

ε′t−1

γ′1∆Ft + ε′t − ρ′ε′t−1 −
(1−ρ′)γ′1

γ1
εt−1

.

(A5)

When ∆F, ε, and ε′ are stationary processes, these equations have the 2nd order Vector
Auto-Regressive VAR(2) representation,

zt = µ + Π1zt−1 + Π2zt−2 + εt.

The noise term εt has a relatively simple MA(1) temporal structure when forcing
innovations ∆Ft and weights ρ and ρ′ are negligible, and εt and ε′t are independent in
time and from one another. The VAR(2) model may be written equivalently as a Vector
Error-Correction Model (VECM),

∆zt = µ + Πzt−1 + Γ∆zt−1 + εt.

Matrix Π = Π1 + Π2 − I is given by

Π =

−(1− ρ)(1− φ) (1−ρ)γ1(1−φ′)
γ′1

(1−ρ′)γ′1(1−φ)
γ −(1− ρ′)(1− φ′)

 =

[
Π11 Π12
Π21 Π22.

]

The rank of Π gives the number of (stationary) cointegrating relationships and this,
plus the number of (non-stationary) unit roots, must add up to the dimension of z equal to
2 [39]. The Π above has rank one (i.e., has 2− 1 = 1 cointegrating relationships) and can
be written as Π = αβT , where

αT = [Π11, Π21]

βT = [1, Π12/Π11].

Hence, the cointegration scaling factor βcoint = −β2/β1 = γ1
γ′1

1−φ′

1−φ , which is simply
the ratio of the equilibrium sensitivities of the two AR(1) responses and does not depend
on the weights ρ and ρ′.
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Appendix B. Software Used to Estimate the Scaling Factor

The scaling factors were easily obtained using the following code in the freely available
R language. Data object y refers to a vector of observed temperatures and x refers to the
corresponding vector of model-simulated temperatures.

Appendix B.1. OLS Regression

> sxx <- sum((x-mean(x))^2)
> sxy <- sum((x-mean(x))*(y-mean(y)))
> b.ols <- sxy/sxx # the scaling factor

or alternatively

> fit_ols <- lm(y~x)
> b.ols <- fit_ols$coef[2] # the scaling factor

Appendix B.2. TLS Regression
> sxx <- sum((x-mean(x))^2)
> syy <- sum((y-mean(y))^2)
> sxy <- sum((x-mean(x))*(y-mean(y)))
> b.tls <- ((syy-sxx)+sqrt((syy-sxx)^2+4*sxy^2))/(2*sxy) # the scaling factor

or alternatively

> library(deming)
> fit_tls <- deming(y~x)
> b.tls <- fit_tls$coef[2] # the scaling factor

Appendix B.3. Cointegrated VAR(2) Model

Johansen’s maximum likelihood estimation procedure is used to estimate the cointe-
grating vector βββ and other parameters in the VECM [39,57].

> library(urca)
> coint <- ca.jo(data.frame(cbind(y,x)), type = "trace", K =2,spec="transitory",

ecdet="const",season = NULL, dumvar = NULL)
> coint.r1 <- cajorls(coint,r=1)
> b.coint <- -coint.r1$beta[2] # the scaling factor
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