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Abstract— System identification, as a rich and vital discipline, 

provides a practical and general methodology and tool for 

quantitatively modelling the input-output relationships of 

dynamical systems. Sparse nonlinear system identification 

(SNSI), especially parametric sparse nonlinear system 

identification (PSNSI), is an important and vital field of research 

with a wide range of applications. This work is concerned with 

PSNSI and particular attention is paid to the assessment of three 

well-known mainstream sparse learning methods, namely, 

orthogonal least squares (OLS), orthogonal matching pursuit 

(OMP) and least absolute shrinkage and selection operator 

(LASSO). The performances of these methods are tested and 

evaluated through three case studies relating to PSNSI 

problems. The research results and findings of this work provide 

practical useful information and guidance for researchers to 

better choose or adapt methods when solving PSNSI problems.      

I. INTRODUCTION 

System identification (SysID) is a general scientific 
technique that is widely used for determining mathematical 
models of dynamical systems or processes based on input and 
output measurements. There are many cases where the inputs 
and outputs of a system of interest can be observed or 
measured, but nothing or just little of the internal structure and 
inherent dynamics of the system is known; such a system or 
process is often referred to as a black box or a gray box. 
System identification provides a vitally important and 
powerful tool to find a model or a set of models that can well 
represent the system input and output relationship embedded in 
the data available for solving the associated modelling tasks. 
While the internal structure of the system to be identified is 
usually unknown, the general structures of the models to be 
used to represent the system can be prespecified. Commonly 
used system identification models include ARX 
(AutoRegressive with eXogenous inputs) and ARMAX 
(AutoRegressive Moving Average with eXogenous inputs) [1], 
NARX (Nonlinear AutoRegressive with eXogenous inputs) 
and NARMAX (Nonlinear AutoRegressive Moving Average 
with eXogenous inputs) [2], neural networks [3], among other 
models and approaches [4]-[7].  

System identification models can be linear or nonlinear, 
parametric or nonparametric, time-invariant or time-varying, 
transparent or opaque (black-box), and so on. For many system 
identification tasks, especially those tasks relating to complex 
nonlinear systems, the initial models (if not properly addressed 
and refined), can potentially be very complex and redundant 
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due to the existence of many irrelevant model elements. This is 
more than true for models defined in high dimensional space 
(e.g., involving a great number of inputs and outputs), 
requiring a huge number of unknown parameters. For such 
cases, model refinement, a process of determining best or 
sub-best model subsets, becomes significantly important for 
obtaining meaningful parsimonious or sparse models that best 
represent the system input and output relationship [8],[9]. 
Parsimonious sparse models have several attractive advantages, 
e.g., they can overcome the overfitting problem, have better 
generalization ability, and save the cost measuring the 
irrelevant model input variables when carrying out similar 
modelling tasks in future. For these reasons, sparse system 
identification has attracted considerable attention and many 
sparse methods have been developed over the past years 
including the three well-known methods: orthogonal least 
squares (OLS) [2],[10],[11], orthogonal matching pursuit 
(OMP) [12], [13], and least absolute shrinkage and selection 
operator (LASSO) [14], [15]. These methods and their 
variations have found extensive applications in a wide range of 
fields, including nonlinear dynamical system identification and 
modelling (see, e.g., [2], [16]-[21]).  

As mentioned earlier, the internal structure of a system to 
be identified may be completely unknown (a black box). 
However, the overall structure of the models used to represent 
or approximate the system can be prespecified. For illustration 
purposes, take a simple linear system case as example here. 
For a set of data of a dynamical system of interest, we can use 
an ARX model to represent the system as follows: y(k) = 
a1y(k–1) + … + apy(k–p) + b1u(k–1) + … + bqu(k–q), where 
u(k) and y(k) are measured sequences of the system input and 
output variables, respectively; {a1, …, ap} and {b1, …, bq} are 
model parameters; p and q are the ARX model order. To 
sufficiently represent the inherent dynamics and the 
input-output relationship of the system, the initially 
prespecified models, or the elements to be used to build a 
model, are usually overcomplete. For example, the true model 
order of the ARX system may be p=3 and q=2. However, 
without any a priori knowledge about the system (this is the 
case for many applications), the model order p and q may be 
chosen to be much larger than 3 and 2, respectively, in the 
initial ARX model. Such models are usually not applicable for 
future use due to their lack of generalization ability caused by 
overfitting (this is especially true for complex dynamical 
nonlinear system modelling tasks involving many inputs). That 
is why model refinement including model subset selection is a 
crucial process for any system identification task.     

This work is concerned with sparse nonlinear system 
identification problem. While there are a huge number of 
publications on sparse system identification using the three 
mainstream methods, OLS, OMP and LASSO, in the literature, 
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very little work has been done to comprehensively evaluate 
and compare their overall performance and efficiency when 
applied to solve sparse nonlinear system identification tasks. 
This motivates us to conduct investigations in this area, aiming 
to bridge the existing research gap. In this work, the 
NARAMX method is used to approximate and represent the 
underlying nonlinear dynamical systems, this is because the 
method can usually lead to transparent and parsimonious 
models, which us enable to reveal and understand black-box 
systems through transparent models.     

The main contributions of the work include: 

• Not much work has been done to comprehensively 
evaluate the performances of OMP and LASSO for 
parametric sparse nonlinear system identification 
(PSNSI) problems. This work fills the gap. 

• The overall performances of LASSO, OMP and OLS 
are evaluated through three case studies, two on 
simulation data and one on real data of a 
continuous-time two-tank system.   

• The results and findings are useful and provide 
practical guidance for better choosing or adapting 
methods when solving PSNSI problems.  

II. NONLINEAR SYSTEM IDENTIFICATION USING 

PARAMETRIC MODELS 

Parametric models, due to their good properties (e.g., 
transparent, easy-to-interpret, and easy-to-communicate), are 
preferred for many system identification applications in 
particular when the primary modelling task is to investigate 
and establish a quantitative relationship between the system 
inputs and outputs. For example, more than often, the major 
study interest of system identification is to understand how a 
system output is explicitly related to the system inputs, and 
how the involved model input variables interact with each 
other. For such application scenario, parametric models, 
especially parametric sparse models may be particularly 
preferred to nonparametric models.      

 Previous experiences show that a large class of nonlinear 
systems can be represented using NARMAX models [2]. 
Taking the case of single-input, single-output (SISO) systems 
as an example, the general form of NARMAX models is as 
follows: 

( ) ( ( 1), ( 2)..., ( ),
               ( ), ( 1),..., ( ),
               ( 1), ( 2),..., ( )) ( ).

y

u

e

y k f y k y k y k n

u k u k u k n

e k e k e k n e k

 
= − − −

− − − −
− − − +

       (1) 

where u(k) is an input sequence, y(k) is the system output 

sequence, and e(k) is noise sequence; 
y

n ,
u

n  and e
n  are the 

associated maximum time lags; τ is the time delay between the 
response and the model input variables, and usually τ = 0 or τ 
= 1; f(•) is some unknown function that needs to be built from 
available training data. In the literature, a variety of basis 
functions can be used to appreciate the to approximate the 
unknown function f(•); in many applications, polynomial 
models, due to their attractive properties, are commonly 
employed [2].    

The form (1) can be easily extended to multi-input and 
single-output (MISO) and multi-input and multi-output 
(MIMO) cases in a straightforward way. For MISO and MIMO 
cases, interested readers are referred to [2],[22],[23].  

The nonlinear degree (i.e., the degree of nonlinearity) of a 
NARMAX model is defined as the highest order of all model 
terms. For example, the nonlinear degree of the model 

1 2( ) ( 1) ( 2)y k a y k a u k= − + −  is 1, whereas the nonlinear 

degree of the model 3
1 2( ) ( 1) ( 2)y k b u k b u k= − + −  is 4. 

In most real applications, the actual model structure of the 
system of interest is unknown (and may never be known). The 
main task of system identification is to find a model that can 
best represent the input-output relationship of the system 
through learning from data. In doing so, an appropriate 
number of experimental settings need to be specified prior to 
model identification. For NARMAX models, the settings 
include the nonlinear degree, maximum lags for inputs and 
outputs, model size (the total number of model terms), and so 
on. For convenience of description, take a simple scenario as 
an example: Assume that the actual model of a SISO system is 
y(k) = 0.5y(k-1) + 0.8u(k-1) + 0.2u(k-1)u(k-2), which is 
assumed to be unavailable from first principle. If we set the 
maximum lags as ny=2, nu=2, ne=0, the time delay τ =1, and  
the nonlinear degree as l = 2, then a collection of candidate 
model terms to be used to represent the system may be defined 
as follows: 

2

2

2 2

( 1),     ( 2),  ( 1),  ( 2),  

( 1),   ( 1) ( 2),   

                  ( 1) ( 1),  ( 1) ( 2),

( 2),  ( 2) ( 1),  ( 2) ( 2),

( 1),   ( 1) ( 2),  ( 2)

y k y k u k u k

y k y k y k

D y k u k y k u k

y k y k u k y k u k

u k u k u k u k

 − − − −
 

− − − 
 = − − − − 
 − − − − − 
 − − − − 

   (2) 

It is expected that a good system identification algorithm 
should be able to correctly identify the three actual model 
terms, y(k-1), u(k-1) and u(k-1)u(k-2), from the above 
dictionary consisting of 14 candidate terms. 

For most applications, only a relatively small number of 
important model terms are needed in the final models. 
Methods that can efficiently select the most significant model 
terms and result in good solutions for system identification 
and parametric modelling problems are always highly needed.   

III. A BRIEF INTRODUCTION OF ORTHOGONAL LEAST 

SQUARES, ORTHOGONAL MATCHING PURSUIT AND LASSO 

This section does not intend to provide detailed 
descriptions of the three methods: orthogonal least squares 
(OLS), orthogonal matching pursuit (OMP) and LASSO. 
Instead, it focuses on a quick introduction to the basic 
mechanism behind these methods.  

These methods are used to find sparse solutions to the 
following generalized linear regression problem of the form: 

0 1 1 2 2( ) ( ) ( ) ... ( ) ( )
p p

y k a a x k a x k a x k e k= + + + + + .   (3) 

where y is a target signal, x1, x2, …, xp are regressors, and e is 
noise. Note that a large class of discrete-time nonlinear 
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dynamic models can be formulated using Eq. (1). For example, 
the nonlinear difference equation y(k) = ay(k-1) + bu(k-1) + 
cy(k-1)u(k-2) can be written as y(k) = a1x1(k) + a2x2(k) + 
a3x3(k), with x1(k) = y(k-1), x2(k) = u(k-1), and x3(k) = 
y(k-1)u(k-2). Also note that often not all the regressors are 
equally important for representing the response; some 
regressors may play little or no role in explaining the change of 
the response. The main objective of finding a sparse solution 
amounts to finding a best subset consisting of m variables from 
the p candidate variables (in many applications m << p), such 
that the m variables can well present the target signal y.  

A. Orthogonal Least Squares 

The commonly used orthogonal least squares (also known 
as forward regression with orthogonal least squares, shortly, 
FROLS [2]) method was originally developed for dynamical 
model construction based on measured input-output data, by 
selecting the most important model terms from a specified 
dictionary consisting of a sufficiently large number candidate 
linear and nonlinear model terms. The selection process is 
implemented through an iterative forward orthogonalization 
procedure: the most important model terms are selected step by 
step; in each iteration, one important term is selected and is 
added to a subset comprising those terms selected in all the 
previous iterations.   

In each iteration, the importance of the newly selected 
model term is measured using a simple but efficient and 
interpretable index, called error-reduction-ratio (ERR) [2]. 
ERR is calculated based on the overall model residual, by 
projecting the original target signal onto a set of bases 
(orthogonal vectors) generated from the model subset through 
an orthogonalization procedure. Readers are directed to [2], [8] 
and [11] for detailed descriptions of FROLS.  

B. Orthogonal Matching Pursuit 

Orthogonal matching pursuit (OMP) is an improved 
version of the well-known matching pursuit method [25], 
which was originally designed to solve the following sparse 
representation problem: There is a target signal y, together with 
a finite number of candidates basis signals, x1, x2, …, xp; find a 
best subset consisting of m basis signals from the p candidates 
(in many applications m << p), such that the m variables can 
well present the target signal y.  

  The overall implementation procedure of OMP is similar 
to that of OLS.  The main difference between OMP and OLS is 
that, in each iteration, the subset selected by the former best 
represents the current model residual, while the subset selected 
by the latter ensures to minimize the overall model residual, 
when the target signal y is approximated by a subset consisting 
of m model terms selected so far. Interested readers are 
referred to [12] and [13] for details of OMP. 

C. Least Absolute Shrinkage and Selection Operator 

Note that finding the exact solution to the sparse modelling 
problem mentioned in Section B can be formulated as the 
following L0-norm regularized optimization problem: 

0
ˆ arg min || ||    subject to ,X


  = = y         (4) 

or 

2
0

1
min || || || ||

2
X


  

  − +   
y .                       (5) 

where y is a target signal vector, X is the regression matrix with 
proper dimension (e.g., n p ), β is the regression model 

parameter vector, λ is a penalty coefficient, and the symbol 

0|| ||  represents the L0-norm of a vector defined as the total 

number of nonzero entries in the vector. 

Solving the optimization problem defined in (5) is NP-hard 
[26], which is very difficult to solve. To overcome the 
difficulty encountered by the NP-hard problem, the L0-norm in 
(2) is relaxed to L1-norm in the following manner [14],[15]: 

2
2 1min || ||    subject to || || ,X c


 − y                (6) 

or 

2
2 1

1
arg min || || || ||

2
X


  

  − +   
y .                   (7) 

where c is a parameter that controls the range of the constraint 

set, and the symbol 1|| ||  represents the L1-norm of a vector 

defined as the sum of absolute values of all entries of the 
vector. The problem defined by (7) is commonly referred to as 
LASSO regression [14].  

IV. CASE STUDIES 

This section provides three case studies, two simulation 
cases and one real data modelling case, to evaluate the 
performances of the three methods, OLS, OMP and LASSO, 
from different perspectives.  

A.  Case 1: Model Identification with an Overcomplete 

Dictionary of Candidate Model Terms 

This is a case where the prespecified dictionary contains all 
the true model terms of the system to be identified. As a simple 
example, the dictionary, D, defined by (7) is an overcomplete 
dictionary. 

Now, consider a system with two inputs and one output 
described by the following model: 

2
1 2

1

( ) 0.5 ( 1) 0.8 ( 2) ( 1)

        0.25 ( 2) ( 2) ( )

( ) ( ) ( )

x k x k u k u k

x k u k k

y k x k k




 = − − − + − − − − + = +

             (8) 

where x(k) is the system state signal, y(k) is the system output 
signal, u1(k) and u2(k) are two input signals, ξ(k) and η(k) are 
noise signals.     

Numerical experiments were conducted to test the 
performance of OLS, OMP and LASSO for recovering the 
system model given by (8) from simulation data. 
Experimental settings are as follows. 

1) Data acquisition 

Data were collected through simulations. The system (8) 
was simulated 100 times independently; in each simulation, 
the two inputs u1 and u2 were set to be Gaussian signal N(0, 1), 
and the two noise signals were set to be ξ ~ N(0, 0.12) and η ~ 
N(0, 1), respectively. A total of 100 datasets were collected; 
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each dataset contains a total of 200 samples (input and output 
data points).   

2) Candidate model settings  

The model settings are as follows:  ny = 5, nu = 5, ne = 0, τ 
=1, and l = 3. This resulted in a dictionary, D, consisting of 
816 candidate model terms in total, including the three actual 
model terms (for model (8)). The three methods, LASSO, 
OMP and OLS are applied to the 100 datasets, based on which 
to select their own best models independently. 

3) The determination of model size 

The determination of model size (i.e., the number of model 
terms) is important to control the model complexity and avoid 
overfitting.    

For LASSO, the penalty coefficient λ plays a crucial for 
determining the model sparsity (size). Following the 
recommendation from [14], in this study the value of λ is 
chosen to be such that is within one standard error of the 
minimum, as such a value can often lead to a more 
parsimonious model with a minimal loss in mean square error 
(MSE).  

For OMP, we use LASSO as a baseline method. The model 
size (the number of model terms) selected by LASSO for each 
individual datasets is used as a reference, to see whether OMP 
can show comparable performance if it is allowed to select 
exactly the same numbers of model terms as that of LASSO. 

For OLS, the well-known Bayesian Information Criterion 
(BIC) [27] is used to determine model size. The identification 
results on the 100 datasets for LASSO, OMP and OLS are 
summarised in Table I.   

TABLE I.  PERFORMANCE COMPARISON OF LASSO, OMP AND OLS 
FOR RECOVERING THE SYSTEM MODEL GIVEN BY (8)  

Information of the Identified Models Based on the 100 Datasets 

LASSO  OMP OLS 

Ta Model sizeb Ta Model sizeb Ta Model sizeb 

89 4, 49, 14.32 0 4, 49, 14.32 87 4,  8,  6.33 
a. Times that all the five actual model terms are included in the selected models by the method out 

of 100 runs. 
b. The minimum, maximum and average numbers of model terms in the 100 identified models. 

 

From Table I, the following can be observed:   

• Both LASSO and OLS work well for recovering the 
system model. While the two methods apparently 
show comparable performance, OLS can produce 
much compact models than LASSO for the problem.  

• OMP shows no skills for solving the problem, in that 
the time that all the five actual model terms are 
included in the selected models by the method out of 
100 runs is zero. This may be explained that many 
candidate model terms in the dictionary are very 
highly correlated. Perhaps the inherent mechanism of 
the method makes it struggling in dealing with these 
highly correlated regressors. 

B.  Case 2: Model Identification with an Undercomplete 

Dictionary of Candidate Model Terms 

This is a case where some or none of the actual system 
model terms are not included in the pre-specified dictionary. 
This is a typical scenario in many real applications.  

Consider a SISO system designed in [26] and described by 
the following model: 

3( ) ( 1) | ( 1) | 0.5 ( 1) ( 2) ( )y k u k y k u k u k k= − − − + − + − +  (9) 

where u(k) is the system input and ξ(k) is noise. The model 
was simulated by making the input u be formally distributed 
on [-1, 1], and the noise ξ be following Gaussian distribution, 
ξ ~ N(0, 0.12). A total of 1000 data points were recorded: the 
first 500 samples were used for model identification and the 
second 500 samples were used to test the model performance.  

The model settings are as follows:  ny = 2, nu = 2, ne = 0, τ 
=1, and l = 3. This resulted in a dictionary, D, consisting of 35 
candidate model terms. The three methods (LASSO, OLS and 
OMP) were respectively applied to the 500 training data 
points, and three models were obtained accordingly. A brief 
summary of the three models are reported in Table II. Note that 
the MSE values listed in Table II were calculated based on the 
model simulation prediction (i.e., model simulation output), 
which is different from the conventionally used 
one-step-ahead prediction.             

TABLE II.  MODEL PERFORMANCE COMPARISON FOR THE SYSTEM 
DESCRIBED BY MODEL (9)  

Performance of the Models Over The Training and Test Dataset 

LASSO  OMP OLS 

Sa Trb Tec Sa Trb Tec Sa Trb Tec 

14 0.0384 0.0196 24 0.0211 0.0202 4 0.0362 0.0170 
a. S – model size (the number of model terms). 
b. Tr  – mse (mean square error) on the training data. 
c. Te  – mse (mean square error) on the test data. 
    

More details of the two models identified by OLS and 
LASSO are respectively presented below: 

2 3

( ) 0.4805 ( 1) 1.009 ( 2)

           0.4866 ( 1) ( 1) 0.5042 ( 1)

y k u k u k

u k y k u k

= − − + −

− − − + −
           (10) 

   
2 2

3 2

( ) 0.3431 ( 1) 0.9167 ( 2)

           +0.0208 ( 1) ( 2) 0.0091 ( 2) ( 2)

           +0.0117 ( 1) 0.0165 ( 2)

           +0.2944 ( 1) 0.0960 ( 1) ( 2)

y k u k u k

u k u k u k y k

y k y k

u k u k u k

= − − + −
− − + − −

− + −

− + − −

 

2 2

2 3

           +0.0076 ( 1) ( 1) 0.0126 ( 1) ( 2)

          0.0011 ( 1) ( 2) ( 2)

          0.4809 ( 1) ( 1) 0.0656 ( 2)

u k y k u k y k

u k u k y k

u k y k u k

− − − − −
− − − −

− − − + −

 

2           +0.0107 ( 2) ( 2)u k y k− −                                            (11) 

To save space, the details of the 24-term model identified by 
OMP is not shown here.     
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Figure 2.  The input and output samples of the two-tank system. 

 

Figure 1.  A comprison between the model simulation output from(10) 
and the corresponding actual output for the system described by (9).   

 
Figure 3.  The model simulation outputs generated from the models 
identified by the three methods for the two-tank system. 

To visually demonstrate the performance of the identified 
models, we take the model (10) as an example to display how 
well the model represents the original system. Fig. 1 displays 
the model simulation output (model prediction output) and the 
corresponding actual output on part of the testing data 
(samples from 951 to1000). Note that there is no special 
consideration that only the last 50 data points are displayed 
here; the main purpose is to give a clear, zoomed-in 
comparison and visualization between the model simulation 
output and the actual output.       

 

C.  Case 3: Identification of a two-tank system  

This is a case where data were collected from experiments 
on a continuous-time two-tank system. The dataset contains a 
total of 3000 input and output samples recorded with a 
sampling period of 0.2 second. The input u(k) (units: voltage 
[V]) is applied to a pump, which produces an inflow to the 
upper tank. There is a small hole at the bottom of the upper 
tank, leading to an outflow going into the lower tank. The 
overall output y(k) of the two-tank system is measured as the 
liquid level (units: [m]) of the lower tank. The input and output 
samples are shown in Fig. 2. More details of the system may be 
found in [28]. 

 

 

 

 

 

 

 

 

 

The model settings are as follows:  ny = 5, nu = 5, ne = 0, τ 
=1, and l = 2, that is, the basic variables are chosen to be 
y(k-1), …, y(k-5), u(k-1), …, u(k-5). The resulting dictionary, 
D, consists of 66 candidate model terms in total. The three 
methods, LASSO, OMP and OLS were applied to the dataset, 
where the first 2000 samples were used for model 
identification and the remaining 1000 samples were used to 
test the model performance. The same model size 
determination scheme described in Case 1 (Section IV-A) was 

used to determine the model sizes. The information about the 
identified models is summarized in Table III.        

TABLE III.  MODEL PERFORMANCE COMPARISON FOR THE TWO-TANK 
SYSTEM  

Performance of the Models Over the Training and Test Dataset 

LASSO  OMP OLS 

Sa Trb Tec Sa Trb Tec Sa Trb Tec 

12 0.0064 0.0095 5 0.0110 0.0046 10 0.00046 0.00029 
d. S – model size (the number of model terms) 
e. Tr  – mse (mean square error) on the training data 
f. Te  – mse (mean square error) on the test data 

 
The model simulation outputs produced by the models 

identified by the three methods are shown in Fig. 3. 
 

D.  A Brief Summary 

From the three case studies, the following observations and 
findings are noted:  

• For Case 1, with an overcomplete dictionary of 
candidate model terms, both LASSO and OLS 
correctly identified all the actual system model terms; 
the models produced by OLS are much more compact 
than those of LASSO. The OMP method does not 
show any skill towards correctly identifying all the 
actual model terms. 

• For Case 2, with an undercomplete dictionary of 
candidate model terms, the three methods produced 
comparable results; OLS showed the best 
performance.  

• For Case 3, involving a real continuous-time system, 
OMP did not work at all. Although LASSO showed 
some good performance, its power seemed not to be 
fully brought into play. 

CONCLUSION 

Modeling and identification of nonlinear dynamical 
systems, especially parametric sparse nonlinear system 
identification (PSNSI) is a challenging task. Many good 
algorithms have been developed and are available for dealing 
with difficult PSNSI tasks, including the three mainstream 
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methods, LASSO, OMP and OLS and their variants. A lot of 
work has been done on evaluating the overall performances of 
OMP in the application areas of sparse signal and image 
reconstruction, and of LASSO in multiple linear regression 
(and with variable selection) and related application areas, but 
not much work has been done to comprehensively evaluate the 
performances of these two types of methods for PSNSI 
problems where candidate regressors (model terms) are 
formed by lagged variables of the system inputs and outputs; 
many of these candidate terms are potentially highly correlated 
and may be indistinguishable when the sampling period is 
small [29].  To fill this gap, three case studies have been 
carried out in this paper.  

Hopefully the results and findings presented in this paper 
will provide practical useful guidance for better choosing or 
adapting methods when solving PSNSI problems. It is worth 
mentioning that the work of the paper is limited to a small 
number of case studies. In future, more studies will be carried 
out to further explore the power of LASSO and OLS, and 
where possible to integrate and give play to each other’s 
strengths, so as to offer better solutions for difficult and 
challenging PSNSI problems. 
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