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ABSTRACT 

In this talk we present recent developments in the Rapid-distortion theory of turbulence when applied to the prediction of 

sound radiated by non-homogeneous turbulence interacting with a trailing edge of a semi-infinite flat plate positioned 
parallel to the level curves of an otherwise arbitrary mean flow field. The latter problem has received much attention in 

Aero-acoustics research community and is a canonical representation of jet installation effects.  

 
1. Introduction 

 Rapid-distortion theory (RDT) uses linearized 

equations to analyze rapid changes in turbulent flows 

such as those that occur when the flow interacts with solid 
surfaces. It applies whenever the turbulence intensity is 

small and the length (or time) scale over which the 

changes take place is short compared to the length (or 

time) scale over which the turbulent eddies evolve. When 

interpreted asymptotically, these assumptions imply, 

among other things, that it is possible to identify a 

distance that is very (infinitely) large on the scale of the 

interaction, but still small on the scale over which the 

turbulent eddies evolve. The assumptions also imply that 

the resulting flow is inviscid and non-heat conducting and 

is, therefore, governed by the Linearized Euler Equations, 
i.e., the Euler equations linearized about an arbitrary, 

usually steady, solution (the base flow) to the nonlinear 

equations. 

 
Fig. 1 Proposed aircraft where jet/edge interaction play 

an important role.  

   An important consequence of the disparate length 

scales is that upstream boundary conditions can be 

imposed infinitely far upstream in a region where the 

flow is undisturbed by the interaction. The two arbitrary 

convected quantities do not decay at upstream infinity 

and can, therefore, be determined from these conditions.  

But a major problem with this is that these quantities do 

not correspond to physically measurable variables and the 
causal RDT solutions for these variables decay at large 

upstream distances. Goldstein et al. [1] showed that since 

appropriate gradients of these quantities do not decay at 

upstream infinity, these latter arbitrary convected 

quantities can be related to measurable flow variables 

thereby developing a set of physically realizable 

upstream boundary conditions for planar mean flows and 

also flows of arbitrary cross-section (Goldstein, Leib & 

Afsar, 2019 [2]).  

   Our aim is here is to review the theoretical 

development of the problem based on its application to 

the installation noise problem of the type shown in Fig. 1. 
In the talk, we also consider how the basic RDT problem 

can be used to study the evolution of turbulence 

undergoing interaction. 

 

2. Fundamental Solution to the RDT Equations 

   Goldstein et al. [1] show that the pressure fluctuation  

produced at the observation point, , by the 

interaction of the arbitrary convected disturbance 
 with solid surfaces embedded in the 

transversely sheared mean flow of an inviscid, non-heat 

conducting ideal gas is given by 
 

   (1) 

where  is a Cartesian coordinate system 
with streamwise and transverse components, and 

 respectively,  can be 

specified as an upstream boundary condition and 

 denotes the Green’s function that satisfies 

the inhomogeneous Rayleigh equation: 

   (2) 

where and: 

 

       (3) 

is the Rayleigh operator. The convective derivative in (3) 
is , the mean flow gradient in 

(3) is  and  denotes the mean 

sound speed. The solid surfaces  bound volume 

in formulae (1) & (2) can be finite, semi-infinite or 

infinite in the streamwise direction but its generators 
must be parallel to the level curves of the mean velocity 

field. The Green’s function, , now satisfies 

the homogeneous boundary condition

where the scalar field, , is 
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determined to within an arbitrary convected quantity by 

the boundary condition: 

              (4) 

which reduces to the usual zero normal derivative 

boundary condition on the (impermeable) plate surface   

present in the flow for the canonical RDT problem in 

Fig. 2. Downstream of the trailing edge in Fig. 2, the 

Green’s function must satisfy the jump 

conditions  across the 

resulting downstream wakes (or vortex sheets) where 

denotes the surfaces of discontinuity and  

denotes the jump in  across these surfaces. The mean 

velocity profiles can be discontinuous across the wakes 

which can then support additional spatially growing 

instability waves that can be generated by imposing a 

Kutta condition at the trailing edge or suppressed by 

imposing a boundedness requirement. 

 

Fig. 2 Canonical Rapid-distortion theory problem. 
 

The density-weighted transverse velocity 

perturbation  is defined via: 

where the transverse mass flux 

perturbation is  with  being 

the mean flow density and being the 

actual transverse velocity perturbation. The pseudo-

density-weighted transverse velocity perturbation   

is given by integral solution: 

                                                  

  (5) 

with  determined in terms of the three-

dimensional gradient of  by                                 

      (6) 

 
3. RDT Solution Strategy 

   The simplest way to determine the acoustic radiation 

using (1) is to split the Green’s function up into a 

hydrodynamic component (that does not generate any 

acoustic waves at subsonic Mach numbers) and a non-

hydrodynamic component that corresponds to the 

acoustic waves that propagate to the far-field when 

inserted into (1). Mathematically, this can be 

accomplished by dividing the Rayleigh equation Green’s 

function that appears in the solution (1) into two 

components:  

where  denotes a particular solution of (2) 

which can either be defined on all space or, be required to 

satisfy appropriate boundary conditions on a streamwise 

extension (i.e. the vortex sheet) of the bounding surface 

that extends from minus to plus infinity in the 

streamwise direction. This decomposition implies 

 in (5) also decomposes in a similar way 

and therefore the pressure fluctuation in (1), decomposes 

as where  which is 

given by (1) and (2) with replaced by 

, does not produce any acoustic radiation at 

subsonic Mach numbers and can, therefore, be identified 

with the hydrodynamic component of the unsteady 

motion. On the other hand, the ‘scattered component’, 

, satisfies the homogeneous Rayleigh’s 

equation along with appropriate inhomogeneous 
boundary and jump conditions on the streamwise 

discontinuous surfaces   and  and . The 

corresponding ‘scattered solution’  therefore, 

accounts for all of the acoustic components of the motion.  
      

4. Concluding Remarks 

   The basic solution procedure of a problem that calls 

for the use of RDT involves the following: (a). Take 

temporal/streamwise Fourier transforms of (1); (b). Insert 

the additive decomposition of the Green’s function 

above; (c) determine ‘gust solution’ Green’s function, 
 that is subject to boundary conditions far 

upsteam of the streamwise discontinuity (Fig. 2) for the 

canonical scattering problem we are concerned with here; 

(d). Solve a Wiener-Hopf problem to determine 

 in which  enters as a gust-induced 

boundary coundition when inserted into (5) and using 

. In the talk acompanying 

this paper, I shall discuss how the formalism can be 

extended to consider jets of arbitrary cross-section that 
possess otherwise arbitrary mean flow fields

 and in particular, for these flows, how 

one relates  to the upstream physics so that the gust 

solution, found when  is inserted in (5), is function 

of measurable quantities [3]. 
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u
T
= ρ(v02, v

0
3) ( )Tr r= y

v
0

T
= (v02, v

0
3)

i
u!

( )
( )

1 , | , ,   for   2,3

T

i i c T

T
T V

y
u G t d d i

U
-

æ ö
= - t w t- t =ç ÷ç ÷

è ø
ò ò y x y y

y
!!

( )|, ,
i
G tty x

( )|, ,G tty x

( ) ( )0
| |, , , , ,   for 1,2,3

i

i

D
G t G t i

Dt x

¶
t = - t =

¶
y x y x

( ) ( ) ( ) ( ) ( )0
|, , , | , , | ,

s
G t G t G tt = t + ty x y x y x

( ) ( )0
|, ,G tty x

S

( )|, ,
i
G tty x

( ) ( ) ( ) ( ) ( )
0

, , ,
s

p t p t p t= +¢ ¢ ¢x x x
( ) ( )
0

,p t¢ x

( )|, ,G ty xt

( ) ( )0
|, ,G tty x

( ) ( )|, ,
s

G tty x

S
0
S

( ) ( ),
s

p t¢ x

( ) ( )0
|, ,G tty x

( ) ( )|, ,
s

G tty x G(0)

[ ] [ ] 0
0  for 

T
G SD = D G = Î y

U = U(y2, y3)

ω̃c

G(0)


