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Abstract We study superradiant scattering for a charged

scalar field subject to Robin (mixed) boundary conditions on

a charged BTZ black hole background. Scalar field modes

having a real frequency do not exhibit superradiant scattering,

independent of the boundary conditions applied. For scalar

field modes with a complex frequency, no superradiant scat-

tering occurs if the black hole is static. After exploring some

regions of the parameter space, we provide evidence for the

existence of superradiantly scattered modes with complex

frequencies for a charged and rotating BTZ black hole. Most

of the superradiantly scattered modes we find satisfy Robin

(mixed) boundary conditions, but there are also superradi-

antly scattered modes with complex frequencies satisfying

Dirichlet and Neumann boundary conditions. We explore the

effect of the black hole and scalar field charge on the outgo-

ing energy flux of these superradiantly scattered modes, and

also investigate their stability.

1 Introduction

In the scattering of waves incident on a black hole, superradi-

ant scattering occurs if the reflected wave has greater ampli-

tude than the incident wave [1]. For example, low-frequency

bosonic waves interacting with a rotating Kerr black hole

exhibit superradiant scattering [2–5]. This phenomenon is

the wave analogue of the Penrose process for particles [6],

with the wave extracting rotational energy from the black

hole. A similar effect occurs for charged scalar field waves

scattered by a charged Reissner–Nordström black hole [7–

11]. In this case it is electrostatic rather than rotational energy

which is extracted from the black hole by the wave. The

amplification of superradiantly scattered scalar field modes

on a Kerr black hole is comparatively small, for example

a e-mail: sebastian.konewko@ugent.be
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for a Kerr black hole with angular momentum parameter

a = 0.99M (where M is the black hole mass), the maximum

amplification factor for a massless scalar field mode is about

0.4% [1]. In contrast, charged scalar field modes undergoing

superradiant scattering on a Reissner–Nordström black hole

can achieve significantly larger amplification factors, up to

40% [1]. For this reason, charged superradiant scattering is a

very useful toy model for numerical studies. The fact that the

Reissner–Nordström black hole is static and spherically sym-

metric also simplifies the mathematical analysis of charged

superradiant scattering compared with that on rotating black

holes.

One consequence of superradiant scattering is the possi-

bility that it can lead to a superradiant instability, if there is

some mechanism confining a superradiantly amplified field

[3]. For example, a massive scalar field on a rotating Kerr

black hole has a potential which is confining and exhibits

a superradiant instability [12–14]. However, superradiantly

unstable scalar field modes on a Kerr black hole grow only

very slowly in time, which presents major challenges for

numerical studies of the evolution of the superradiant insta-

bility [15,16].

For a charged scalar field on a Reissner–Nordström black

hole, the presence of a mass is not sufficient to confine the

field and cause an instability [17,18]. An alternative confin-

ing mechanism is therefore required if there is to be a super-

radiant instability. In the “black hole bomb” scenario [3], the

confining mechanism is provided by a perfectly reflecting

mirror. For a charged scalar field on a Reissner–Nordström

black hole, there is an instability if the mirror is sufficiently

far from the event horizon of the black hole [19,20]. This

instability can grow many times faster than the correspond-

ing instability of a massive scalar field on a Kerr black hole,

which enables the numerical evolution of the instability, lead-

ing to the formation of a black hole with scalar hair [21,22].
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An alternative confining mechanism can arise when

considering asymptotically anti-de Sitter (adS) rather than

asymptotically flat black holes. In this situation superradi-

ant scattering persists, and the adS boundary can act like a

confining mirror. A massless scalar field on a sufficiently

small rotating asymptotically-adS black hole is superradi-

antly unstable, and the same is true for a charged scalar field

on a sufficiently small Reissner–Nordström-adS black hole

(see, for example, [23–47] for a selection of papers from the

extensive literature on this topic).

The three-dimensional, asymptotically adS, BTZ black

hole [48–50] has been widely studied as a toy model for phe-

nomena on black holes in four or more space-time dimen-

sions. In particular, one can consider whether superradiant

scattering, or a superradiant instability, is possible on a BTZ

black hole. The analysis of these questions for a neutral scalar

field is greatly simplified by the fact that the field modes

can be written in terms of hypergeometric functions (see, for

example, [51,52]). Since null infinity is a time-like hyper-

surface in adS, boundary conditions have to be applied to a

perturbing field. For a neutral scalar field, applying the sim-

plest boundary conditions, namely Dirichlet boundary con-

ditions, superradiant scattering is absent [53]. Superradiant

scattering also does not occur for a fermion field vanishing on

the boundary [54]. However, one can impose more general

(Neumann or Robin) boundary conditions on the scalar field

[55], and, for at least some Robin boundary conditions, there

exist modes which exhibit superradiant scattering [56]. The

impact of Robin boundary conditions on superradiant scatter-

ing has also been considered on four-dimensional Reissner–

Nordström-adS [44] and Kerr-adS black holes [57].

In this paper we examine whether superradiant scat-

tering exists for a charged scalar field subject to Robin

(mixed) boundary conditions on a charged analogue of the

BTZ black hole. We seek to understand whether the anal-

ogy between superradiant scattering behaviour on a BTZ

black hole and four dimensional black holes persists for a

charged scalar field. In particular, we ascertain whether there

is charged superradiant scattering on a static charged BTZ

black hole. We also examine whether superradiant amplifi-

cation is enhanced in this set-up compared with superradiant

scattering on a rotating BTZ black hole.

We begin, in Sect. 2, by reviewing the black hole metric

and separable solutions of the charged scalar field equation

on this spacetime background, paying particular attention to

the boundary conditions satisfied by the field far from the

black hole. In Sect. 3 we study the possibility of superradiant

scattering using two approaches: firstly a Wronskian con-

dition (arising from the conservation of the charge current)

which is valid for waves having real frequency, and secondly,

considering the fluxes of energy and charge down the horizon

for an ingoing wave. In particular, an ingoing wave which is

superradiantly scattered will have an outgoing energy flux.

Using the Wronskian, we find that there is no superradiant

scattering for field modes having real frequency. If the fre-

quency is complex, by considering the energy flux, we show

that superradiant scattering is absent if the black hole is non-

rotating. This leaves open the possibility of superradiant scat-

tering for charged, rotating black holes, which is studied in

Sect. 4. Using a simple numerical method, valid for frequen-

cies in the superradiant regime, we provide evidence for the

existence of charged scalar field modes which are superra-

diantly scattered. We explore the effect of increasing either

the black hole or scalar field charge on the energy fluxes of

these superradiantly scattered modes, as well as investigating

their stability. Our conclusions are presented in Sect. 5. Two

appendices give further details of our numerical procedure

and the complex frequencies of the superradiantly scattered

modes.

2 Charged scalar field on a charged BTZ black hole

2.1 Charged BTZ black holes

The neutral BTZ black hole [48–50] is a solution of the three-

dimensional Einstein equations with a negative cosmological

constant � = −ℓ−2, having metric

ds2 = −N0(r) dt2 + N0(r)−1 dr2

+ r2
[
dϕ + N

ϕ
0 (r) dt

]2
(1a)

where

N0(r) =
r2

ℓ2
− M +

J 2

4r2
, N

ϕ
0 (r) = −

J

2r2
, (1b)

with M the mass and J the angular momentum of the black

hole.

In the static case (J = 0), the black hole acquires an elec-

tric charge Q by introducing the electromagnetic potential

Aμ = A0δ
t
μ, where

A0 = −Q ln

(
r

r0

)
, (2a)

and an arbitrary length scale r0 has been introduced to render

the argument of the logarithm dimensionless. The metric for

a static charged BTZ black hole is then [48–50]

ds2 = −N (r) dt2 + N (r)−1 dr2 + r2 dϕ2 (2b)

and the lapse function takes the form

N (r) =
r2

ℓ2
− M −

Q2

2
ln

(
r

r0

)
. (2c)
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The generalization of the rotating BTZ black hole to

include an electric charge is far from straightforward [50,58].

Various three-dimensional, charged, rotating black holes are

presented in [59–63]. In this paper we consider the following

charged generalization of the BTZ metric [63]:

ds2 = −N (r)
r2

R(r)2
dt2 + N (r)−1 dr2

+ R(r)2
[
dϕ + Nϕ(r) dt

]2
(3a)

where N (r) is the same as in the static case (2c) and the other

functions appearing in the metric are:

R(r)2 = r2 +
�2ℓ2

1 − �2

[
M +

Q2

2
ln

(
r

r0

)]
,

Nϕ(r) = −
�ℓ(

1 − �2
)

R(r)2

[
M +

Q2

2
ln

(
r

r0

)]
, (3b)

where M , Q and � ∈ [0, 1) are constants. The mass M̃ and

angular momentum J̃ of the black hole are given in terms of

the parameters M , Q, and � as follows [63]:

M̃ =
1

1 − �2

[
M

(
1 + �2

)
−

1

2
Q2�2

]
,

J̃ =
2�ℓ

1 − �2

[
M −

1

4
Q2

]
. (4)

Unlike the neutral BTZ black hole, the metric (3a) cannot

be obtained by identifying points in three-dimensional adS

space-time. In particular, the scalar curvature R is not con-

stant:

R =
Q2

2r2
−

6

ℓ2
. (5)

When � > 0, the electromagnetic potential Aμ acquires

a nonzero magnetic part and is given by [63]:

Aμdxμ = −
Q

√
1 − �2

[dt − �ℓ dϕ] ln

(
r

r0

)
. (6)

The nonzero components of the electromagnetic field strength

tensor Fμν = ∂μ Aν − ∂ν Aμ are then

Fr t = −
Q

r
√

1 − �2
, Frϕ =

Q�ℓ

r
√

1 − �2
. (7)

For comparison, the electrostatic potential for a four-

dimensional Reissner–Nordström black hole with charge

QRN is, for a suitable choice of gauge,

Aμdxμ = −
QRN

r
dt, (8)

from which we find

Fr t =
QRN

r2
, (9)

giving the usual Coulomb law for the electric field due to a

charge QRN located at the origin in three spatial dimensions.

Therefore QRN is the charge of the Reissner–Nordström

black hole. Comparing (7, 9), it can be seen that there is

a sign difference in Fr t . The electric field component Fr t in

(7) has the expected r−1 behaviour for a point charge at the

origin in two spatial dimensions, but is proportional to −Q

rather than Q. As a result, the charge Q̃ of the black hole is

given by

Q̃ = −
Q

√
1 − �2

. (10)

The fact that the black hole charge Q̃ has the opposite sign

to Q will have important consequences for the interpretation

of the charged scalar field modes which we study later in this

paper.

In the limit � → 0, the metric (3) and gauge field potential

(6) reduce to those in the static case (2). If we set Q = 0,

the metric (3a) does not reduce to the original rotating BTZ

metric (1a) in (t, r, ϕ) coordinates. However, using R as the

radial coordinate, when Q = 0 the metric (3a) becomes

ds2 = −Ñ (R) dt2 + Ñ (R)−1 d R2

+ R2
[
dϕ + Nϕ(r) dt

]2
(11a)

where we have defined the function

Ñ (R) = N (r)
r2

R2

=
R2

ℓ2
−

M
(
1 + �2

)

1 − �2
+

M2�2ℓ2

(
1 − �2

)2
R2

. (11b)

We therefore have a metric of the form (1a) with mass

M̃ = M
(
1 + �2

)
/
(
1 − �2

)2
and angular momentum J̃ =

2 M�ℓ/
(
1 − �2

)
, in accordance with (4).

The horizons of the black hole are located at those val-

ues of the radial coordinate r for which N (r) vanishes. If

M < Q2 [1 − 2 ln (Qℓ/2r0) ] /4 there is a naked singular-

ity at r = 0; we do not consider this possibility further. For

M > Q2 [1 − 2 ln (Qℓ/2r0)] /4 there is an event horizon at

r = rh , the largest zero of N (r) and an inner horizon at the

smaller positive zero of N (r). These two horizons coincide

when M = Q2 [1 − 2 ln (Qℓ/2r0)] /4 and in this case we

have an extremal black hole [64]. In this paper we focus on

the case where the black hole is nonextremal.
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By making a gauge transformation of the form

Aμ → Aμ + ∂μχ,

χ =
Q

√
1 − �2

(t − �ℓϕ) ln

(
rh

r0

)
, (12)

we may set r0 = rh without loss of generality. We then find,

by considering the zeros of (2c), that

M =
r2

h

ℓ2
. (13)

At the horizon, we have R(rh)2 = r2
h/

(
1 − �2

)
and

Nϕ(rh) = −�/ℓ, so that �/ℓ is the angular speed with

which the event horizon rotates.

In our analysis of superradiant scattering, we will be inter-

ested in the flux of energy down the event horizon of the black

hole. For this analysis, we will require suitable coordinates

which are regular across the horizon. We will employ ingo-

ing Eddington–Finkelstein (EF) coordinates. First we define

an ingoing null coordinate v by

dv = dt +
1

r

R(r)

N (r)
dr, (14a)

and a new angular coordinate ϕ̂v by

dϕ̂v = dϕ −
R(r)

r

Nϕ(r)

N (r)
dr. (14b)

Then the coordinates (v, r, ϕ̂v) are ingoing EF coordinates,

in terms of which the metric (3a) becomes

ds2 = −N (r)
r2

R(r)2
dv2 +

2r

R(r)
dv dr

+ R(r)2
[
dϕ̂v + Nϕ(r) dv

]2
. (15)

The metric (15) is regular when r = rh and N (r) = 0, as

required. Near the horizon, the ingoing EF coordinates take

the form

v = t +
r∗√

1 − �2
, ϕ̂v = ϕ +

�r∗

ℓ
√

1 − �2
, (16)

where r∗ is the usual tortoise coordinate, defined by

dr∗
dr

=
1

N (r)
. (17)

Similarly, we can define outgoing EF coordinates (u, r, ϕ̂u)

as follows:

du = dt −
1

r

R(r)

N (r)
dr,

dϕ̂u = dϕ +
R(r)

r

Nϕ(r)

N (r)
dr. (18)

Near the horizon, the outgoing EF coordinates take the form

u = t −
r∗√

1 − �2
, ϕ̂u = ϕ −

�r∗

ℓ
√

1 − �2
. (19)

2.2 Charged scalar field

We consider a scalar field 
 with charge q and mass m propa-

gating on the rotating charged black hole (3a), and satisfying

the charged scalar field equation

[
DμDμ − m2

]

 = 0, (20)

where Dμ = ∇μ − iq Aμ is the covariant derivative. We

assume that the scalar field is minimally coupled to the geom-

etry. The stress-energy tensor for the charged scalar field is

Tμν = ℜ
{(

Dμ

)∗

Dν
 −
1

2
gμνgρσ

(
Dρ


)∗
Dσ 


−
1

2
m2gμν


∗


}
, (21)

where ℜ is the real part and a star is used to denote complex

conjugation. The scalar field has an associated current density

Jμ given by

Jμ = −iq
[

∗ (

Dμ

)
− 


(
Dμ


)∗]
. (22)

In this paper we treat the scalar field as a test field. However,

if we were to go beyond this approximation, and consider

the effect of the charged scalar field on the electromagnetic

field, the current density Jμ (22) would act as source term in

Maxwell’s equations:

∇μFμν = −4π J ν . (23)

In Sect. 3 we shall study in particular the radial component

J r of the current density (22).

Mode solutions of the scalar field equation (20) take the

form


ωk(t, r, ϕ) =
1

√
r

e−iωt eikϕ Xωk(r), (24)

whereω is the frequency of the wave (which may be complex)

and k ∈ Z is the azimuthal quantum number. In terms of
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the tortoise coordinate r∗ (17), the radial function Xωk(r)

satisfies the equation

[
d2

dr2
∗

+ Vωk(r)

]
Xωk(r) = 0 (25a)

where the potential Vωk(r) takes the form

Vωk(r) =
[
ω − k�ℓ−1

√
1 − �2

− q Q ln

(
r

rh

)]2

− m2 N (r) +
N (r)2

4r2
−

N ′(r)N (r)

2r

−
(
ω� − kℓ−1

)2
ℓ2 N (r)(

1 − �2
)

r2
. (25b)

As r → rh and the event horizon is approached, we have

r∗ → −∞ and

Vωk(r) → ω̃2 (26)

where we have defined

ω̃ =
ω − k�ℓ−1

√
1 − �2

. (27)

Therefore, near the horizon, the radial function Xωk(r) takes

the form

Xωk(r) ∼ Aωkeiω̃r∗ + Bωke−iω̃r∗ (28)

where Aωk and Bωk are complex constants. The frequency

of the wave has effectively been shifted due to the rotation of

the black hole. The fact that ω̃ does not depend on the charge

stems from our choice of gauge, in that the electromagnetic

gauge potential (6) vanishes at the horizon since we have

taken r0 = rh .

Far from the black hole, as r → ∞, the leading-order

behaviour of the potential (25b) is, in general,

Vωk(r) ∼ −
[

m2 +
3

4ℓ2

]
r2

ℓ2
. (29)

This leading-order behaviour is the same as for the neutral

scalar field, and does not depend on the frequency ω or the

azimuthal quantum number k. In this regime the tortoise coor-

dinate has the following form:

r∗ ∼ −
ℓ2

r
, (30)

yielding the equidimensional differential equation

[
d2

dr2
∗

−
μ2

r2
∗

]
Xωk(r) = 0 (31)

where μ2 is a constant given by

μ2 = m2ℓ2 +
3

4
. (32)

Let us assume for the moment that μ2 �= 0. The solutions of

(31) are Xωk ∼ r
p
∗ ∼ r−p, where

p =
1

2

(
1 ±

√
1 + 4μ2

)
. (33)

For 4μ2 > −1, the values of p are real and

Xωk(r) ∼ Cωkr− 1
2 (1+

√
1+4μ2)

+ Dωkr− 1
2 (1−

√
1+4μ2) (34)

for complex constants Cωk , Dωk . The second term gives

a scalar field mode (24) which diverges at infinity when

4μ2 > 3 and therefore we set Dωk = 0 in this case. In this

situation there is no choice of boundary conditions which can

be imposed on the scalar field at infinity.

For −1 < 4μ2 < 3, both solutions in (34) give regu-

lar scalar field modes (24), resulting in some freedom in the

choice of boundary conditions at infinity [65,66]. The solu-

tion with Dωk = 0 satisfies Dirichlet boundary conditions,

while, following [65], we define Neumann boundary con-

ditions to be such that Cωk = 0. If both Cωℓ and Dωℓ are

nonzero, then we have Robin (mixed) boundary conditions.

In this situation we write the solution (34) in the form [56,65]

Xωk(r) ∼ Eωk

[
r− 1

2 (1+
√

1+4μ2) cos ζ

+r− 1
2 (1−

√
1+4μ2) sin ζ

]
(35)

where Eωk is a complex constant and the real angle ζ

(which we term the “Robin parameter”) can be taken to lie

in the interval 0 ≤ ζ < π (we could equally well take

ζ ∈ (−π
2
, π

2
]). Setting ζ = 0 yields Dirichlet boundary

conditions, while ζ = π
2

corresponds to Neumann boundary

conditions.

When 4μ2 = −1, we have

Xωk(r) ∼ Cωkr− 1
2 + Dωkr− 1

2 ln

(
r

rh

)
. (36)

Both solutions are square-integrable in this case, so again we

have a choice of boundary conditions. For 4μ2 < −1, the

exponent p (33) is complex and Xωk(r) is oscillatory. Once

again both linearly independent solutions of the radial equa-

tion are square-integrable at infinity. However, these values

of μ2 violate the Breitenlohner–Freedman bound [67,68] and

therefore we do not consider them further in this work.
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The above discussion of the boundary conditions at infin-

ity is valid only when μ2 �= 0, in which case the behaviour

of the charged scalar field at infinity is identical to that for

a neutral scalar field. In the special case μ2 = 0 the leading

order behaviour of the potential (25b) is no longer (29), but

instead we have, as r → ∞,

Vωk(r) ∼ q2 Q2

[
ln

(
r

rh

)]2

. (37)

In this case it is not possible to solve the asymptotic form of

the radial equation exactly in terms of elementary functions.

However, it is possible to perform an asymptotic expansion

for the radial function Xωk(r) in this case. The first couple

of terms in this asymptotic expansion are:

Xωℓ(r) ∼ Cωk

{
1

r
−

q2 Q2ℓ4

6r3

[
ln

(
r

rh

)]2

+ . . .

}

+ Dωk

{
1 −

q2 Q2ℓ4

2r2

[
ln

(
r

rh

)]2

+ . . .

}
. (38)

The second solution gives a mode which is not square inte-

grable at infinity, so we set Dωk = 0 in this case. The

behaviour at infinity of a massless and conformally coupled

charged scalar field is thus rather different from that seen in

the neutral case.

3 Criterion for superradiant scattering

We now explore whether superradiant scattering occurs for

a charged scalar field, examining separately the cases where

the frequency ω is real or complex.

3.1 Real frequency

We first consider the situation in which the frequency ω is

real and follow an approach of [44,53]. Near the horizon of

an eternal charged BTZ black hole, a scalar field wave will

have a radial function of the form (28), giving


ωk ∼
1

√
r

{Aωk exp [−i(ωt − ω̃r∗ − kϕ)]

+Bωk exp [−i(ωt + ω̃r∗ − kϕ)]} . (39)

Using (16, 19) this can be rewritten in terms of ingoing and

outgoing EF coordinates:


ωk ∼
1

√
r

{Aωk exp [−i (ωu − kϕ̂u)]

+Bωk exp [−i (ωv − kϕ̂v)]} . (40)

The second term corresponds to an ingoing wave with ampli-

tude |Bωk |, and the first term to a wave which is outgoing

close to the horizon and has amplitude |Aωk |. Since we are

interested in superradiantly scattered modes, we set Aωk = 0

so that the wave is purely ingoing at the horizon.

When the frequency ω is real, the potential Vωk(r) (25b)

is also real and therefore the Wronskian

Wωk = X∗
ωk

d Xωk

dr∗
− Xωk

d X∗
ωk

dr∗
(41)

is a constant for any solution Xωk of the radial equation (25).

Near the horizon, using (28) with Aωk = 0 we find

Wωk = −2iω̃ |Bωk |2 . (42)

The quantity (42) is proportional to the radial component

of the current (22) evaluated near the horizon for a scalar

field mode having a radial function of the form (28) with real

frequency and Aωk = 0, namely

J r
∣∣
r→rh

= −
iq

rh

Wωk = −
2qω̃

rh

|Bωk |2 . (43)

The fact that the Wronskian is a constant reflects the conser-

vation of the current Jμ.

The value of Wωk as r → ∞ depends on the form of

the radial function Xωk(r) in this regime. Consider first the

solution (34) valid when 4μ2 > −1. In this case we have

Wωk =
2i

ℓ2
ℑ(C∗

ωk Dωk)
√

1 + 4μ2, (44)

where ℑ denotes the imaginary part. Therefore, if we specify

Dirichlet boundary conditions (for which Dωk = 0) or Neu-

mann boundary conditions (for which Cωk = 0), equating

(42, 44) gives that |Bωk |2 = 0, and it is therefore not possi-

ble to have a purely ingoing mode with real frequency at the

horizon, generalizing the result of [53] to the charged case.

When −1 < 4μ2 < 3, μ2 �= 0, Dirichlet and Neumann

boundary conditions are not the only possibility, we can also

impose Robin boundary conditions for which both Cωk and

Dωk are nonzero. Using the parameterization (35), we have

Cωk = Eωk cos ζ and Dωk = Eωk sin ζ and the Wronskian

(44) becomes

Wωk =
2i

ℓ2
ℑ

(
|Eωk |2 cos ζ sin ζ

)√
1 + 4μ2 = 0. (45)

Therefore, when Robin boundary conditions are applied, it

is again the case that |Bωk |2 = 0.

There are two special cases which need to be considered

separately. First, when 4μ2 = −1, the radial function Xωk(r)
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has the form (36) as r → ∞, whence

Wωk =
2i

ℓ2
ℑ(C∗

ωk Dωk). (46)

Our conclusions are however unchanged: (46) vanishes for

Dirichlet, Neumann and Robin boundary conditions and

|Bωk |2 = 0.

Finally we have the case 4μ2 = 0, for which the radial

function takes the form (38) as r → ∞, with Dωk = 0 to

ensure square integrability. In this situation the Wronskian

tends to zero as r → ∞, so that again it must be the case that

|Bωk |2 = 0.

The inclusion of a scalar field charge has made no differ-

ence to the analysis of the Wronskian. In particular, we find

that for charged scalar field modes having real frequency, any

mode which is purely ingoing at the event horizon vanishes

identically, irrespective of the boundary conditions. In partic-

ular, this means that there can be no superradiant scattering

for modes with real frequency.

Similar results were found in [44] for a charged scalar

field on a four-dimensional Reissner–Nordström-anti-de Sit-

ter black hole. As in [44], the Wronskian (and hence the radial

component of the current J r (22)) vanishes on the boundary

for Robin boundary conditions. As a result, the radial com-

ponent of the current J r (43) must also vanish on the event

horizon. Therefore there can be no net positive flux from the

horizon, and no superradiant scattering.

Our results in this section are in accordance with those of

[56] for the neutral scalar field. In that case there are super-

radiantly scattered modes when Robin boundary conditions

are applied, but these modes have complex frequencies. Our

analysis in this subsection is valid only when the modes have

real frequencies. In the next subsection we therefore exam-

ine the possibility of superradiant scattering for modes with

complex frequencies using a different strategy.

3.2 Fluxes of energy and charge down the horizon

If the frequency ω is complex, it is no longer the case that

the Wronskian (41) is a constant and the approach taken

in Sect. 3.1 is not applicable. In this subsection, we there-

fore take an alternative perspective to investigate whether

there are superradiantly scattered modes having complex fre-

quency ω. Following, for example [5,56], we consider the

energy flux down the event horizon due to an ingoing mode.

For the remainder of this paper the frequency ω will be com-

plex.

Consider an ingoing mode given, in terms of ingoing EF

coordinates (14), by


ωk =
Bωk√

rh

exp [−i (ωv − kϕ̂v)] , (47)

where Bωk is a complex constant, and whose radial part is

therefore

Xωk(r) ∼ e−iω̃r∗ as r∗ → −∞. (48)

In terms of the Killing vectors ξ = ∂v and χ = ∂v +�/ℓ∂ϕ̂v ,

where �/ℓ is the angular speed of the event horizon, the flux

of energy down the black hole is [56]

FE =
∫ 2π

0

dϕ̂v rhχμT μ
ν ξ ν

= 2πrh T r
t

∣∣
r=rh

√
1 − �2, (49)

where the stress-energy tensor for the charged scalar field

is given by (21). Evaluating the required components of the

stress-energy tensor (21) gives

FE

F
= ℜ(ω)

[
ℜ(ω) −

k�

ℓ

]
+ ℑ(ω)2, (50)

where

F = 2πrh |Bωk |2 e2vℑ(ω). (51)

Thus the flux of energy down the horizon due to an ingoing

mode will be positive unless

ℜ(ω)

[
ℜ(ω) −

k�

ℓ

]
+ ℑ(ω)2 < 0. (52)

This is exactly the same condition for superradiant scattering

as in the neutral case [56].

Following the analysis in [44], we also consider the radial

component of the scalar current (22). For an ingoing mode

of the form (47), near the horizon this is given by

J r
∣∣
r→rh

= −
2q

rh

√
1 − �2

|Bωk |2
[
ℜ(ω) −

k�

ℓ

]
e2vℑ(ω). (53)

Assuming that q > 0, this will be negative if ℜ(ω) > k�ℓ−1,

corresponding to an ingoing flux of charge. However, if

ℜ(ω) < k�ℓ−1 and q > 0, we have J r > 0, and there

is an outgoing flux of charge. An ingoing mode with q > 0

and satisfying the criterion (52) is therefore extracting both

charge and energy from the black hole. In this situation the

scalar field mode has been superradiantly scattered.

For a nonrotating charged black hole we have

FE,�=0

F
= ℜ(ω)2 + ℑ(ω)2 ≥ 0 (54)
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and

J r
∣∣
r→rh

= −
2q

rh

√
1 − �2

|Bωk |2 ℜ(ω)e2vℑ(ω) < 0 (55)

if q > 0 and ℜ(ω) > 0. Therefore an ingoing mode has

ingoing fluxes of both energy and charge and there is no

superradiant scattering for a charged scalar field on a static,

charged BTZ black hole, irrespective of the boundary condi-

tions applied to the field.

This result is in contrast to that for a charged scalar

field on a four-dimensional, nonrotating, asymptotically flat

Reissner–Nordström black hole [44], for which superradi-

ant scattering can occur. The key difference between these

two situations is that, for charged scalar field scattering on

a Reissner–Nordström black hole, the electrostatic potential

at the horizon plays the same role as k�ℓ−1 does in (53),

resulting in a range of ingoing mode frequencies for which

superradiant scattering is possible. In our case, the electro-

magnetic potential (6) vanishes on the horizon. Therefore the

black hole charge Q does not appear in the fluxes of energy

(50) or charge (53) at the event horizon.

4 Superradiant scattering on charged rotating BTZ

black holes

We now provide evidence for the existence of superradi-

antly scattered modes satisfying the condition (52), using

a numerical method. We restrict attention to the regime

−1 < 4μ2 < 3, μ2 �= 0 for which there is a choice of

boundary conditions that can be applied to the scalar field at

infinity.

Our numerical method involves integrating the radial

equation (25) to find complex frequencies ω for which the

radial function Xωℓ(r) satisfies ingoing boundary conditions

(48) at the horizon and Robin boundary conditions (35) at

infinity. In other words, we are seeking quasi-normal modes

(QNMs). There are many methods in the literature for the

accurate computation of QNM frequencies (see, for example

[69–72] for reviews and [73–85] for a selection of references

concerning QNMs on BTZ black holes). However, the form

of the potential (25b) (in particular, the presence of the nonan-

alytic ln
(

r
rh

)
term) hinders implementing these in our situa-

tion. Our aims in this section are rather less ambitious than the

high-precision computation of QNM frequencies. Instead,

we are looking for numerical evidence for the existence of

superradiantly scattered modes, and some qualitative infor-

mation about the energy flux (50) for these modes. With this

in mind, we employ a rather naive direct integration method,

which is sufficiently accurate for our purposes for modes

lying in the region (52) for which superradiant scattering is

possible. Our computations are described in Appendix A and

are implemented in MATHEMATICA.

According to (52), superradiantly scattered modes can

exist only for frequencies having a real part ℜ(ω) satisfying

0 < ℜ(ω) < k�/ℓ for k > 0. We therefore consider only

frequencies whose real parts lie in this interval. For a general

frequency ω, the constants Cωk and Dωk (34) describing the

behaviour of the scalar field mode at infinity will be com-

plex. To apply Robin boundary conditions (35), we require

the ratio Dωk/Cωk to be real, which will only occur at par-

ticular frequencies. When the imaginary part of Dωk/Cωk

vanishes, we determine the parameter ζ (35) governing the

Robin boundary conditions from

ζ = arctan

(
Dωk

Cωk

)
, (56)

and the energy flux FE/F using (50). We mostly take a

branch of the arctan function such that ζ ∈ [0, π); however

in part of our analysis it will be helpful to consider instead

ζ ∈ (−π
2
, π

2
].

We find that our numerical method yields satisfactory

results only when either the scalar field charge vanishes

(q = 0) or for reasonably large values of at least one of

the charges |Q|, q. In order to obtain good results for a

wider range of values of the charges, and for nonsuperradi-

antly scattered modes, a more sophisticated method would be

needed to find the QNM frequencies. However, our method

is sufficiently accurate to give a selection of superradiantly

scattered modes which enables us to qualitatively explore the

effect of black hole and/or scalar field charge on superradi-

ant scattering. Below we consider first the energy flux (50)

from superradiantly scattered modes and then the real and

imaginary parts of the mode frequencies.

For our discussion of superradiantly scattered modes, it

will be important to recall, from (10), that the black hole

charge Q̃ has the opposite sign to the parameter Q. Therefore,

if q Q > 0, we have q Q̃ < 0 and the scalar field charge has

the opposite sign to the black hole charge, while if q Q < 0,

then q Q̃ > 0 and the scalar field charge has the same sign as

the black hole charge. The radial equation (25) depends only

on the product q Q (explicit in the first term in the potential

Vωk (25b)) and Q2 (which appears in the metric function

N (r) (2c) and its derivative). Changing the sign of the black

hole charge parameter Q (with the scalar field charge q fixed)

will only impact the second term in the square brackets in the

first line of the potential (25b). All other terms in the potential

are unaffected on changing the sign of Q. In this section we

therefore consider positive scalar field charge q > 0 and both

positive and negative values of the parameter Q.
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Fig. 1 Energy flux FE/F (50) for superradiantly scattered neutral

scalar field modes as a function of the Robin parameter ζ (56). A neg-

ative energy flux corresponds to superradiant scattering. We have fixed

m2 = −0.65, ℓ = 1, M = 16, � = 0.6, q = 0 and k = 1. The values

of the black hole charge parameter Q are as given in the legends

4.1 Energy flux

In Figs. 1, 2, 3, 4 we present our numerical results provid-

ing evidence for the existence of superradiant scattering for

a charged scalar field on a charged, rotating BTZ black hole.

To aid comparison with the results for a neutral scalar field

in [56], we set m2 = −0.65, ℓ = 1, M = 16 (which cor-

responds to Figure 2 in [56]) and consider only modes with

azimuthal quantum number k = 1. In all our plots we show

the energy flux FE/F (50) as a function of the Robin parame-

ter ζ (56). A negative energy flux corresponds to superradiant

scattering.

We begin by setting the scalar field charge q = 0, see

Fig. 1, where we have also fixed the rotation parameter

� = 0.6 and varied the black hole charge parameter Q.

For a neutral scalar field with q = 0, the radial equation (25)

does not depend on the sign of the charge parameter Q so

it is sufficient to consider Q ≥ 0. When Q = 0, we repro-

duce the results in [56], which provides verification of our

numerical method. QNM for Q �= 0 and q = 0 were studied

in [64], although the focus in that work was the mode fre-

quencies rather than the energy flux, as is the case here. It

can be seen in Fig. 1 that, as the black hole charge parame-

ter Q increases, the maximum magnitude of the energy flux

FE/F in superradiantly scattered modes decreases, and that

superradiantly scattered modes exist for smaller values of the

Robin parameter ζ . The effects of superradiant scattering are

small in this situation: there is only a narrow interval of val-

ues of ζ for which there are superradiantly scattered modes,

and the resulting fluxes of energy have small magnitudes.

We also note that all values of the Robin parameter ζ for the

superradiantly scattered modes when q = 0 shown in Fig. 1

are greater than π/2, the value corresponding to Neumann

boundary conditions.

We now examine the effect of the scalar field charge on

the energy flux for superradiantly scattered modes.

In Fig. 2a, b we set the scalar field charge q = 1 and con-

sider a selection of values of the black hole charge parame-

ter Q, again for fixed rotation parameter � = 0.6. We have

q Q > 0 in Fig. 2a and q Q < 0 in Fig. 2b. For fixed Q, super-

radiantly scattered modes exist only in a narrow interval of

values of the Robin parameter ζ , with the width of this inter-

val decreasing as |Q| increases. The widths of these intervals

are slightly greater when q Q < 0 compared to q Q > 0. As

Q varies, the possible values of ζ for which there are super-

radiantly scattered modes is much broader than in the case

q = 0, and we find superradiantly scattered modes with

boundary conditions close to Dirichlet (ζ = 0) when |Q| is

large. The magnitude of the energy flux FE/F for the super-

radiantly scattered modes with q = 1 in Fig. 2a, b is roughly

an order of magnitude greater than those in Fig. 1 for q = 0,

indicating a significant enhancement in superradiant scatter-

ing due to the scalar field charge. The maximum magnitude

of the energy flux is slightly larger for superradiantly scat-

tered modes with q Q < 0 than for the same values of q and

|Q| but with q Q > 0. Therefore there is a slight additional

enhancement in superradiant scattering when the scalar field

charge q has the same sign as the black hole charge Q̃ (10)

compared to the case where q has the opposite sign to Q̃.

The values of the Robin parameter ζ for the superradiantly

scattered modes in Fig. 2a, b mostly lie between the Dirich-

let value ζ = 0 and that for Neumann boundary conditions

ζ = π
2

.

In Fig. 2c, d, with the rotation parameter again set to be

� = 0.6, we fix the black hole charge parameter Q = ±2

and vary the scalar field charge q. In Fig. 2c, d, the inter-

val of values of the Robin parameter ζ for which superradi-

antly scattered modes exists shrinks as the scalar field charge

q increases, and moves to smaller values of ζ . The widths

of these intervals are slightly greater for Q = −2 than for

Q = 2 with the same value of q. At the same time, the

maximum magnitude of the energy flux for superradiantly

scattered modes FE/F in Fig. 2c, d increases as q increases

for both positive and negative Q. The maximum magnitude

of the energy flux is slightly larger for Q = −2 than it is for

Q = 2 with the same value of q. Combining the results in

Fig. 2, we provide evidence that increasing the magnitudes

of either the black hole or scalar field charges gives a nar-

rower interval of values of ζ yielding superradiantly scattered

modes, with that interval being closer to Dirichlet bound-

ary conditions. The maximum magnitude of the energy flux

for superradiantly scattered modes shown in Fig. 2 generally

increases as either q or |Q| increases.

So far we have studied superradiantly scattered modes

with the rotation parameter � fixed. In Fig. 3 we fix the black
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Fig. 2 Energy flux FE/F (50) for superradiantly scattered charged

scalar field modes as a function of the Robin parameter ζ (56). A neg-

ative energy flux corresponds to superradiant scattering. We have fixed

m2 = −0.65, ℓ = 1, M = 16, � = 0.6 and k = 1. The values of the

black hole charge parameter Q and scalar field charge q are as given in

the legends

Fig. 3 Energy flux FE/F (50) for superradiantly scattered charged

scalar field modes as a function of the Robin parameter ζ (56). A neg-

ative energy flux corresponds to superradiant scattering. We have set

m2 = −0.65, ℓ = 1, M = 16 and k = 1. The black hole charge

parameter is fixed to be Q = ±3, and the scalar field charge is q = 1.

A selection of values of the rotation parameter � are considered
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Fig. 4 Energy flux FE/F (50) for superradiantly scattered charged

scalar field modes as a function of the Robin parameter ζ (56). A neg-

ative energy flux corresponds to superradiant scattering. We have set

m2 = −0.65, ℓ = 1, M = 16, � = 0.6 and k = 1. The black hole

charge parameter is fixed to be Q = ±5, and a selection of values of

the scalar field charge q are considered

hole charge parameter Q = ±3 and scalar field charge q = 1,

and consider a selection of values of �. In Fig. 3, increasing

the rotation parameter results in large increases in both the

width of the interval of values of ζ for which there are super-

radiantly scattered modes, and the maximum magnitude of

the energy flux for superradiantly scattered modes. These

effects in Fig. 3 are significantly larger than those in Fig. 2

resulting from changing either the scalar field or black hole

charges. We therefore provide evidence that the most impor-

tant factor influencing superradiant scattering is the rotation

of the black hole.

Comparing the results for Q = ±3 in Fig. 3, there is

again a slight enhancement in the maximum magnitude of

the energy flux when Q < 0 compared to Q > 0. The differ-

ence in the values of the Robin parameter ζ for superradiantly

scattered modes when Q = 3 compared to Q = −3 is also

striking.

We close our discussion of the energy flux by exploring,

in Fig. 4, some results for a large value of the black hole

charge parameter, namely |Q| = 5, again with the rotation

parameter � = 0.6. In Fig. 4 we find behaviour which is

qualitatively different from that shown in Fig. 2.

Consider first Q = 5 and the superradiantly scattered

modes shown in Fig. 4a. For larger values of the scalar field

charge q ≥ 2.2, in Fig. 4a we find a narrow interval of values

of the Robin parameter ζ which yield superradiantly scat-

tered modes, and furthermore these values of ζ lie close to

the Dirichlet value ζ = 0, similarly to the results in Fig. 2c

for Q = 2. However, as q decreases (again in Fig. 4a), the

interval of values of ζ for which there are superradiantly scat-

tered modes widens significantly, and comprises the majority

of the interval 0 < ζ < π . In particular, for q = 2.0, 2.1 and

2.2 we show, in Fig. 4a, superradiantly scattered modes for

which ζ = π
2

, corresponding to Neumann boundary condi-

tions. For 1.8 < q < 2.2, Fig. 4a shows that the value of the

Robin parameter ζ at which the energy flux has its maximum

magnitude shifts from a location close to ζ = 0 to a loca-

tion close to ζ = π . On decreasing q further, for fixed q we
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find two “branches” of superradiantly scattered modes, one

in a neighbourhood of ζ = π and one in a neighbourhood of

ζ = 0. These superradiantly scattered modes are depicted in

Fig. 4b, where we have chosen a branch of the arctan func-

tion in (56) for which −π
2

< ζ < π
2

instead of 0 < ζ < π

as used elsewhere. In Fig. 4b, we can see that for q = 1.5

and 1.7, there are superradiantly scattered modes for which

ζ = 0, corresponding to Dirichlet boundary conditions.

Superradiantly scattered charged scalar field modes for

Q = −5 are shown in Fig. 4c, d. Again we find that for

large values of the scalar field charge q, superradiantly scat-

tered modes lie in a narrow interval of values of the Robin

parameter ζ , and these values are close to the Dirichlet value

ζ = 0. Decreasing q again results in superradiantly scat-

tered modes in a much larger interval of values of ζ , but

the width of the interval of values of ζ shrinks again at a

larger value of q than for the Q = 5 case. In Fig. 4c, we

find superradiantly scattered modes for which ζ = π
2

when

q = 2.2. As q decreases further, as for Q = 5 we also find

two “branches” of superradiantly scattered modes, which are

shown in Fig. 4d, where again we use a branch of the arctan

function in (56) for which −π
2

< ζ < π
2

. The value of q

below which we have two “branches” is higher for Q = −5

than it is for Q = 5. From Fig. 4d, we find superradiantly

scattered modes for which ζ = 0 (corresponding to Dirich-

let boundary conditions) when q = 1.8 and 1.9. In Fig. 4,

it can also be seen that the maximum value of the energy

flux is slightly larger for superradiantly scattered modes with

Q = −5 than for modes with the same value of the scalar

charge q but with Q = 5. Comparing Fig. 4b, d, it can be seen

that the range of values of the Robin parameter ζ is notably

different for Q = −5 compared to Q = 5.

We therefore provide evidence that, unlike the situation for

a neutral scalar field, for a charged scalar field on a charged

BTZ black hole background, at least for a small subset of the

(Q, q)-parameter space, there are superradiantly scattered

modes with complex frequencies satisfying either Dirichlet

or Neumann boundary conditions at infinity.

4.2 Mode frequencies

Having provided evidence for superradiant scattering of a

charged scalar field on a charged, rotating, BTZ black hole,

we now consider the frequencies of the superradiant modes

in order to determine whether or not a superradiant instability

arises.

We begin, in Fig. 5, by considering the frequencies of neu-

tral scalar field modes. The curves for a neutral black hole

with Q = 0 match those in [56], and those for Q �= 0 have

qualitatively similar properties (recall that for q = 0 the

radial equation (25) does not depend on the sign of Q). The

real parts of the frequencies decrease as the Robin parameter

ζ increases. It can be seen that the values of the frequen-

cies do not change very much as the black hole charge Q

varies, but the Robin parameter does vary more significantly.

This is in agreement with the energy fluxes shown in Fig. 1.

The imaginary parts of the frequencies increase as the Robin

parameter increases. All the superradiantly scattered neutral

scalar field modes we consider here have positive imaginary

part, and are therefore unstable, as in [56] for Q = 0. The

range of values of the imaginary parts of the frequencies is

not significantly changed by including a black hole charge

Q, and therefore the timescale for the superradiant instability

is also not significantly affected.

We now explore the frequencies of superradiantly scat-

tered charged scalar field modes. In Figs. 6 and 7 we show

the real and imaginary parts of the frequencies of the super-

radiantly scattered modes whose energy fluxes are depicted

in Fig. 4. The features of the frequencies for the remaining

superradiantly scattered modes shown in Figs. 2 and 3 are

qualitatively similar so we relegate these to Appendix B.

Consider first q Q > 0, so that the scalar field charge q

has the opposite sign to the black hole charge Q̃ (10). The

frequencies in this case are shown in Fig. 6. In contrast to the

neutral scalar case, the real parts of the frequencies (left-hand

plots in Fig. 6) increase as the Robin parameter ζ increases,

for all values of the black hole charge parameter Q > 0,

scalar field charge q and rotation parameter � considered.

When q Q > 0, the imaginary parts of the frequencies

(right-hand plots in Fig. 6) are negative for all parameter val-

ues examined, indicating that these modes are stable. This is a

surprising result, since, for example, superradiantly scattered

charged scalar field modes on a four-dimensional Reissner–

Nordström-adS black hole are unstable [44]. We may under-

stand this result heuristically as follows.

From (50, 53), an ingoing charged scalar field mode hav-

ing q > 0 and which is superradiantly scattered gives outgo-

ing fluxes of both energy and charge at the event horizon. A

superradiantly scattered charged scalar field mode is there-

fore extracting both energy and charge from the black hole.

At infinity, as in [44], the fluxes of both energy and charge

vanish for all Robin boundary conditions. When q Q > 0, the

black hole charge Q̃ (10) has the opposite sign to the scalar

field charge q. A scalar field mode with q > 0, which is

extracting charge from the black hole, therefore results in an

increase in the magnitude of the black hole charge |Q̃| (since

Q̃ < 0 when Q > 0). Since the magnitude of the black

hole charge is increasing, the energy in the electromagnetic

field is also increasing as a result of the superradiant scat-

tering. In this case the energy extracted from the black hole

by the superradiantly scattered charged scalar field mode is

absorbed by the electromagnetic field rather than the scalar

field. Consequently, the scalar field does not grow with time

and the superradiantly scattered mode is stable.

Turning now to q Q < 0, the frequencies for superradi-

antly scattered modes in this case are shown in Fig. 7. For the
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Fig. 5 Real (left) and imaginary (right) parts of the frequencies of neutral scalar field modes as a function of the Robin parameter ζ (56). We have

fixed m2 = −0.65, ℓ = 1, M = 16, � = 0.6, q = 0 and k = 1. The values of the black hole charge parameter Q are as given in the legends

Fig. 6 Real (left) and imaginary (right) parts of the frequencies of

superradiantly scattered charged scalar field modes as a function of the

Robin parameter ζ (56). We have fixed m2 = −0.65, ℓ = 1, M = 16,

� = 0.6 and k = 1. The black hole charge parameter is fixed to be

Q = 5, and a selection of values of the scalar field charge q are consid-

ered
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Fig. 7 Real (left) and imaginary (right) parts of the frequencies of

superradiantly scattered charged scalar field modes as a function of the

Robin parameter ζ (56). We have fixed m2 = −0.65, ℓ = 1, M = 16,

� = 0.6 and k = 1. The black hole charge parameter is fixed to be

Q = −5, and a selection of values of the scalar field charge q are

considered

values of the scalar field charge q > 0, black hole charge

parameter Q < 0 and rotation parameter � considered,

the real parts of the frequencies (left-hand plots in Fig. 7)

decrease as the Robin parameter ζ increases, as is the case

for the neutral scalar field mode frequencies shown in Fig. 5.

When q Q < 0, the imaginary parts of the frequencies

(right-hand plots in Fig. 7) are positive for all parameter val-

ues studied, indicating that these superradiantly scattered

modes are unstable, in contrast to the superradiantly scattered

modes for q Q > 0. A heuristic argument for the instability of

the superradiantly scattered charged scalar field modes with

q Q < 0 is as follows.

As discussed above, a superradiantly scattered ingoing

charged scalar field mode with q > 0 gives outgoing fluxes

of both energy and charge, and therefore is extracting both

energy and charge from the black hole. When q Q < 0, the

black hole charge Q̃ (10) has the same sign as the scalar

field charge q. Therefore a scalar field mode with q > 0

which is extracting charge from the black hole results in a

decrease in the magnitude of the black hole charge |Q̃|, and

consequently a decrease in the energy in the electromagnetic

field. As a result, the energy extracted from the black hole is

absorbed by the scalar field. Since the boundary conditions

at infinity are reflecting, the scalar field wave is repeatedly

superradiantly scattered off the black hole, resulting in an

instability.

For all values of the scalar field charge q, black hole charge

parameter Q and rotation parameter � studied in Figs. 6 and

7, we find that the imaginary part of the frequency of super-

radiantly scattered charged scalar field modes increases as

the Robin parameter ζ increases. Therefore the stable super-

radiantly scattered modes for q Q > 0 decay more slowly in

time as ζ increases, while the unstable superradiantly scat-

tered modes for q Q < 0 are more rapidly growing with time

as ζ increases.
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5 Conclusions

In this paper we have explored the effect of black hole

and scalar field charge on superradiant scattering on three-

dimensional BTZ black holes. We sought to compare super-

radiant scattering of a charged scalar field on a charged

BTZ black hole with that on a four-dimensional Reissner–

Nordström black hole. In particular, we examined whether

charge superradiance is present on a nonrotating charged

BTZ black hole. Superradiant amplification due to charge

superradiant scattering on a Reissner–Nordström black hole

is up to two orders of magnitude greater than that due to

superradiant scattering on a rotating Kerr black hole, and we

investigated whether similar enhancement also exists on BTZ

black holes.

We considered separable mode solutions of the charged

scalar field equation on the charged generalization of the

rotating BTZ black hole metric [63]. Working in the fre-

quency domain, we find, as in the neutral scalar field case, that

modes with real frequency do not exhibit superradiant scatter-

ing. For modes with complex frequencies, following [5,56],

we define superradiant scattering as occurring if the ingoing

flux of energy due to an ingoing scalar field mode is negative

(in other words, if an ingoing mode results in an outgoing flux

of energy it is said to be superradiantly scattered). We find

that it is necessary for the black hole to be rotating in order for

superradiant scattering to occur. Therefore, there is no super-

radiant scattering for nonrotating BTZ black holes, unlike the

situation for four-dimensional, Reissner–Nordström black

holes. Superradiantly scattered modes can only lie in a region

of the complex frequency plane satisfying the inequality (52).

We use a simple numerical method, applicable to modes

in the superradiant scattering regime, to provide evidence for

the existence of superradiantly scattered charged scalar field

modes when the black hole charge is nonzero. We have not

performed an exhaustive search of the parameter space, but

instead considered a sample of black holes. For the region

of parameter space explored, the presence of black hole and

scalar field charges results in a flux of outgoing energy which

is about an order of magnitude larger than in the uncharged

case. However, the dominant parameter affecting the magni-

tude of the outgoing energy flux seems to be the black hole

rotation rather than the charges.

We have examined the range of boundary conditions sat-

isfied by the superradiantly scattered modes at infinity. These

boundary conditions are labelled by the Robin parameter

ζ . For most fixed values of the black hole and scalar field

charge that we studied, superradiantly scattered modes cor-

respond to values of ζ lying in a narrow interval. For a large

black hole charge parameter |Q| = 5 (setting ℓ = 1), we

have found some values of the scalar field charge q ∼ 2

where the interval of values of ζ is considerably wider than

in the generic case. We have also found some values of Q

and q for which there are superradiantly scattered modes

satisfying either Dirichlet or Neumann boundary conditions,

which are absent in the neutral scalar field case. Superradi-

antly scattered modes satisfying Dirichlet boundary condi-

tions have also been found for charged scalar perturbations of

a Coulomb-like adS black hole in nonlinear electrodynamics

in three dimensions [86].

Finally, we have considered the real and imaginary parts of

the frequencies of superradiantly scattered modes. When the

black hole and scalar field charges have the same sign (cor-

responding to q Q < 0), we provide evidence that the super-

radiantly scattered modes are unstable. We also find superra-

diantly scattered modes when the scalar field and black hole

charges have opposite signs (q Q > 0). In this latter case we

provide evidence that the superradiantly scattered modes, at

least for the values of the parameters q > 0 and Q > 0

studied, are stable. For both signs of q Q, the superradiantly

scattered modes are ingoing at the event horizon but extract

energy from the black hole. When q Q < 0, superradiantly

scattered modes decrease the magnitude of the black hole

charge and thereby the energy in the electromagnetic field

also decreases. This means that the energy extracted from

the black hole is absorbed by the scalar field, resulting in an

instability. In contrast, for q Q > 0, superradiantly scattered

modes increase the magnitude of the black hole charge and

thereby the energy in the electromagnetic field also increases.

This means that the energy extracted from the black hole is

absorbed by the electromagnetic field rather than the scalar

field with no consequent scalar field instability.

Our numerical method has limited us to exploring a com-

paratively small region of the parameter space. In particular,

we find reliable numerical results only when at least one of

the scalar field charge q or black hole charge parameter |Q| is

comparatively large. We have also fixed the black hole mass

parameter M and azimuthal quantum number k, as well as

the scalar field mass m. Furthermore, we have restricted our

attention to a charged scalar field minimally coupled to the

spacetime curvature. With a more sophisticated numerical

method (such as that employed in [84,85]), it would be inter-

esting to probe the parameter space more widely. In particu-

lar, we conjecture that there will be other superradiantly scat-

tered charged scalar field modes that are unstable, as well as

other unstable (but nonsuperradiantly scattered) modes. Test-

ing this conjecture requires an alternative numerical method

and hence is an avenue for future work.

In this paper we have studied a classical charged scalar

field. A natural application of our work would be to consider

a quantum charged scalar field. The study of a massless, con-

formally coupled quantum scalar field on a neutral BTZ black

hole is comparatively straightforward due to the construc-

tion of the BTZ metric by identifying points in adS space-

time [48,49]. In particular, when either Dirichlet or Neumann

boundary conditions are applied, the maximal symmetry of
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adS can be exploited to enable the computation of the renor-

malized expectation value of the stress-energy tensor using

the method of images [87,88], see also [89–91]. This method

is not applicable when Robin boundary conditions are applied

as these break the maximal symmetry of the underlying adS

geometry [92–94]. The ground state Green’s function for a

neutral scalar field with Robin boundary conditions applied

is constructed in [65] using a mode sum decomposition.

It would be interesting to explore what effect the superra-

diantly scattered modes we have found in this paper have on

the definition of quantum states for a charged scalar field on

a charged BTZ black hole. On four-dimensional asymptoti-

cally flat black holes, the presence of superradiantly scattered

modes introduces subtleties in the construction of quantum

states, both in the rotating [95–99] and charged scenarios

[100], and one might anticipate similar challenges on a BTZ

black hole. Neutral scalar field modes on a neutral BTZ black

hole are given by hypergeometric functions which simplifies

the analysis [56,65]. For a charged scalar field on a charged

BTZ background there appears to be no simple closed-form

expression for the modes, which will complicate the con-

struction. We therefore postpone further consideration of the

quantum charged scalar field to future work.
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A Numerical method

Our goal is to find complex frequencies ω such that the corre-

sponding solution Xωℓ(r) of the radial equation (25) satisfies

ingoing boundary conditions (48) at the horizon and Robin

boundary conditions (35) at infinity. There are two key com-

ponents of our method, integrating the radial equation for

a given complex frequency ω, and a root-finding algorithm

to locate frequencies for which the boundary conditions at

infinity are satisfied.

Given a complex frequency ω, we impose ingoing bound-

ary conditions (48) on the radial function Xωk(r) at r =
rh + ǫ, where ǫ ≪ 1. For r ≫ rh , the function Xωk(r) takes

the form (34) for complex constants Cωk , Dωℓ. We rewrite the

radial equation (25) in terms of the radial coordinate r and

a new dependent variable Yωk(r) = r
1
2 (1−

√
1+4μ2) Xωk(r).

We numerically integrate this new radial equation from r =
rh+ǫ to r = rmax, where rmax ≫ rh , usingMATHEMATICA’s

built-in NDSolve command. We have tested the numerical

integration by using a sample of both stable and unstable

QNM frequencies for a charged scalar field on nonrotating

charged BTZ black hole given in [85]. The value of Dωk can

be found as the limit of Yωk(r) as r → ∞. The value of Cωk

is found from the limit of r1+
√

1+4μ2
Y ′

ωk(r) as r → ∞. We

require the numerical integration of the radial equation (25)

to very high precision in order to extract the constants Cωk

and Dωk to a reasonable accuracy.

For a general frequency ω, the constants Cωk and Dωk thus

found will be complex. To apply Robin boundary conditions

(35), we require the ratio Dωk/Cωk to be real. For fixed ℜ(ω)

in the interval 0 < ℜ(ω) < k�/ℓ for which superradiant

scattering is possible, we use MATHEMATICA’s inbuilt root-

finding command FindRoot to find the value of ℑ(ω) for

which the imaginary part of Dωk/Cωk vanishes.

From [56], the spectrum of QNM frequencies for the neu-

tral scalar field on a neutral BTZ black hole is very com-

plicated, with many modes located very close together in

(ω, ζ ) space (where ζ is the parameter governing the Robin

boundary conditions (56)). We suspect that the same is true

for a charged scalar field on a charged BTZ black hole. This

presents challenges for the root-finding algorithm, which can

jump from one branch of QNM frequencies to another as

ℜ(ω) is varied.
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When Q = 0 = q, the root-finding algorithm reproduces

the results presented in [56] (see the Q = 0 curves in Figs. 1

and 5). This is a highly nontrivial check, since we are directly

integrating the radial equation (25) while the authors of [56]

exploit the fact that the radial functions are given in terms of

hypergeometric functions.

For q �= 0, the root-finding algorithm gives robust results

for sufficiently large q and |Q|, as presented in Sect. 4 and

Appendix B. We have verified that changing the parameters

ǫ and rmax in the numerical integration procedure yields plots

which are indistinguishable from those presented in Sect. 4

and Appendix B, and estimate the maximum relative error in

the QNM frequencies to be of the order of O(10−5).

B QNM frequencies

In Figs. 8, 9, 10 we present the real and imaginary parts of the

frequencies of superradiantly scattered charged scalar field

modes whose energy fluxes are depicted in Figs. 2 and 3. The

qualitative behaviour of these frequencies is very similar to

those shown in Figs. 6 and 7. When q Q > 0 and the scalar

field charge q has the opposite sign to the black hole charge

Q̃ (10), the real parts of the frequencies are increasing as

the Robin parameter ζ (56) increases. When q Q < 0 and the

scalar field charge q has the same sign as the black hole charge

Q̃ (10), the real parts of the frequencies are decreasing as the

Robin parameter ζ (56) increases. For all the superradiantly

Fig. 8 Real (left) and imaginary (right) parts of the frequencies of

superradiantly scattered charged scalar field modes as a function of the

Robin parameter ζ (56). We have fixed m2 = −0.65, ℓ = 1, M = 16,

� = 0.6 and k = 1. The values of the black hole charge parameter Q

and scalar field charge q are as given in the legends
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Fig. 9 Real (left) and imaginary (right) parts of the frequencies of

superradiantly scattered charged scalar field modes as a function of the

Robin parameter ζ (56). We have fixed m2 = −0.65, ℓ = 1, M = 16,

� = 0.6 and k = 1. The values of the black hole charge parameter Q

and scalar field charge q are as given in the legends

scattered modes considered here, we find that the imaginary

parts of the frequencies are negative when q Q > 0 and pos-

itive when q Q < 0. As discussed in Sect. 4.2, we deduce

that superradiantly scattered charged scalar field modes are

unstable when the scalar field has a charge with the same sign

as that of the black hole, but if the scalar field charge has the

opposite sign to that of the black hole, the superradiantly scat-

tered modes considered here are stable. When q Q > 0, the

imaginary parts of the frequencies are increasing as the Robin

parameter ζ increases, implying that the rate at which these

modes decay in time decreases as ζ increases. For q Q < 0,

it can be seen that the imaginary parts of the frequencies are

again increasing as ζ increases, and thus the superradiantly

scattered modes grow more rapidly with increasing ζ .
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Fig. 10 Real (left) and imaginary (right) parts of the frequencies of superradiantly scattered charged scalar field modes as a function of the Robin

parameter ζ (56). We have fixed m2 = −0.65, ℓ = 1, M = 16, Q = ±3, q = 1 and k = 1. The values of the rotation parameter � are as given in

the legends
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