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Abstract

Reduced order modelling (ROMs) methods, such as proper orthogonal decom-

position (POD), systematically reduce the dimensionality of high-fidelity com-

putational models and potentially achieve large gains in execution speed.

Machine learning (ML) using neural networks has been used to overcome limi-

tations of traditional ROM techniques when applied to nonlinear problems,

which has led to the recent development of reduced order models augmented

by machine learning (ML-ROMs). However, the performance of ML-ROMs is

yet to be widely evaluated in realistic applications and questions remain

regarding the optimal design of ML-ROMs. In this study, we investigate the

application of a non-intrusive parametric ML-ROM to a nonlinear, time-

dependent fluid dynamics problem in a complex 3D geometry. We construct

the ML-ROM using POD for dimensionality reduction and neural networks for

interpolation of the ROM coefficients. We compare three different network

designs in terms of approximation accuracy and performance. We test our ML-

ROM on a flow problem in intracranial aneurysms, where flow variability

effects are important when evaluating rupture risk and simulating treatment

outcomes. The best-performing network design in our comparison used a two-

stage POD reduction, a technique rarely used in previous studies. The best-

performing ROM achieved mean test accuracies of 98.6% and 97.6% in the par-

ent vessel and the aneurysm, respectively, while providing speed-up factors of

the order 105.
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1 | INTRODUCTION

The many-query or real-time solution of parameterised partial differential equations (PDEs) is a common scenario that
arises, for example, in the design optimisation, uncertainty quantification, and optimal control of problems relating to
the modelling of physical systems. Using high-fidelity computational models in these scenarios remains challenging
due to the cost of solving high-dimensional PDEs. Reduced order models (ROMs) use low-order representations of
high-order model solutions that preserve essential input–output behaviour at the cost of some model accuracy and are
commonly used to accelerate expensive computational models.1,2 Machine learning (ML) is increasingly being used to
improve upon traditional ROM techniques, but questions remain about the optimal design of ML-ROMs and their suit-
ability to real-world applications.3–9

Construction of ROMs for nonlinear PDEs typically involves: (i) solving the full order model (FOM) using standard
numerical techniques at different parametric configurations to generate solution data (snapshots); (ii) extracting a low-
order representation of the parametric solution manifold using dimensionality reduction techniques such as proper
orthogonal decomposition (POD), dynamic mode decomposition (DMD), or auto-encoders6,10,11; and (iii) applying pro-
jection or interpolation methods in the low-order space to build a ROM.12 Step (iii) of the ROM construction can be per-
formed either with intrusive approaches that project the underlying governing equations onto the low-dimensional
manifold, or with non-intrusive approaches that interpolate the ROM coordinates in the low-dimensional space. ML
and neural networks have improved classical ROM methods by providing more efficient dimensionality reduction
techniques,6,7,13,14 approximating algebraic operators in projection-based ROMs for nonlinear problems,15,16 improving
the stability and long-term prediction accuracy of ROMs,5 and providing high-dimensional interpolation techniques in
interpolation-based ROMs.3,4,17

In this work, we apply a ML-ROM to parameterised physiological flow variation in intracranial aneurysms. Intracra-
nial aneurysms are pathological bulges in blood vessels in the brain that are estimated to occur in 5–8% of the general
population.18 While aneurysms are often asymptomatic, their rupture causes subarachnoid haemorrhage, an event with
high rates of mortality, morbidity, and disability. They also contribute directly to increasing healthcare costs.19 In aneu-
rysm haemodynamics, adverse physiological conditions can increase flow velocity, wall pressure, and wall shear stress
inside the aneurysm sac, increasing the risk of rupture.20 Different physiological conditions have also been shown to
affect aneurysm treatment performance.21 Modelling physiological flow variability in aneurysms is a time-dependent,
geometrically complex problem that requires repeated evaluations of an expensive 3D Navier–Stokes model to solve.
This gives us an excellent real-world application with which to establish ROM performance.

Various ROM techniques have been applied to haemodynamic problems, including approaches based on
POD,8,15,22–26 DMD,27,28 and reduced basis methods.29–31 The approach we take is to use POD for dimensionality reduc-
tion and fully-connected neural networks (FCNNs) for interpolation of the ROM coefficients. We opt for non-intrusive
interpolation-based ROMs for their ability to solve parameterised time-dependent problems while providing larger com-
putational speed-ups than their projection-based counterparts.3,4,17 We investigate three different network designs to
improve on previous work on this type of ROM, including a design where we utilise a double-POD for further dimen-
sionality reduction.32 To generate training data, we use a validated computational fluid dynamics (CFD) model of blood
flow in a 3D aneurysm derived from 3D rotational angiography (3DRA) images. We parameterise physiological flow
variation by introducing three inlet flow-rate waveform scale factors that control flow magnitude, pulsatility, and heart
rate. We sample the three-dimensional parameter space uniformly and use CFD data from the samples to train each
ROM. For the best-performing network design and hyperparameters, we present results on the accuracy of the ROM
relative to the FOM and on the acceleration factor and data storage reduction provided by the ROM.

The paper is outlined as follows. Section 2 details the methodology used in the CFD model (Section 2.1) and POD-
Interpolation ROM (Section 2.2). Section 3 presents results from the multi-stage hyperparameter optimisation
(Sections 3.1.2 and 3.1.3), the network design comparison (Section 3.2), the best-performing model (Section 3.3), and
the acceleration and data storage reduction quantification (Section 3.4). Sections 4 and 5 provide discussion and con-
cluding remarks, respectively.
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2 | METHODOLOGY

2.1 | Computational simulation of intracranial aneurysm blood flow

2.1.1 | Geometry

Figure 1 shows the ML-ROM methdology used in this study. Figure 2 shows the aneurysm geometry used in this study.
The anatomic surface model of the geometry was obtained from 3D rotational angiography images using an automatic
segmentation method based on geodesic active regions, details of which can be found in References 33,34. The aneu-
rysm maximum diameter and aspect ratio are 6.1 mm and 0.72, respectively. The full geometry was used for the CFD
model but clipped geometries in the parent vessel and aneurysm locations were used for the ROM, as non-intrusive
ROMs can be constructed for regions of interest to provide greater speed-up and reduce data storage requirements.

2.1.2 | Computational fluid dynamics model

The momentum equations for incompressible and Newtonian fluid, the Navier–Stokes equations, were used to describe
blood flow:

ρ
∂u
∂t

þ u �rð Þu
� �

¼�rpþμr2u, r�u¼ 0 ð1Þ

where u and p are velocity and pressure, respectively. Blood was assumed to be a Newtonian fluid with constant density
ρ¼ 1066 kgm�3 and viscosity μ¼ 0:0035 Pa s. A volumetric mesh was constructed using ANSYS ICEM CFD v19.1
(Ansys Inc., Canonsburg, PA, USA) and the Navier–Stokes equations were solved with ANSYS CFX v19.1 using a finite
volume method.

FIGURE 1 Our machine learning reduced order model (ML-ROM) methodology is based upon Proper Orthogonal Decomposition for

dimensionality reduction and fully-connected neural networks for interpolation of the ROM coefficients.
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We prescribed a flow-rate waveform (FRW) at the inlet and zero-pressure conditions at all outlets. Vessel walls were
modelled as no-slip boundaries. The Reynolds number did not exceed 1000 across the range of inlet FRWs, thus all sim-
ulations were ran using a laminar flow model. Each simulation was run for three cardiac cycles. The period of the base-
line cardiac cycle was 0.883 s. Each cycle was discretised into 100 timesteps, with the velocity and pressure fields taken
from only the final cycle to reduce the effect of initial transients.

2.1.3 | Parameterisation of physiological flow variability

Physiological variability was parameterised through the inlet FRW, which was derived from a multivariate Gaussian
model (MGM) trained on patient-specific phase-contrast magnetic resonance imaging measurements of internal carotid
artery (ICA) flow in 17 healthy young adults (age 28�7 years). Further details on the MGM are reported in Refer-
ences 20,35.

The FRW was parameterised in the form (following Geers et al.36)

Q tð Þ¼ aQ0 ctð Þþb, ð2Þ

a¼ QTA

Q0
TA|{z}

SFQ

PI
PI0|{z}
SFP

, b¼QTA 1� PI
PI0|{z}
SFP

0
BB@

1
CCA, c¼ HR

HR0|ffl{zffl}
SFH

, ð3Þ

where Q0 is the MGM-derived time-varying waveform, QTA is the time-averaged flow rate, PI is the pulsatility index
(the difference between peak systolic and minimum diastolic flow velocity divided by the time-averaged flow velocity)
and HR is the heart rate for a particular physiology. Superscript 0 (e.g., Q0

TA) represents the value of the given variable
for the baseline waveform derived from the MGM. We defined three scale factors for flow magnitude (SFQ), pulsatility
(SFP), and heart rate (SFH) through Equation (3), as

SFQ¼QTA

Q0
TA

, SFP¼ PI
PI0

, SFH¼ HR
HR0 : ð4Þ

FIGURE 2 Internal carotid artery aneurysm geometry used in this study for computational fluid dynamics (CFD) simulations and

clipped geometries used for the reduced order model (ROM).

4 of 20 MACRAILD ET AL.

 20407947, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3848 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [15/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A range of configurations of SFQ, SFP, and SFH can be sampled within physiologically realistic bounds and then
the FRW for each configuration is calculated through Equations (2) and (3). The inlet FRWs are applied through a para-
bolic velocity profile at the inlet to the geometry. The inlet velocity condition drives blood flow into the aneurysm for a
given parameter configuration or physiology.

Flow-rate bounds
Ford et al.37 measured left and right ICA flow rates in 17 young, healthy volunteers at rest. They found mean total (left
+ right) ICA flow of 549 mL min�1 with inter-patient standard deviation of σinter ¼ 103 mL min�1 and intra-patient
standard deviation of σintra ¼ 21 mL min�1. The minimum and maximum flow rates were found to be 398 mL min�1

and 850 mL min�1, respectively. Normalising the minimum and maximum flow rates using the mean flow rate gives
SFQ bounds of 0:72,1:54½ �. Using the intra-patient standard deviation and the mean flow rate gives bounds of
0:96,1:04½ �. Our ROM is only applicable to intra-patient flow rate variability, which is shown to be significantly smaller
than the inter-patient flow rate bounds calculated previously. To induce additional variability into the snapshots, we
selected bounds of 0:84,1:29½ �, which is midway between the bounds for intra- and inter-patient variability.

Pulsatility index bounds
PI is an easy to obtain (non-invasive) parameter that has been used to assess macrocirculation in highly prevalent medi-
cal conditions, such as hypertension, types 1 and 2 diabetes and thyroid disorders.38 Schöning et al.39 measured PI in
48 healthy adults and found a mean PI value of 1.08 and a standard deviation of 0.29 in the ICA. The standard deviation
is �31% of the mean value, so we chose the upper and lower PI bounds to be �31% of the mean PI. Normalising by the
mean PI value gives SFP bounds of 0:69,1:31½ �.

Heart rate bounds
Ford et al.37 measured mean HR as 68 � 8 bpm (range 56–83) in 17 young, healthy volunteers at rest. Matsuo et al.40

found that during moderate steady-state and incremental exercise for 12 young, healthy volunteers, mean HR did not
exceed 120 bpm. We therefore select 56 as the minimum HR and 120 as the maximum, with 88 as the mean.
Normalising the upper and lower HR bounds by the mean value gives SFH bounds of 0:63,1:36½ �:

Sampling method
We tested multiple sampling methods (uniform grid, Latin Hypercube, random) but found no significant difference in
the results. We opted for a simple uniform grid sampling approach as a result. We used a 3�3�3 sampling grid with
bounds for each parameter as stated previously. This generated a set of 27 simulations to be used as training data. We
also generated a distinct set of eight parameter configurations from within the bounds of the parameter space to be used
as a test set. These cases were selected to be a 2�2�2 grid with each parameter point spaced equidistantly from the
nearest points in the 3�3�3 grid. Further details of the sampling method study can be found in Supplementary
Section 2 in Data S1.

2.2 | POD-Interpolation ROM

This section describes the POD-NN method that we used in this work. Our approach and notation for POD is the same
as used by Walton et al.,32 and another description of this method can be found in Wang et al.12 The benefits of this
approach are: (i) it is non-intrusive and does not require accessing or changing the underlying CFD solver; (ii) it is rela-
tively straightforward to implement and solve; (iii) it is faster to execute than projection-based ROMs; (iv) it can be
applied to regions of interest instead of the full geometry; and (v) when compared to element-wise interpolation
between full order solutions, it drastically reduces the amount of data and the number of interpolation operations
required.

2.2.1 | Proper orthogonal decomposition

We used the full-order CFD model described in Section 2.1 to generate velocity fields for a range of parameter configu-
rations. We used M¼ 27 parameter configurations, with α1,…,αM denoting the configuration vectors and
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αm ¼ SFQm,SFPm,SFHmð Þ. Each time-varying solution of the FOM for one parameter configuration is taken as a snap-
shot. Each snapshot then becomes a D�N matrix, where D is the number of mesh nodes and N is the number of
timesteps. After running the FOM simulations for all configurations, we generate a snapshot matrix U of the form:

U ¼
u11 α1ð Þ … uN1 α1ð Þ … uN1 αMð Þ

..

. . .
.

… …
u1D α1ð Þ … uND α1ð Þ … uND αMð Þ

2
664

3
775: ð5Þ

A column of U lists the values of the velocity magnitude at each of the mesh points 1,…,D at one timestep n for a
certain parameter configuration αm. This snapshot matrix will typically have many more rows than columns.

U is factorised using an economic singular value decomposition (SVD):

U
D�MN

¼ Φ
D�MN

� Σ
MN�MN

� V �
MN�MN

: ð6Þ

The dimensions of each matrix are included in Equation (6), with MN ¼M�N . Φ are the left singular vectors of U ,
Σ are the singular values and V � are the right singular vectors. The columns of Φ, denoted Φj with j¼ 1,…,MN , are the
mutually orthogonal POD modes. Σ is a diagonal matrix with each of the singular values, denoted σj, indicating
the energetic contribution of each POD mode.

Each column of U can be reconstructed using the left singular vectors as

un αmð Þ¼
XMN

j¼1

Tn
j αmð ÞΦj, ð7Þ

where Tn αmð Þ are a set of parameter-dependent coefficients that can be considered as coordinates in the basis given by
Φ.32 Each of the simulated parameter configurations will have a corresponding matrix Tn αmð Þ and the goal of POD-
Interpolation is to predict the path taken by a new set of parameter values. To do this quickly, it is first necessary to
reduce the order of the system.

The system order can be reduced by considering the energy contained within each POD mode and then retaining r
nodes up to a certain energy threshold. The sum of the squares of all of the singular values in Σ, denoted by

PM�N
j¼1 σ2j

in Equation (8), gives a measure of the total energy contained in the POD modes, so the first r modes will contain a
fraction of the total energy. Provided the majority of the energy in the system is captured in the first several
modes, a large number of modes can be discarded and thus the order of the system reduced. Mathematically, this
equates to choosing a value for the energy fraction Efrac to be retained and then finding r such that Equation (8) is
satisfied.

Efrac ≤
Pr

j¼1σ
2
jPM�N

j¼1 σ2j
: ð8Þ

The snapshot matrix can then be truncated as follows:

U ≈ Φ1 … Φr½ �
σ1

. .
.

σr

2
664

3
775

v�1
..
.

v�r

2
664

3
775: ð9Þ

Figure 3 demonstrates the vast truncation that can be achieved in the vessel and aneurysm models.
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2.2.2 | Low-dimensional representation

Now that the order of the system has been reduced, Equation (7) can be modified to

un αmð Þ¼
Xr

j¼1

Tn
j αmð ÞΦj, ð10Þ

with the sum up to j¼ r rather than j¼MN . Before interpolating between the Tn
j coefficients, we calculate them by

exploiting the orthogonality of the POD basis vectors (Equation 11).

ΦT
i Φj ¼

1, if i¼ j

0, otherwise:

�
ð11Þ

For each parameter configuration in turn, we take an inner product of the transpose of each Φ mode with both sides
of Equation (10). To exploit orthogonality, each Φ mode is looked at in turn. Taking only the first Φ mode j¼ 1ð Þ,
Equation (10) is now simply

un αmð Þ¼Tn
1 αmð ÞΦ1: ð12Þ

Multiplying both sides of (12) by the transpose of Φ1 gives

ΦT
1u

n αmð Þ¼ΦT
1T

n
1 αmð ÞΦ1, ð13Þ

however, since Tn
1 are simply multiplying factors it is possible to use multiplicative commutativity to rewrite the equa-

tion as

ΦT
1u

n αmð Þ¼Tn
1 αmð ÞΦT

1Φ1|fflffl{zfflffl}
¼1

ð14Þ

We are left with an equation for Tn
1 :

FIGURE 3 Cumulative energy contained in the POD modes for the aneurysm and vessel models. The red dashed lines from left-to-right

represent the number of truncated POD modes in order to capture 99%, 99.9%, 99.99%, 99.999%, and 99.9999% of the energy in the system,

which is defined by the cumulative sum of the squares of all singular values. The total number of singular values is M�N ¼ 27�101¼ 2727,

demonstrating the vast reduction following the truncation.
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Tn
1 αmð Þ
1�N

¼ ΦT
1

1�D
un αmð Þ

D�N
: ð15Þ

Each coefficient in Tn
1 gives the weighting of the first Φ mode at timestep n. A vector of Tn

1 coefficients can be found
for each parameter configuration for the first Φ mode. These coefficients are arranged into a second snapshot matrix Sj,
as by Walton et al.32:

Sj ¼
T1
j α1ð Þ … T1

j αMð Þ
..
.

… ..
.

TN
j α1ð Þ … TN

j αMð Þ

2
664

3
775: ð16Þ

Each column of Sj gives the values of the Tn
1 coefficients at time n¼ 1,…,N , for a given parameter configuration

αm ¼α1,…,αM , for a given POD mode Φj. A distinct Sj is found for each Φmode. The goal is now to interpolate between
these Sj matrices to find the representation for a new set of parameters denoted αk.

Performing a second SVD on Sj gives a secondary set of POD modes, denoted Ψj
i. This presents an opportunity for a

second truncation of POD modes to further reduce the order of the system and simplify the interpolation. Similarly to
the previous case, each column of Sj can be reconstructed using

T j αmð Þ¼
XrQ
i¼1

Qj
i αmð ÞΨj

i, ð17Þ

where rQ is the number of secondary POD modes retained following truncation. The purpose of this secondary SVD is
to split T j αmð Þ into parameter-dependent terms, Qj

i αmð Þ, and parameter-independent terms, Ψj
i. This means that we

only need to interpolate between the Qj
i to find a low-dimensional representation of the solution at a new parameter

configuration. The Qj
i coefficients can be calculated, similarly to the Tn

j coefficients previously, using

Qj
i αmð Þ
M�M

¼ ΨjT
i

M�N
Sj αmð Þ
N�M

: ð18Þ

Each column of Qj
i gives the weighting coefficient for the corresponding Ψj

i mode. We then interpolate the Qj
i values

to find Q values for a new parameter configuration.

2.2.3 | Neural network interpolation

Neural networks excel at approximating nonlinear functions with high-dimensional input–output relations. In our case,
the neural network inputs are the scale factors (and potentially time) and the outputs are the corresponding ROM coef-
ficients (either T or Q values). We constructed three different neural networks for interpolating the ROM coefficients,
as shown in Figure 4.

The number of neurons in the output layer of each network in Figure 4 is different. The T network has r�N out-
puts and the Time-T network has r outputs, where r is the number of truncated POD modes and N is the number of
timesteps. The Qr network has r� rQ outputs, where rQ is the number of modes retained in the second POD truncation.
We performed an in-depth hyperparameter study for the network parameters, details and results for which can be
found in Sections 3.1.2 and 3.1.3.

Once the networks are optimised and trained, the goal is to evaluate the ROM for a previously unseen parameter
configuration αk. Inputting αk into the Qr network gives us Q αkð Þ. The corresponding T values can then be found by
multiplying by the stored Ψ modes:

8 of 20 MACRAILD ET AL.
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T j αkð Þ¼
XrQ
i¼1

Qj
i αkð ÞΨj

i: ð19Þ

In this case of the T and Time-T networks, we input the new parameter configuration to those networks to calculate
the above T values directly. The new T values are then multiplied by the stored Φ modes and summed over r to give
the solution for the new parameter configuration:

un αkð Þ¼
Xr

j¼1

Tn
j αkð ÞΦj: ð20Þ

This model allows us to quickly evaluate the solution field for new values of SFQ, SFP, and SFH, which is essentially
for new physiological conditions.

To highlight and concisely state the steps involved in our ML-ROM, we present Algorithms 1 and 2 for the offline
and online stages of the ROM, respectively.

3 | RESULTS

The results section is outlined as follows. First, we present the hyperparameter studies performed on each network
design shown in Figure 4. Second, for the best-performing network design, we present results quantifying the different
sources of error in the ROM, namely the errors due to POD truncation and network generalisation. Finally, for the
best-performing sampling regime and network design, we demonstrate the accuracy, acceleration and data storage
reduction the POD-NN ROM offers relative to the high-fidelity CFD model.

FIGURE 4 Three fully-connected neural network (FCNN) designs for the POD-Interpolation ROM that map from simulation

parameters (SFQ, SFP, SFH, t) to ROM coefficients (T, Q). Exemplar T data for one simulation and six POD modes is shown top left, with

blue data points output by the T network and orange data points output by the Time-T network, which includes time as an additional input

parameter. Qr data for six POD modes and three second POD modes is shown top right and is output by the Qr network.
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3.1 | Hyperparameter studies

3.1.1 | Preliminary tests

Given the difference between the three network designs, it is likely that each network will require a different set of hyper-
parameters to perform optimally. We performed preliminary tests to identify suitable data processing steps, activation func-
tions and loss calculation methods. Details of the tests performed for data processing and activation function choices can
be found in Supplementary Section 1 in Data S1. From these preliminary tests, we found good network performance for:
(i) global normalisation and standardisation of the data; (ii) Leaky ReLU activation functions on hidden layers and Tanh
on the output layer; (iii) L1 training loss (as opposed to L2). For all networks trained, we used Adam optimisation with a
learning rate of 10�341 and trained until either 1000 epochs or until the loss plateaued such that the mean loss over the
10 most recent epochs is within 10�5 of the mean loss over the 10 preceding epochs. We found that a batch size of one
gave the most accurate results for the T and Qr networks. A slightly larger batch size was better for the Time-T network
(both in terms of improving ROM accuracy and reducing training time), so we used a batch size of 10 in this case.

We applied these choices to all networks and then optimised the remaining hyperparameters that we found the net-
work performance to be sensitive to, namely the network size, the loss function construction, the number of POD
modes, and the number of second POD modes in the case of the Qr network. Throughout all testing of the networks,
we used the same set of eight unseen test cases to evaluate ROM accuracy. For each test case, we evaluated the velocity
magnitude field and calculated the L1 error between the ROM and CFD solution fields, in the region of interest
(i.e., vessel/aneurysm). We then took the mean across the eight test cases and used this as the metric for ROM
performance.

3.1.2 | Hyperparameter study: Stage 1

In the first hyperparameter study, we varied the parameters through the values specified in Table 1. Various hidden
layer sizes were tested, including a small network with one hidden layer and 10 neurons, a wide network with three
hidden layers and 1000 neurons per layer, and a deep network with six hidden layers and 10 neurons per layer. For

Algorithm 1 POD-NN Offline Phase

1: Use FOM to simulate a number of parameter configurations αm.
2: Construct snapshot matrix U .
3: Economic SVD of U ¼ΦΣV � to generate POD modes Φj.
4: Retain first r POD modes based upon energy criteria: Efrac ≤

P r

j¼1
σ2jPM�N

j¼1
σ2j
.

5: Take inner product of snapshot matrix and each POD mode to generate time coeffi-
cients: un αmð Þ¼Pr

j¼1T
n
j αmð ÞΦj.

6: Construct time coefficient matrix Sj for each POD mode.
7: SVD of Sj to generate Qj

i αmð Þ and Ψj
i.

8: Save the retained Φr and Ψj
i modes and low-dimensional representations Qj

i αmð Þ of each full order
simulation.

9: Train one of the following FCNNs: (i) T Network: SFQ,SFP,SFHð Þ 7!Tt; (ii) Time-T Network:
SFQ,SFP,SFH, tð Þ 7!Tr; (iii) Qr Network: SFQ,SFP,SFHð Þ 7!Qr

Algorithm 2 POD-NN Online Phase

1: For a new parameter configuration αk, evaluate Tn
j αkð Þ or Qj

i αkð Þ using the trained FCNNs.
2: For Qr network, calculate T coefficients for new parameter configuration: Tn

j αkð Þ¼PM
i¼1Q

j
i αkð ÞΨj

i.
3: Calculate solution for new parameter configuration: un αkð Þ¼Pr

j¼1T
n
j αkð ÞΦj.
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each network, we tested single-component and multi-component loss functions. The single component loss was simply
the prediction error between the ROM coefficients (Tt, Tr, or Qr) and their ground truth values. The multi-component
loss also included the prediction error for the solution field compared to its ground truth. For the T and Qr networks,
the full temporal solution field can be predicted in each training iteration, so the multi-component loss function evalu-
ated the error on the full spatiotemporal solution field. The Time-T network only predicts the solution for a batch of
10 timesteps, so for this network the multi-component loss only calculated the solution field error for these 10 timesteps.
The number of POD modes used in the model was varied according to the energy truncation criteria. To retain {99%,
99.9%, 99.99%, 99.999%, 99.9999%} requires {1, 2, 6, 12, 24} and {1, 6, 24, 68, 143} POD modes for the vessel and aneu-
rysm models, respectively. The cumulative energy stored in the POD modes is shown in Figure 3. Note that in the first
hyperparameter study, we retained three second POD modes for all Qr networks. This parameter is investigated in more
detail in the second hyperparameter study.

From the first hyperparameter study results (Figure S1 and Tables S4 and S5), we draw the following conclusions:
(i) Smaller network sizes ([10], [10, 100]) provide the best results for the T and Qr networks. For the Time-T network,
larger networks provide the best results ([1000, 1000, 1000]). (ii) Loss construction is the least important of the hyper-
parameters investigated, with similar results for single- and multi-component loss functions. However, the multi-
component loss did produce a smaller minimum error in the Qr network. (iii) Accuracy is greatest for approximately
99.9%–99.99% energy retention.

3.1.3 | Hyperparameter study: Stage 2

Based on the conclusions from the first hyperparameter study, we restricted the hyperparameter ranges in the second
study to those presented in Table 2. For the Qr network, we now investigate an additional hyperparameter for the num-
ber of second POD modes retained.

Following the second hyperparameter study, results for which can be seen in Tables S6 and S7, we identified the
optimal network configurations outlined in Table 3.

3.2 | Error quantification

Three main sources of error exist in the ROM: (i) POD truncation error; (ii) network generalisation error; and
(iii) snapshot sampling error. POD truncation error depends upon the number of POD modes retained in the ROM
(and the number of second POD modes retained for the Qr network). In traditional ROMs, increasing the number of
POD modes will typically lead to increased accuracy and reduced efficiency. For ROMs that use neural networks for
coefficient interpolation, there is additional error dependent on how well the network is able to generalise. In a
POD-NN ROM, a compromise must be found between the truncation and generalisation errors. Snapshot sampling
error typically affects ROM accuracy, but we did not find our ROM performance to be sensitive to the choice of sam-
pling algorithm (see Supplementary Section 2 in Data S1 for details).

3.2.1 | POD truncation and network generalisation errors

For the optimal network designs presented in Table 3, we evaluated the model performance on the test and training sets
of data for vessel and aneurysm regions. We are able to quantify the contributions of the POD truncation and network

TABLE 1 First hyperparameter study details.

Hyperparameter Values

Hidden layers [10], [10, 100], [10, 100, 1000], [100, 100, 100],
[1000, 1000, 1000], [10, 10, 10, 10, 10, 10]

Loss construction Single component, multi-component

No. of POD modes (vessel) 1, 2, 6, 12, 24

No. of POD modes (aneurysm) 1, 6, 24, 68, 143

MACRAILD ET AL. 11 of 20
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generalisation errors for the training data test cases, as the ground truth values for T and Q were previously calculated
for these parameter configurations. Calculating the solution using the ground truth T and Q values means there is no
network generalisation error and therefore the error is entirely due to the POD truncation. We then calculated the net-
work generalisation error as the difference between the ROM error using the network predicted and ground truth T
and Q coefficients.

Figure 5 shows the ROM errors for each network design for the testing and training data sets for each geometry.
The Qr network was found to significantly outperform the T and Time-T networks. The T network performed second
best and the Time-T network third best. All networks achieve mean test errors of < 5% in all geometries and for all data
sets. In most cases, the network generalisation error contributes more to the total error than the POD truncation error.

To understand why the Qr network gives the most accurate results, we trained networks with different values of
POD truncation energy in order to see how the weighting between POD truncation and network generalisation error
varies. We used the optimal network parameters (Table 3) but with varying values of r based on the number of POD
modes required to retain 99%, 99.9%, 99.99%, 99.999%, and 99.9999% of the cumulative energy. For the Qr network, we
used the same number of second POD modes rQ ¼ 3ð Þ so that the variation in truncation error with additional POD
modes would not be affected by this parameter for the different regions.

Figure 6 shows that the POD truncation error dominates the total error when the number of POD modes retained is
small. Adding more POD modes decreases the POD truncation error but increases the network generalisation error due
to the increased number of parameters in the output layer of the network. The POD truncation error does not decrease

TABLE 3 Optimal hyperparameters for each network design in each region of interest.

Model Network Network size Loss construction No. of POD modes
No. of second
POD modes

Vessel T [10, 100] Multi-component 4 NA

Time-T [1000, 1000, 1000] Single-component 4 NA

Qr [10] Multi-component 12 5

Aneurysm T [10] Multi-component 10 NA

Time-T [10, 100, 1000] Single-component 6 NA

Qr [10] Multi-component 16 3

TABLE 2 Second hyperparameter study details.

Hyperparameter Values

T network

Hidden layers [10], [10, 100]

Loss construction Multi-component

Number of POD modes (vessel) 4, 8, 10

Number of POD modes (aneurysm) 4, 8, 10, 12, 18

Time-T network

Hidden layers [10, 100, 1000], [1000, 1000, 1000], [1000]

Loss construction Single-component

Number of POD modes (vessel) 2, 4, 6, 8, 10, 12

Number of POD modes (aneurysm) 4, 6, 8, 12, 18

Qr network

Hidden layers [10], [10, 100]

Loss construction Multi-component

Number of POD modes (vessel) 4, 8, 10, 12, 16

Number of POD modes (aneurysm) 12, 16, 20, 28, 32

Number of second POD modes 1, 2, 3, 4, 5, 7, 10
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as much for the Qr network as for the T and Time-T networks. Despite this, the total error remains lower for the Qr net-
work as the network generalisation error does not grow as large as it does for the other networks.

3.3 | Best-performing model

To further demonstrate the quantitative accuracy of the ROM predictions and show the qualitative agreement between
ROM and FOM, we present visualisations and additional figures that were created using the optimal Qr network, which
gave the best-performing ROM. We only present these extra results for the aneurysm model as the flow is more complex
in this case and for the sake of brevity. Figure 7 shows the velocity magnitude field in a 2D slice of the aneurysm geom-
etry at systole and diastole. The relative error for the velocity magnitude U is calculated as:

Relative Error¼UROM �UFOM

UFOM
�100%, ð21Þ

where UFOM is the space-and-time-averaged FOM velocity magnitude. The largest relative errors occur at sys-
tole (��30%).

Figure 7 demonstrates the qualitative agreement between ROM and FOM at systole and diastole. Figure 8 shows
Bland–Altman plots in the aneurysm region for systolic, diastolic, and time-averaged ROM and CFD velocity magni-
tude. Figure 8 also shows spatially-averaged velocity magnitude field waveforms for ROM and FOM, the standard devi-
ation across the spatial points, and the absolute relative error between the two waveforms. Figure 8 demonstrates the
agreement between the time-averaged and spatially-averaged fields. The largest discrepancy in velocity magnitude
occurs in the post-systolic period of the cardiac cycle, where the ROM slightly smooths the gradients of the CFD
waveform.

FIGURE 5 Mean ROM testing errors on the test and train sets of 8 and 27 parameter configurations, respectively, for each of the three

network designs. The truncation error refers to the error due to the POD truncation. The remainder of the error above the red dashed bar

is attributed to the network generalisation error. The black error bars represent the standard deviation of the error across all parameter

configurations for that network, region and data set. The mean test error values on the test set for each network and model are as follows:

T (vessel)= 2.61%, T (aneurysm)= 3.58%, Time-T (vessel)= 3.31%, Time-T (aneurysm)= 4.61% Qr (vessel)= 1.50%, Qr (aneurysm)= 2.97%.

p values are calculated using a T-test for the means of independent samples.
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3.4 | Acceleration and data storage reduction quantification

3.4.1 | Acceleration

We quantified ROM speed by calculating the mean run-time across the eight test cases and the 27 train cases for each
network design. Across all network designs and both geometries, the mean ROM run-time was 0.037 s, which

FIGURE 6 Mean ROM testing errors on the test and train sets of 8 and 27 parameter configurations, respectively, for each of the three network

designs with different values for the POD truncation energy threshold. r is the number of POD modes for a given energy cut-off and region.

14 of 20 MACRAILD ET AL.
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highlights that the POD-NN ROM methods can provide fast solution inference. To calculate acceleration, we compared
the mean ROM run-time with the time it took to run the FOM locally and on a high-performance computing (HPC)
cluster. We performed one evaluation of the FOM locally using one CPU. This simulation took 1 h 39 min and 32 s. We
used 16 cores for the HPC simulations and the mean run-time across the eight test cases was 25 min and 51 s. We then
calculated the acceleration of the various ROM designs for each geometry relative to these FOM run-times. The results
are presented in Table 4. The ROMs provide acceleration of roughly 104 – 105 times. However, it is important to note
that the simulation times are for the full geometry, whereas the ROM evaluations are only in smaller regions of interest.
This inflates the ROM acceleration factors to some degree.

3.4.2 | Data storage reduction

Retaining all POD modes in the ROM equates to performing direct interpolation between the high-order solution snap-
shots. When considering data storage requirements, a comparison can therefore be made between the amount of data
that must be stored in order to construct a POD-Interpolation ROM and the data that must be stored in order to per-
form direct solution interpolation (DSI). DSI requires that all of the full order simulation data is stored, so that each
spatiotemporal point can be interpolated. Constructing a POD-Interpolation ROM only requires that the POD modes
(and potentially the second POD modes) and the ROM coefficients are stored. The total size of the stored variables for
DSI and the ROMs are shown in Table 5. The amount of data stored by the reduced order models compared to that
required for DSI is approximately 120 times less for the aneurysm model. This reduction factor would be further
increased if the number of POD modes was decreased (e.g., the reduction factor for 5 POD modes would be
roughly 380).

4 | DISCUSSION

We proposed a non-intrusive parametric reduced order model (ROM) that uses POD for dimensionality reduction and
neural networks (NN) for interpolation of the ROM coefficients. We applied our POD-NN ROM to intracranial aneu-
rysm fluid dynamics with physiological variability characterised by inflow parameters for flow magnitude (SFQ),

FIGURE 7 Visualisations of systolic and diastolic ROM and CFD velocity magnitude fields and the relative error between them in a 2D

slice of the aneurysm geometry for a median error test case using the Qr network.
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FIGURE 8 Bland–Altman plots for ROM and CFD velocity magnitude at systole, diastole and for the time-averaged fields and spatially-

averaged waveform plots in the aneurysm model for a median error test case using the best-performing Qr network.

TABLE 4 Acceleration offered by each ROM relative to running the full order model on one CPU locally and on 16 CPUs using a high-

performance computer.

Model Network Mean test time (s)
Acceleration factor* (
relative to 1 CPU)

Acceleration factor*
(relative to 16 CPUs)

Vessel T 0.012 5.1 � 105 1.3 � 105

Time-T 0.031 1.9 � 105 5.0 � 104

Qr 0.022 2.7 � 105 7.1 � 104

Aneurysm T 0.043 1.4 � 105 3.6 � 104

Time-T 0.055 1.1 � 105 2.8 � 104

Qr 0.062 9.7 � 104 2.5 � 104

*Note that the run-time used to calculate the acceleration factors was taken from a simulation of the full geometry, whereas the ROM run-times are only for
the regions of interest.
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pulsatility (SFP), and heart rate (SFH). Typically POD-NN ROMs utilise a single POD reduction and evaluate the ROM
coefficients using a network that takes the varying parameters (i.e., SFQ, SFP, SFH) and the time coordinate as inputs
and outputs the corresponding coefficients.4,8,9 We investigated this approach (referred to as the Time-T network) and
two other approaches, one that outputs the entire time trajectory of coefficients in one forward pass through the net-
work (T network) and another that performs a second POD reduction and trains using the doubly reduced coefficients
(Qr network). The latter approach has not yet been used in POD-NN ROMs and is rarely used even in POD methods
that do not utilise ML.32

Our findings indicate that the Qr network outperforms the T and Time-T networks. For the vessel model, the best-
performing Qr network achieves an error of 1.50%, whereas the T network achieves 2.61% and the Time-T network
achieves 3.31%. For the aneurysm model, the best-performing Qr network achieves an error of 2.97%, whereas the T
network achieves 3.58% and the Time-T network achieves 4.61%. In addition, the Qr network appears to be more robust
to the number of modes retained in the model. Figure 6 shows that the ROM errors grow as an increasingly large num-
ber of POD modes are added to the model, particularly for the T and Time-T networks. The POD truncation error
decreases with additional modes as expected but the network generalisation error grows at a faster rate and so the total
error increases. For the Qr network, the truncation error does not decay as much as for the T and Time-T networks, but
in turn the network generalisation error does not grow so rapidly. The double-POD performed in the Qr network there-
fore seems to make the network more robust to the number of POD modes retained. This makes the network more
straightforward to optimise as there are a greater range of hyperparameters that can give close to optimal performance.

While our results demonstrated that the Qr network performs best, a more extensive and investigation into optimal
network design could have led to improved results for the T and Time-T networks. In principle, the minimum error a
POD-NN ROM can achieve is bounded by the POD truncation error (assuming the interpolation error approaches zero).
The truncation error is larger in the Qr network case than the T or Time-T cases, so in theory it should be possible to
train the latter two approaches to a higher accuracy. In practice, a balance must be struck between the ROM accuracy
and the resources put into searching for the optimal network. If aiming to streamline the network optimisation process,
then our results demonstrate that using a two-stage POD reduction can provide accurate results with a more straightfor-
ward network optimisation procedure. Given that simplifying the ROM data appears to improve the network robust-
ness, it may be that using more advanced ML-based dimensionality reduction tools such as autoencoders could further
simplify the training data and further improve ROM performance or simplify training.42

We found that each ROM we investigated provides a speed-up of order 105 relative to the full-order CFD simulation
performed on one CPU and of order 104 relative to the CFD simulation on 16 CPUs. ROM evaluation time was less than
a tenth of a second for all network designs, although each evaluation took approximately twice as long in the aneurysm
as in the vessel. This is likely because the optimal aneurysm models use more POD modes and therefore have more
coefficients to output in the final layer of the network and more calculations to perform. In a vascular flow context, the
ROM solution fields can be calculated quicker than the period of the heartbeat, which constitutes a model that is fast
enough to respond to real-time measurements of physiological changes. Using a POD-NN ROM also reduces the
amount of stored data by approximately 100 times compared with retaining full-order model solutions and directly
interpolating them. This means that the POD-NN ROM provides fast and accurate predictions while requiring minimal
storage capacity.

TABLE 5 Number of variables involved in POD-Interpolation and direct solution interpolation.

Method Total size of stored data Aneurysm modela

DSI M � D � N 17,272,818

T and Time-T ROMs r�Dð Þ|fflfflffl{zfflfflffl}
ϕmodes

þ r�N�Mð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
T coefficients

144,976

Qr ROM r�Dð Þ|fflfflffl{zfflfflffl}
ϕmodes

þ r�N�Mð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ψ modes

þ r� rQ�Mð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Q coefficients

146,272

Note: D, number of mesh nodes; N , number of timesteps; M, number of parameter configurations; r, number of retained first POD modes; rQ, number of
retained second POD modes.
aFor the aneurysm model, D¼ 6334, N ¼ 101, and M¼ 27. For the calculation, we chose r = 16 and rQ ¼ 3, which are the optimal parameters for the Qr

network.
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Our ROM could be useful in scenarios such as inverse modelling (e.g., to identify boundary conditions that produce
outputs matching experimental data8), design optimisation (e.g., identifying input parameters that induce desired flow
features) or in uncertainty quantification (i.e., analysing model output sensitivity to its inputs). The ROM could also be
suitable for real-time flow monitoring in various applications due to its speed. In its current design, however, our ROM
is not suitable for problems where capturing geometric variability is essential. Two examples of this in a vascular flow
context are real-time surgical feedback where the geometry changes dynamically and in-silico trials where flow needs
to be evaluated in previously unsimulated geometries at low cost. Some attempt has been made to include geometric
parameters as additional network inputs in POD-NN ROMs but only for relatively simple geometries.3 Another possible
approach to overcome this challenge is to use domain decomposition ROMs that partition an unseen geometry into
sub-geometries that are similar to the geometries for which snapshots were previously calculated.43,44 This approach
has been applied to flow over urban landscapes and pipe flow problems, but could potentially be applied to vascular
flow problems too. In the wider ROM field, higher dimensional parameterisations have been used for vascular flow
applications, but these are often limited in their generality.15 Constructing simulation acceleration methods that can
accurately evaluate flow solutions in previously unseen geometries remains a key challenge, particularly in vascular
flow modelling problems where geometries can vary greatly between patients and in pathological vessels.45

5 | CONCLUSION

We have successfully developed and applied a POD-NN ROM to the physiological variation in blood flow in intracranial
aneurysms. We found that a two-stage POD reduction improves model performance compared with the widely used
one-stage POD approach. Future work into POD-NN ROMs could include: (i) adding geometric input parameters into
the model; (ii) introducing smart sampling techniques to handle higher dimensional input parameter spaces;
(iii) including a device in the vascular model and determining whether the ROM is suitable for the multi-scale nature
of such problems; and (iv) investigating the use of ML-based dimensionality reduction algorithms in place of POD.
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