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ABSTRACT

Taylor’s hypothesis states that a turbulence field will remain relatively ‘frozen’ within a flow, and as such evolve
with respect to a convected variable. In this paper we show results from Large Eddy Simulations (LES) of a
round jet at 4 operating points covering the parameter range of static temperature ratio (TR = 0.84, 1.0, 2.7) and
acoustic Mach number (Ma = 0.5, 0.9). Our results indicates that, remarkably, Taylor’s hypothesis provides an
accurate estimation of the turbulence auto-correlation under an appropriate moving co-ordinate transformation.

1. Introduction

Historically, measurements of small amplitude
turbulence downstream of a turbulence grid show the
remarkable property that streamwise velocity fluctu-
ation remains ‘frozen’ within the unsteady flow field.
This result was formulated in a seminal paper by
Taylor [1] and the subsequent approximation was re-
ferred to as the Taylor frozen turbulence hypothesis.
Taylor’s basic assumption was that if the turbulence
intensity is sufficiently small, then flow disturbances
(eddies of a lengthscale smaller than an O(1) body
dimension) are convected, or transported, with the
local mean flow without change to their spatial struc-
ture.

Expressing these ideas mathematically, Taylor
suggests that if we denote the streamwise veloc-
ity fluctuation by v′

1
(x, t) where x = {x1,xT } :=

{x1, x2, x3} are a triad of orthogonal directions in a
Cartesian co-ordinate system with origin, for exam-
ple, centered at the turbulence grid and t is time.
Here, all lengths have been normalized by an up-
stream body dimension, Λ∗

0
(e.g. grid spacing), ve-

locity by U∗

0
(free-stream velocity), time by Λ∗

0
/U∗

0

and pressure by (ρ∗U∗2

0
). Under Taylor’s hypothesis,

v′
1
(x, t) = v′

1
(x1 − Uct, t + τ0;xT ). In other words,

at a later time t = t + τ0, the streamwise veloc-
ity field v′

1
(x, t) depends on the (x1, t) through the

streamwise moving co-ordinate, ξ = x1 − Uct (Tay-
lor, Townsend, [2] p.65) at a fixed transverse location
xT = (x2, x3).

The latter approximate dependence on a moving
co-ordinate then implies that the streamwise compo-
nent of the incompressible Navier Stokes equations
expands as follows (Hinze 1959 [3], p.41),

Dv′
1

Dt
(x1, t;xT ) :=

(

∂

∂t
+ Uc

∂

∂x1

)

v′
1
(x1, t;xT )

= O(|v′|2)

(1)

where v′(x1, t;xT ) = |v(x1, t;xT )| is normalized
magnitude of turbulence fluctuations at some fixed
space time point (x, t). This remainder in dimen-
sional terms is a measure of the turbulence inten-
sity and is equivalent to O((v′∗/U∗

0
)2). Hence for
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small turbulence intensities Eq. (1) necessarily im-
plies that,

dv′
1

dξ
(ξ;xT ) = o(1), (2)

when |v′|2 ≪ 1.
If we write Eq. (1) or (2) at another space time

field point that is a linear translation of (x1, t;xT ),
say (x̄1, t̄;xT ) := (x1 + η1, t + τ0;xT ) ( where the
transverse location xT remains fixed) we can use the
Chain rule to re-write derivatives in terms of (η1, τ0).
Multiplying this equation by v′

1
(x1, t;xT ) and adding

it to the product of Eq. (1) and v′
1
(x1+η1, t+τ0;xT ),

and performing the time-average, we can easily that
Eqs. (1) or (2) implies that:

DR11

Dτ0
(η1, τ0) :=

(

∂

∂τ0
+ Uc

∂

∂η1

)

R11(η1, τ0) = 0,

(3)
where,

R11(η1, τ0;xT ) =: v′
1
(x1, t;xT )v′1(x1 + η1, t+ τ0;xT )

≡ lim
T→∞

1

2T

∫

T

−T

v′
1
(x1, t;xT )v

′

1
(x1+η1, t+τ0;xT ) dt

(4)

where T is a large time interval and the transverse
spatial field point is xT = O(1). Eq. (3) then im-
plies that R11(η1, τ0;xT ) ≡ R11(η1 − Ucτ0;xT ) and
therefore, following Eqs. (1) & (2) that

dR11

dξ
(ξ;xT ) = 0, (5)

commensurate with the small turbulence amplitude
scale below (2). The convection velocity (Mach num-
ber), Uc is defined by a constant velocity at the lo-
cation (x1, t); i.e. Uc := U(x̃1, t̃) where tilde refers
to the fact the (x1, t) are fixed.

The principal advantage of using Taylor’s hypoth-
esis in the form of (3) is the conversion of an Eulerian
spatial function to a temporal correlation function
inasmuch as [4, 5]:

R11(η1, 0;xT ) ≡ R11(0, Ucτ ;xT ). (6)

That is, a streamwise spatial correlation function at
zero time separation is identical to an Eulerian time



correlation at zero spatial separation when the time
co-ordinate is re-scaled via “convected time unit”,
Ucτ . (The latter is also the Eulerian auto-correlation
in this co-ordinates). Remember that spatial correla-
tions are always more difficult to obtain due to probe
displacement effects in real experiments and/or in-
creased streamwise resolution needed in computa-
tional simulations for appropriate convergence norm
to be acheived.

Indeed, there are two approximations underly-
ing Taylor’s hypothesis in the form of Eqs. (1),
(2) (and their statistical form in Eqs. 3 & 4).
First that the convection velocity (Mach number)
is constant. Second, that the flow is incompress-
ible. The interesting extension then arises of whether
the hypothesis in the form of (6) is applicable to
shear flow turbulence[6, 7] at high Mach number and
for high-order correlations. In the next section we
compare Eq. (6) to the fourth order correlations
R1111(η1, τ ;xT ) and R1212(η1, τ ;xT ) at the trans-
verse location of maximum turbulence (i.e. along the
jet shear layer |xT | = 0.5 and azimuthally averaged).
These correlations have a particular importance to
Aero-acoustics (see Stirrat et al. 2023[8]).

2. LES Database

The LES was performed using an in-house im-
plicit LES solver which uses the 2nd order Adams-
Bashforth time marching method. The mesh was
composed of 13, 244, 832 cells and the computational
time was roughly one week. Four LES simulations
were completed providing unsteady data for four jets
described in Table. 1.

Table 1 LES database.

set point Ma TR x1 start of potential core
SP03 0.5 1.0 5.8
SP07 0.9 0.87 6.5
SP42 0.5 2.7 4.3
SP46 0.9 2.7 4.25

3. Taylor’s Hypothesis in Jets

Fig. 1 checks Taylor’s hypothesis for the four jets,
using the fourth order turbulence correlations (R1111,
R1212), where we used Uc = 0.6. Although Taylor’s
hypothesis appears to be remarkably accurate at the
start of the potential core and along the jet shear
layer, there is variation in Uc. Fig. 2 looks at how
Uc varies across spatial coordinates (y1, r), and we
can see that it is relatively constant along y1, par-
ticularly at the potential core region which is more
or less located 5 < y1 < 8. It does vary quite sig-
nificantly with r ≶ 0.5, however the LES mesh does
have reduced resolution outside of the jet shear layer.

4. Concluding Remarks

In this paper, we have conducted a numerical in-
vestigation on the applicability of Taylor’s hypoth-

(a)

(b)

(c)

(d)

Fig. 1 Check Taylor’s Hypothesis on shear layer (r =
0.5) at start of potential core for (a) Ma=0.5 R1111
(b) Ma=0.5 R1212 (c) Ma=0.9 R1111 (d) Ma=0.9
R1212.



esis to turbulent round jets of O(1) subsonic in-
flow Mach number (where compressibility effects are
present). Our results indicate that at least in the lo-
cation where convection velocity is constant, Taylor’s
hypothesis remains very accurate. In other words,
there is a direct correspondence between the (Eule-
rian) temporal correlation function and the zero-time
delay streamwise spatial correlation.
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Fig. 2 Spatial variation of Uc for (a) SP03 R1111 (b)
SP03 R1212 (c) SP07 R1111 (d) SP07 R1212.


