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Prediction of supersonic jet noise using
non-parallel flow asymptotics and LES data within

Goldstein’s acoustic analogy

By M. Z. Afsar†, A. Sescu‡, V. Sassanis‡, A. Towne, G. A. Brès‖AND S. K. Lele

In this study we show how accurate jet noise predictions can be achieved within Gold-
stein’s generalized acoustic analogy formulation for heated and un-heated supersonic jets
using a previously developed asymptotic theory for the adjoint vector Green’s function.
In this approach, mean flow non-parallelism enters the leading order dominant balance
producing enhanced amplification at low frequencies, which we believe corresponds to
the peak sound at small polar observation angles. We determine all relevant mean flow
and turbulence quantities using Large Eddy Simulations of two axi-symmetric round jets
at fixed jet Mach number and different nozzle temperature ratios. Certain empirical co-
efficients that enter the turbulence length scales formula are tuned for good agreement
with the far-field noise data. Our results indicate that excellent jet noise predictions are
obtained using the asymptotic approach, remarkably, up to a Strouhal number of 0.5.

1. Motivation and objectives

Aeroacoustic modeling of jet noise within Goldstein’s generalized acoustic analogy
(GAA) formulation involves (a) solving the adjoint linearized Euler equations to deter-
mine the Green’s function that defines the so-called propagator tensor and (b) appro-
priately modeling the Reynolds stress auto-covariance using experimental data and/or
numerical simulations (Goldstein 2003). The far-field sound is then determined by the
volume integral of an inner product of the propagator and the Reynolds stress auto-
covariance tensors. This approach has proven to be successful for a number of test cases
involving axi-symmetric round jets at a variety of acoustic Mach numbers and observa-
tion angles (Goldstein & Leib (2008) (hereafter referred to as G&L) and (Afsar 2010)).
It has also shed light on what impact the mean flow field has on the far-field radiated
sound for both heated and unheated flows (Afsar et al. 2011).
G&L’s predictions were computed at O(1) (i.e., arbitrary) frequencies for a propagator

tensor based on a weakly non-parallel mean flow. Non-parallelism appeared in the analysis
at supersonic speeds and only affected the solution within a thin critical layer where
the adjoint vector Green’s function is singular for the locally parallel mean flow. G&L
constructed a uniformly valid composite solution for the adjoint Green’s function, thus
eliminating the critical-layer singularity that occurs when the observation angle, θ, is
close to the downstream jet axis. They show that, as θ → 0, the dominant contribution
to the propagator comes from the radial derivative of the Fourier transformed adjoint
Green’s function for the streamwise momentum perturbation. This was also confirmed
by Karabasov et al. (2010)’s numerical calculations and by Afsar (2010) who, together
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with G&L, showed that the acoustic efficiently of this term is raised to a dipole at low
frequencies even though it appears as a quadrupole when multiplied by the appropriate
Reynolds stress auto-covariance component in the acoustic spectrum formula (Goldstein
1975).

Physically, this behavior is due to the streamwise-radial, or ‘1-2’, component of the
fluctuating Reynolds stress multiplying the commensurate propagator component in
such a manner that the latter possesses a pre-factor with directionality that scales as
cos4 θ/(1−M(r) cos θ)6 (where M(r) is the local Mach number profile), which, obviously,
peaks as θ → 0 (where θ is the polar observation angle), thus allowing an accurate pre-
diction to be made of the peak jet noise that experiments show usually occurs at θ = 30o

in the forward arc. This result was derived in the matched-asymptotic-expansion sense,
in which the solution for the pressure-like Green’s function is divided into an inner re-
gion where the scaled radial coordinate r/σ = O(1) and an r = O(1) outer region with
the scaled frequency, σ = k∗

∞
δ∗ ≪ O(1), being an asymptotically small parameter ev-

erywhere in the flow (δ∗ is an appropriate dimensional length scale such as the nozzle
radius and k∞ is far-field wavenumber). Parallel flow asymptotics also showed that the
components of the fluctuating Reynolds stress (other than ‘1-2’) make a more dominant
contribution to the large-angle-radiated sound at O(1) frequencies under a general axi-
symmetric representation of the Reynolds stress auto-covariance tensor (such as that in
(Afsar 2012)). This picture of jet noise is, however, oversimplified because it does not
take into account mean flow spreading, which Karabasov et al. (2011) showed can be
important at O(1) Mach numbers and can increase the low-frequency radiation by as
much as eight Decibels (dB) for θ = 30o on a subsonic jet compared to the equivalent
parallel flow solution of the GAA (adjoint linearized Euler) equations.

Goldstein, Sescu & Afsar (2012) (referred to herein as GSA) constructed an asymp-
totic solution to the adjoint vector Green’s function problem in the GAA equations. As
opposed to low-frequency asymptotics in a parallel flow discussed above, they consid-
ered a slowly diverging jet flow in which the spread rate, ǫ, is an asymptotically small
parameter, ǫ≪ O(1). GSA determined that the only distinguished limit that could pro-
duce leading order changes to the acoustic spectrum is when the Strouhal number is
of the same order as the jet spread rate. The resulting adjoint vector Green’s function
(and therefore the dominant ‘1-2’ propagator component mentioned above) was different
from the parallel flow result everywhere in the jet (not just in the critical layer as in
G&L). Following on from GSA, Afsar et al. (2016) assessed the predictive capability of
the asymptotics by using Reynolds-averaged Navier-Stokes (RANS) mean flow solutions
to calculate the adjoint Green’s function and the low-frequency asymptotically dominant
propagator term in the GAA equations. Their main numerical result (figure 5.3a) con-
firms that an accurate prediction of the far-field sound can be made using this asymptotic
approach. The predictions generally break down (i.e., rapidly decrease), however, above
the peak Strouhal number (at St = 0.2), but that is not altogether unexpected owing to
low-frequency applicability of the theory.

In this paper our aim is to further investigate the applicability of the GSA asymptotics
by considering the effect of heating and supersonic flow using large-eddy simulations
(LES) of two axisymmetric round jets at a fixed jet Mach number of Mj = 1.5. These
solutions were reported in (Brès et al., 2012; Brès et al., 2016) and identified by the
designations B118 and B122 for the unheated and heated configurations, respectively.
The operating conditions are summarized in Table 1. In Section 2 we summarize the
basic theory used in this work. In Section 3 we show the mean flow and turbulence
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Experimental (Schlinker et al. 2012) LES case Description Mj TR Ma

B118 A1 isothermal ideally-expanded 1.5 1.0 1.5
B122 A2 heated ideally-expanded 1.5 1.74 1.98

Table 1. Brès et al (2012) test cases.

properties for the 1212 component of the Reynolds stress auto-covariance tensor, and in
section 4 we show how excellent jet noise predictions can be made using the asymptotic
model up to a maximum Strouhal number of about 0.6.

2. Application of Goldstein-Sescu-Afsar asymptotic theory to heated jets

Suppose that all lengths have been normalized by the nozzle radius, rj , and all velocities
by the mean jet exit velocity, Uj. Let the pressure p, density ρ, enthalpy h, and speed of
sound c satisfy the ideal gas law equation of state p = ρc2/γ and h = c2/(γ − 1), where
γ denotes the ratio of specific heats. Afsar et al. (2016) applied the GSA asymptotic
theory within the GAA formalism to show that the low-frequency acoustic spectrum at
the observation point x due to momentum transfer by the fluctuating Reynolds stress
in an axi-symmetric round turbulent jet flow of volume V (y) is given by the algebraic
result

ILOW
ω (x) →

(
ǫ

2c∞|x|

)2

|G̃12(y|x;ω)|
2Φ1212(y;ω) (2.1)

as |x| → ∞. In this formula, the cylindrical polar coordinates y = (y1, r, ψ) are defined
with respect to an origin at the nozzle exit plane. Equation (2.1) will continue to hold
in heated jets when mean flow quantities and turbulence parameters are appropriately
defined.

2.1. The propagator solution

The adjoint Green’s function enters through the propagator component, G̃12(y|x;ω),
defined as

G̃12(y|x; Ω) =
∂G̃1

∂r
− G̃4

∂U

∂r
(2.2)

for the Favre-averaged mean flow ṽ = ρv/ρ̄ = (U, Vr)(y) that depends on y1 through the
slow streamwise coordinate Y = ǫy1 = O(1) for a jet of an asymptotically small spread
rate, ǫ≪ O(1). The mean flow then divides into an inner region given by slowly varying
mean flow expansion formulae, Eqs. (13)-(17) in (Afsar et al. 2016) (or, Eqs. (3.1)-(3.4)
in GSA), where r = |yT | =

√
y22 + y23 = O(1), and an outer region at radial distances,

R = ǫr = O(1) . The propagator component G̃12(y; Ω) is then defined at the particular
scaled temporal frequency, Ω = ω/ǫ = O(1), shown by GSA to be where mean flow non-
parallelism changes the leading-order structure of the adjoint Green’s function solution
everywhere in the flow (and not just in the critical layer at supersonic speeds as in G&L’s
solution) and at O(1) Mach numbers. This distinguished limit follows supposing that the
space-time adjoint vector Green’s function variable, gaν4(y, τ |x, t), depends on time, τ ,
through the O(1) slowly breathing time T = ǫτ (cf. Wu & Huerre 2009). Therefore, the
Strouhal number, St, is of the order of the jet spread rate, ǫ, in the solution of Fourier
transform of gaν4(y, τ |x, t) (Eqs. (7)-(9) in (Afsar et al. 2016)).
The asymptotic structure of the adjoint Green’s function is then identical to the mean
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flow in that it also divides into an inner solution in the region where the radial distance
r = O(1) and into an outer solution in the region where R = ǫr = O(1). The richest
inner equations are found by the non-trivial dominant balance of gaν4(y, τ |x, t) given by
Eqs. (5.5)-(5.6) in GSA. The scaled Fourier transform of gaν4(y, τ |x, t) for ν = (1, 4, 5)
then satisfies Eqs. (18)-(21) for the leading-order azimuthal mode expansion since higher-
order azimuthal modes produce an asymptotically small (i.e., o(ǫ)) correction to these
inner equations. However, tremendous simplification can be achieved by taking (Y, U)
rather than (Y, r) as the independent variables of choice. The implicit function theorem
shows that y = (Y, r) can be implicitly related to the field space y = (Y, U(Y, r)) and
that the Green’s function variable G̃i(y|x; Ω) = (G̃1, G̃4)(y|x; Ω) then depends on (y; Ω)
through field space (Y, U(Y, r); Ω) ≡ (Y, r; Ω). GSA showed that the one-to-one transfor-
mation of independent variables, (Y, r) → (Y, U), can be used together with the chain
rule to combine the inner equations to the second-order hyperbolic partial differential
equation

c̃2
∂

∂U

(
1

c̃2
D̄0ν̄

)
+ X̃1

∂2ν̄

∂U2
= 0, (2.3)

in which Y = const., dU/dY = X̃1/U are characteristic curves (Garabedian (1998), pp.

121-122). This equation requires that c̃2(Y, r) = f(U) and satisfies Crocco’s relation,

and for a composite Green’s function variable ν = c̃2G̃4+ G̃5. But the Crocco-Busemann
relation (see equation 2.4c in (Leeshafft, Huerre, Sagaut & Rerracol 2006)), which applies
when the jet flow is heated, shows that the mean speed of sound is still a function of
U(Y, r). Therefore, Eq. (2.3) will continue to hold in such a case. The advantage of solving
this equation to determine the low-frequency structure of the adjoint linearized Euler
equations (Eqs. (4.8)-(4.10) of G&L) is clear. The hyperbolic structure of equation (2.3)
shows that it is unnecessary to impose a downstream boundary condition. Figure 1 in
GSA indicates how information propagates to both the left and the right from the U = 0
boundary and that no boundary conditions are required on the Y = 0 and Y → ∞
boundaries (i.e., no inflow boundary condition is required here). Hence the solution for the
composite variable ν(Y, U) is now uniquely determined by the outer boundary conditions
(i.e., by matching to the inner limit of the outer solution using the Van Dyke (1975)
rule)

ν(0, Y ) → −iΩc2∞e
−iΩY cos θ/c∞ (2.4)

∂ν

∂U
(0, Y ) → −iΩc∞ cos θe−iΩY cos θ/c∞ (2.5)

on the non-characteristic curve U = 0, with Y ≥ 0 (where, as indicated above, U → 0
corresponds to outer limit, r → ∞ ). The coefficient X̃1 is the streamwise component of
the mean flow advection vector (equation 5.15 in GSA) and D̄0 = iΩ+ U∂/∂Y .

The inner solution ν(U, Y ) is then induced by incoming waves by the outer wave
equation. For the O(Ω0) solution, any influence of the nozzle (i.e., via the scattered wave
contribution to the outer solution) can be neglected because the inner solution, which
generates the scattered waves, will not behave logarithmically as r → ∞ when matched to
the outer solution. The logarithmic behavior of the axi-symmetric mode of the scattered
solution (Eq. (5.2) in GSA) follows from the small argument expansion for the solution
to the two-dimensional Helmholtz equation (Morse & Feshbach (1953), p. 891) in the
outer region. Using Van Dyke’s rule, this expansion shows that ν(0, Y ) will not match
onto the transcendental lnR behavior as R → 0 at O(Ω0).
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2.2. Turbulence modeling

The turbulence enters the acoustic spectrum formula, Eq. (2.1), through the spectral
tensor component Φ1212(y;ω) defined by the space-time Fourier transform

Φ1212(y;ω) =
1

2π

∫

V (η)

∫
∞

−∞

R1212(y,η; τ)e
i(k.η−ωτ) dη dτ, (2.6)

where the R1212(y,η; τ) component of the Reynolds stress auto-covariance tensor is given
by the time-average

R1212(y,η; τ) = lim
T→∞

1

2T

∫ T

−T

[
ρv′1v

′

2 − ρv′1v
′
2

]
(y, τ)

[
ρv′1v

′

2 − ρv′1v
′
2

]
(y + η, τ + τ0) dτ0.

(2.7)
In Section 3 we show the streamwise development of R1212(y,η; τ) at various radial

locations in the jet using the Brès et al. data. Construction of R1212(y,η; τ) using an
exponential model with algebraic tails and the subsequent calculation of Φ1212(y;ω) is
worked out in Afsar et al. (2016), and we use their final result

Φ1212(y;ω) = 2πA1212(y)

(
l0l1l2l3
χ2Uc

)
× (2.8)

[
(a0 − a1 − a2) + (a1ω̃

2 − k̄1(ω̃(a1 − a2)(l1/l0)− a1k̄1))(4/χ)
]

(2.9)

where χ(ω̃, k̄1) = k̄21+ω̃
2+1 = (k1−ω̃(l1/l0))

2+ω̃2+1 and ω̃ = (ωl0/Uc) is the normalized
temporal frequency where Uc is the convection velocity of the turbulence. The length
scales in Eq. (2.9) are taken to be proportional to the local turbulent kinetic energy k(y)
and the rate of energy dissipation ǫ̃(y) as li(y) = ci(k

3/2/ǫ̃)(y) for i = 0, 1, 2, 3. We
obtain all the mean flow from the LES calculation rather than scaling a RANS mean
flow as done by Karabasov et al. (2010).

3. Streamwise development of mean flow and Reynolds stress auto-covariance

In Figure 1, we show the Favre-averaged mean flow fields, (U, Vr, X̃1)(y), as a two-
dimensional field for both B118 (cold) and B122 (hot) jets. The LES data was averaged
over a time span of 0.032 s for the B118 case and 0.0176 s for the B122 case (corresponding
to 321 and 168 time unitsD/Uj, respectively) to obtain a converged mean flow, which was
then averaged over each 24-azimuthal plane to obtain an azimuthally averaged mean flow.
Comparison of Figure 1a and Figure 1b shows that heating slightly reduces the potential
core length while increasing the magnitude of the radial velocity Vr (Figures 1(c,d)) and
localizing it closer to the nozzle lip line. However, given these differences, the distribution
of the mean flow advection operator X̃1 in Figure 2 appears to be relatively unchanged
in shape; its magnitude associated with the heated jet (Figure 2b) is slightly higher in
the vicinity of the nozzle lip.
Figure 3 shows the Reynolds stress auto-covariance tensor component R1212 as a func-

tion of the time delay τ for different streamwise shifts η1, where the radial shift η2 is set
to zero. The plots are taken at a fixed streamwise location (y1 = 8) and four different
radial locations (r = 0.25, 0.5, 0.75, 1.0). Figure 3 indicates that the negative dip (some-
times referred to as the de-correlation) in R1212 is largely negligible and (a1, a2) can be
set to zero in Eq.( 2.9). A comparison of the different plots in Figure 3 suggests that the
correlation increases in strength as r increases, which may also indicate an increase in
the length scales (which can be calculated by taking the integral of correlations). There
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Figure 1. Mean flow: (a) B118, U(Y, r), (b) B122, U(Y, r), (c) B118, Vr(Y, r) (d) B122,
Vr(Y, r).
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Figure 2. Spatial distribution of X̃1 (a) B118; (b) B122.

is no appreciable difference in the rate of decay of the correlations with heating; in other
words, the normalized shape of R1212 curves is similar. The absolute magnitude of R1212

does, of course, change (it increases) as the jet is heated and this directly impacts the
magnitude of the acoustic spectrum contours through the change in k(y).

Figure 4 shows the contours of G̃12 at the peak frequency of St = 0.2 for B118 and
B122 jets. The convergence of the numerical algorithm applied to Eq. (2.3) was analyzed
in GSA and Afsar et al. (2016), and it was found to be within 5% at almost all regions of
the jet, with only slight differences in results coming near the inner boundary as U → 1.
In Figures 5(a,b) we show contour plots of the acoustic spectrum rIlow. The indication
here is that the peak noise source lies near y1 ∼ 6 or Y ∼ 1. The absolute magnitude of
the acoustic spectrum is greater with heating (at fixed Mj), which is consistent with the
noise measurements of a heated flow at constant jet Mach number that shows an increase
in noise of almost 10dB with heating.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. R1212(y,η; τ )/R1212(y,0; 0) at y1 = 8 and four radial locations: (a) and (b)
r = 0.25, (c) and (d) r = 0.5, (e) and (f) r = 0.75. Left column is B118 and right column is

B122.

4. Jet noise predictions

Our experimentation with the parameters in the model showed that it is possible to
achieve remarkably accurate noise predictions of both unheated and heated jets, with
(a0, a1, a2) = (1.0, 0, 0) in Eq (2.9); i.e., a purely positive correlation that is consistent
with the very small (if not negligible) de-correlation in R1212 with time delay and spatial
separation displayed in Figure 3. Hence, only three parameters are needed in the turbu-
lence model, namely the length scale parameters in Eq (2.9). But given that Figure 3
also shows very little difference in the streamwise space-time structure of R1212, we keep
(c0, c1) = (0.15, 1.0) the same in both cases and vary only c2 (where c2 = c3 = c⊥),
which is related to the transverse length scales. Specifically, we set c2 = 0.17 for B118
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Figure 4. Contours of |G̃12|: (a) B118, (b) B122.
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Figure 5. Contours of rILOW
ω at St = 0.2 and θ = 30 deg: (a) B118, (b) B122.
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Figure 6. Acoustic spectra for B118: (a) θ = 30 (b) θ = 45 and 60.

and c2 = 0.09 for B122. Remarkably, these parameter values provide accurate predictions
for the cold jet up to St ∼ 0.5, which is beyond what was obtained by Afsar et al. (2016).
In Figures 6 and 7 we show the acoustic spectrum (dB) for B118 and B122, respectively,

compared against experimental data (see Schlinker et al. (2012), Brès et al. (2012) and
Brès et al. (2016)). As mentioned, the spectrum for the observation angle θ = 30 deg
shows very promising agreement with experimental and LES results at low frequencies
(almost up to St = 0.6). When the same set of parameters are used for larger angles
(θ = 45, 60 deg), the acoustic spectrum predictions (shown in Figure 6) are no longer
in agreement, but this is not surprising since the theory in its current form is supposed
to provide accurate predictions at small observation angles. In Figure 7(b) we show the
senstivity of the 30◦ prediction for B122 (heated) jet at various values of parameter c2.
Any predictions in the heated case must be interpreted as a first approximation since
Eq. (2.1) does not include auto-variances and co-variances associated with enthalpy flux
and momentum flux/enthalpy flux coupling, respectively (Afsar et al. 2011).
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Figure 7. Acoustic spectra for B122: (a) θ = 300 and (b) sensitivity to c2.

5. Conclusions

Goldstein-Sescu-Afsar postulated that the appropriate distinguished limit in which
non-parallel mean flow effects introduce a leading-order change in the propagator tensor
in the generalized acoustic analogy equations must be when the jet spread rate is of the
same order as the Strouhal number. In this paper we have extended the Afsar et al.
(2016) analysis to show that this approach, i.e., Eq. (2.1), remains valid in heated jets

since the assumption that c̃2(Y, r) = f(U) in which c̃2 is given by the Crocco-Busemann
relation, continues to remain valid in heated jet flows. Our results have shown that
the theory not only provides a means to understand, qualitatively, the effects of non-
parallelism within the acoustic analogy but also provides excellent predictive capability
of the jet noise. The reduced form of the acoustic spectrum formula (equation 19 in (Afsar
et al. 2011)) used here is limited to low frequencies and shallow downstream observation
angles from the jet axis. The results in this paper indicate that the 30◦ spectrum can be
accurately predicted in both the unheated (B118) and heated (B122) cases, remarkably,
up to a Strouhal number of almost 0.6. While the parameters in the turbulence model
(Eq (2.9)) do require revisiting, particularly to obtain a precise estimation of the length
scales, the approach does show the usefulness of the asymptotic theory as part of a
realistic prediction code. Future work will address these issues, namely to reconstruct
the spectrum of the Reynolds stress auto-covariance component R1212 directly from LES
data without the need of any modeling whatsoever (i.e., by Fourier transforming the
R1212 correlation function data as necessary using Eq (2.6)). In addition, the higher
polar angle predictions can be improved by including the other components of the axi-
symmetric representation of the generalized auto-covariance tensor, Rµjνl, which includes
enthalpy fluctuations when Greek suffixes (µ, ν) = 4.
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