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High-amplitude free stream turbulence and surface roughness elements can excite a lam-

inar boundary layer flow sufficiently to cause streamwise oriented vortices to develop. These

vortices resemble elongated streaks having alternate spanwise variations of the streamwise

velocity. Downstream, the vortices ‘wobble’ through an inviscid secondary instability mech-

anism and, ultimately, transition to turbulence. We formulate an optimal control algorithm

to suppress the growth rate of the streamwise vortex system. Considering a high Reynolds

number asymptotic framework, we reduce the full compressible Navier-Stokes equations to the

nonlinear compressible boundary region equations (NCBRE). We then implement the method

of Lagrange multipliers via an appropriate transformation of the original constrained opti-

mization problem into an unconstrained form to obtain the disturbance equations in the form

of the adjoint compressible boundary region equations (ACBRE) and corresponding optimality

conditions. Numerical solutions of the ACBRE approach for high-supersonic and hypersonic

flows reveal a significant reduction in the kinetic energy and wall shear stress for all considered

configurations. We present contour plots to demonstrate the qualitative effect of increased

control iterations. Our results indicate that the primary vortex instabilities gradually flatten

in the spanwise direction thanks to the ACBRE algorithm.
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I. Introduction

Flow control techniques are an integral part of fluid mechanics research as they offer possible optimization and

improvement in the performance and operation of mechanical systems involving fluids. Automobiles, aircraft, and marine

vehicles all offer possible avenues for implementation of such control methods to determine the optimal configuration

of wings, surface/edge geometry, engine inlet, nozzle design, and many other components to improve design metrics.

The (mathematically) optimized design could potentially increase the lift to drag ratio on an aerodynamic surface,

delay/accelerate the transition to turbulence, postpone flow separation, enhance mixing or alter the morphology of the

vortices embedded within the turbulence field.

The main goal behind research into controlling transitional or fully-developed turbulent boundary layers is to reduce

the energy carried by aligned vortical structures in the streamwise direction. These structures appear in the form of

alternate high- and low-velocity streaks originating in the near-wall region (e.g., Kendall [25], Matsubara & Alfredsson

[39], or Landahl [29]). For boundary layers over flat plates or wings, such streaky flows occur when the upstream

roughness height exceeds a critical value (e.g., Choudhari & Fischer [7], White [57], White et al. [58], Goldstein et al.

[13–15], and Wu & Choudhari [60]) or when the amplitude of the free-stream disturbances surpasses a certain threshold.

(e.g., Kendall [25], Westin et al. [56], Matsubara & Alfredsson [39], Leib et al. [31], Zaki & Durbin [64], Goldstein &

Sescu [16], and Ricco et al. [44]).

Görtler vortices refer to streamwise elongated streaks in a boundary layer flow over a concave surface. They develop

due to the imbalance between the centrifugal forces and the wall-imposed pressure gradient (e.g., Görtler [17], Hall

[19–21], Swearingen & Blackwelder [55], Malik & Hussaini [37], Saric [46], Li & Malik [32], Boiko et al. [2], Wu et

al. [59], or Sescu et al. [48, 49], Es-Sahli et al. [10], Ren & Fu [43], Dempsey et al. [9], Xu et al. [62]). The higher the

wall curvature, the more rapid the vortex formation is, and therefore, the quicker transition occurs. Low to medium wall

curvature also induce vortex formation, and consequently altering the primary flow and causing the laminar flow to

break down.

Xu et al. [63] investigated the influence of the curvature, turbulence level, and pressure gradient on the development

of streaks and Görtler vortices in a boundary layer over a flat or concave wall. They found that an adverse/favorable

pressure gradient causes the Görtler vortices to saturate earlier/later, but at a lower/higher amplitude than that in the case

of a zero-pressure-gradient. On the other hand, for the same pressure gradient and at low levels of the free stream vortical

disturbances (FSVD), the vortices saturate earlier and at a higher amplitude as Görtler number increases. Raising FSVD

intensity reduces the effects of the pressure gradient and curvature. At a high FSVD level of 14 %, the curvature has no

impact on the vortices, while the pressure gradient only influences the saturation intensity.

Chen et al. [6] used linear stability theory (LST) and direct numerical simulation (DNS) to investigate the stability

and transition of Görtler vortices in a hypersonic boundary layer at M = 6.5. They used blowing and suction to excite

Görtler vortices with different spanwise wavelengths L3, L6, and L9 (3, 6, and 9 mm, respectively). Their results
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showed, among other findings, that for L3, the sinuous-mode instability dominates the breakdown process, whereas, for

L6, the varicose-mode instability is most dangerous. For L9, sinuous- and varicose-mode instabilities appear to be of

equal importance, with the former controlling the near-wall region and the latter appearing on the top of the mushroom

structures. We will show subsequently that our optimal control method is very effective in controlling the near-wall

sinuous-mode instability, making it very suitable for small and large spanwise wavelength cases where this instability is

dominant.

Like many other types of instabilities, streamwise-oriented vortices (and their accompanying streaks) occur in

various engineering applications such as the flow over turbo-machinery blades, and flow in the proximity to the walls

of wind tunnels or turbofan engine intakes. Not only do these instabilities contribute to transition, but they also

induce a significant increase in noise in supersonic and hypersonic wind tunnels, which can cause interference with

the measurements in the test section (Schneider [47]). Thus comparing and validating wind tunnel measurements to

real-flight conditions becomes challenging. The objective function for a control algorithm in this context would be to

reduce the streamwise vortex energy, which would delay nonlinear breakdown and the transition onset. However, since

the transient part of the primary instability is responsible for the growth of three-dimensional disturbances (and their

subsequent breakdown), the applied control strategy must restrict transient modes growth.

Wall transpiration control techniques of boundary layers can be applied via localized suction and blowing regions

underneath low-and high-velocity streaks. The net result is a decrease in the spanwise variation of the streamwise

velocity and, therefore, a corresponding reduction in the number and strength of the bursting events.

A more efficient way of achieving these results is by applying active wall control methods. In the recent literature,

such methods have been utilized in turbulent channel flow as a technique to reduce skin friction drag (see Choi et al.

[5]). Choi et al. [5] conducted direct numerical simulations of an active-control approach based on wall transpiration

velocity by placing sensors in a sectional plane parallel to the wall. This technique achieved approximately a 25%

reduction in frictional drag. But from a practical point of view, it is challenging, if not impossible, to install sensors in

the flow as they could potentially amplify existing disturbances or create new ones. Thus, to avoid interference issues,

Choi et al. [5] investigated the same control algorithm with sensors placed at the wall that inform (i.e., feed into) the

leading term in the Taylor series expansion of the vertical velocity component near the wall. However, this approach

resulted only in a 6% reduction. Koumoutsakos [27, 28] implemented a similar feedback control algorithm informed

by flow quantities at the wall. Taking the vorticity flux components as inputs to the control algorithm resulted in a

significant drop in skin friction (approximately 40%).

Lee et al. [30] derived new suboptimal feedback control laws based on blowing and suction to manipulate the flow

structures in the proximity to the wall using surface pressure or shear stress distribution (the reduction in the frictional

drag was in the range of 16-20%). Observing that the opposition control technique is more effective at low Reynolds

number turbulent wall flows, Pamies et al. [41] proposed the utilization of blowing only at high Reynolds numbers,
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and by doing so, they obtained a significant reduction in the skin-friction drag for these flows. Recently, Stroch et al.

[54] conducted a comparison between the opposition control applied in the framework of turbulent channel flow and a

spatially developing turbulent boundary layer. They found that the rates of frictional drag reduction are approximately

similar in both cases. The paper by Kim [26] reviews the technical issues and limitations associated with the opposition

control type and we refer the interested reader to it.

In a linear, full-state optimal control theory framework, Hogberg et al. [22] reported the first successful re-

laminarization of a 𝑅𝑒𝜏 = 100 turbulent channel flow by applying zero mass flux blowing and suction at the wall. They

showed that the information available in the linearized equations is sufficient to construct linear controllers able to

re-laminarize a turbulent wall flow, but this may be limited to low Reynolds number flows.

In addition to numerical methods studies, several experimental studies used blowing and suction to control the

disturbances in laminar or turbulent boundary layer flows. We briefly mention a few of these here. Gad-el-Hak &

Blackwelder [12] used continuous or intermittent suction to eliminate artificially generated instabilities in a flat-plate

boundary layer flow. Experiments of Myose & Blackwelder [40] used the same idea to delay the breakdown of Görtler

vortices. Jacobson & Reynolds [23] developed a new type of actuation based on a vortex generator to control disturbances

induced by a cylinder along the wall normal-direction and unsteady boundary layer streaks generated using pulsed

suction. Regarding the latter, the actuation significantly reduced the spanwise gradients of the streamwise velocity,

which are one of the main driving forces of secondary instabilities (see Swearingen & Blackwelder [55]). Experiments

of Lundell & Alfredsson [36] controlled streamwise velocity streaks in a channel flow by using localized suction regions

downstream of the inflow. This approach delays secondary instabilities and ultimately the onset of transition.

Many studies employed optimal control for laminar or turbulent boundary layer flows. There have been several

studies that considered the implementation of optimal control for shear flows; see for example, Gunzburger [18] or the

more recent review by Luchini & Bottaro [35] (note that the latter is in a slightly different context). Other studies aimed

at controlling disturbances developing in laminar or turbulent boundary layers have been numerous; (e.g. Bewley &

Moin [1], Joslin et al. [24], Cathalifaud & Luchini[3], Corbet & Bottaro [8], Hogberg et al. [22], Zuccher et al. [65],

Cherubini et al [4], Lu et al. [34], Sescu & Afsar [52], Sescu et al. [53]).

Bewley & Moin [1] applied an optimal control method based on blowing and suction to turbulent channel flows.

They reported a 17% frictional drag reduction as a result of this scheme. Cathalifaud & Luchini [3] used the same

optimal control approach to reduce the energy of disturbances in a boundary layer flow over a flat plate and a concave

surface. The study of Zuccher et al. [65] discussed and tested an optimal and robust control strategy in the framework

of steady three-dimensional disturbances in the form of streaks that formed in a boundary layer flow over a flat plate.

They established the optimal control method on an adjoint-based optimization technique to first find the optimal state

for a given set of initial conditions and then determine the worst initial conditions for optimal control. Lu et al. [34]

derived an optimal control algorithm within the linearized unsteady boundary region equations. As we shall see in §.2,
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these equations are the asymptotic reduced form of the Navier-Stokes equations under assumptions of low frequency

and low streamwise wavelength. Their study aimed at controlling both streaks developing in flat-plate boundary layer

flows and Görtler vortices evolving along concave surfaces. Cherubini et al. [4] applied a nonlinear optimal control

strategy with blowing and suction, starting with the full Navier-Stokes equations and using the method of Lagrange

multipliers to determine the maximum decrease of the disturbance energy.

Papadakis, Lu & Ricco [42] derived a closed-loop optimal control technique based on wall transpiration in the

framework of a flat plate laminar boundary layer excited by freestream disturbances. They split the optimal control into

two sequences: of which are obtained by marching the corresponding equations in the forward and backward directions

respectively. They found that the feedback sequence is more effective than the feed-forward sequence. Xiao & Papadakis

[61] derived an optimal control algorithm in the framework of the full Navier-Stokes equations and Lagrange multipliers.

The study aimed at delaying transition in a flat plate boundary layer excited by freestream vortical disturbances based on

blowing and suction.

Although researchers have made significant progress in the last decades toward understanding the phenomenology

behind the formation and influence of streamwise vortices and streaks in incompressible boundary layers, research into

the compressible regime still remains modest. Moreover, bypass-transition at high upstream flow speeds remains largely

unexplored. In this paper, we consider the control of streamwise vortices in boundary layers by conducting a parametric

study of various flow parameters within a self-consistent asymptotic mathematical framework. The paper is an extension

of the incompressible flow analysis of Sescu & Afsar [52] into the compressible regime. They implemented an optimal

control approach to limit the growth of Görtler vortices developing in an incompressible laminar boundary layer flow

over a concave wall. But the adjoint boundary region equations and the associate optimality condition were based

on the incompressible boundary region equations. They showed that the optimal control algorithm (employed wall

deformation and velocity transpiration as flow control parameters) is very effective in reducing the amplitude of the

Görtler vortices, especially for the control based on wall displacement. In this paper, on the other hand, we derive the

ACBRE for compressible flows together with the optimality condition for the NCBRE. The latter are the high Reynolds

number extension of the compressible Navier-Stokes equations. We introduce appropriate control variables (i.e., wall

transpiration velocity) with wall shear stress as the cost functional.

II. Scaling and governing equations

A. Scalings

All dimensional spatial coordinates (𝑥∗, 𝑦∗, 𝑧∗) are normalized by the spanwise wavelength of the freestream

disturbance 𝜆∗ set to 0.5cm, while the dependent variables by their respective freestream values. The pressure field is
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normalized by the dynamic pressure. Hence:

𝑡 =
𝑡∗

𝜆∗/𝑈∗
∞

; 𝑥 =
𝑥∗

𝜆∗
; 𝑦̄ =

𝑦∗

𝜆∗
; 𝑧 =

𝑧∗

𝜆∗

𝑢̄ =
𝑢∗

𝑈∗
∞

; 𝑣̄ =
𝑣∗

𝑈∗
∞

; 𝑤̄ =
𝑤∗

𝑈∗
∞

; 𝜌̄ =
𝜌∗

𝜌∗∞

𝑝 =
𝑝∗ − 𝑝∗∞

𝜌∗∞𝑉
∗2
∞

; 𝑇 =
𝑇∗

𝑇∗
∞

; 𝜇̄ =
𝜇∗

𝜇∗∞
; 𝑘̄ =

𝑘∗

𝑘∗∞

where 𝑢∗, 𝑣∗, and 𝑤∗ are the velocity components in the streamwise, wall-normal, and spanwise directions, respectively.

𝜌∗, 𝑝∗, 𝑇∗, 𝜇∗, and 𝑘∗ represent the dimensional density, pressure, temperature, dynamic viscosity, and thermal

conductivity, respectively.

We define the Reynolds number based on the spanwise wavelength, the Mach number, and the Prandtl number as

𝑅𝜆 =
𝜌∗∞𝑈

∗
∞𝜆

∗

𝜇∗∞
, 𝑀∞ =

𝑈∗
∞

𝑐∗∞
, 𝑃𝑟 =

𝜇∗∞𝐶𝑝

𝑘∗∞

where 𝐶𝑝 is the specific heat at constant pressure and 𝜇∗∞, 𝑐∗∞ and 𝑘∗∞ are the freestream dynamic viscosity, speed of

sound, and thermal conductivity, respectively.

For boundary layer flows over curved surfaces, we define the O(1) global Görtler number as

𝐺𝜆 =
𝑅2
𝜆
𝜆∗

𝑟∗

where 𝑟∗ is the radius of the curvature (set to 1.5m).

B. Compressible Navier-Stokes equations (N-S)

For a full compressible flow, the primitive form of the Navier-Stokes equations in non-dimensional variables are as

follows

𝐷𝜌̄

𝐷𝑡
+ 𝜌

(
𝜕𝑢̄

𝜕𝑥
+
𝜕𝑣̄

𝜕𝑦̄
+
𝜕𝑤̄

𝜕𝑧

)
= 0 (1)

𝜌̄
𝐷𝑢̄

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝜆

𝜕

𝜕𝑥

[
2

3
𝜇

(
2
𝜕𝑢̄

𝜕𝑥
−
𝜕𝑣̄

𝜕𝑦̄
−
𝜕𝑤̄

𝜕𝑧

)]
+
𝜕

𝜕𝑦̄

[
𝜇

(
𝜕𝑢̄

𝜕𝑦̄
+
𝜕𝑣̄

𝜕𝑥

)]
+
𝜕

𝜕𝑧

[
𝜇

(
𝜕𝑤̄

𝜕𝑥
+
𝜕𝑢̄

𝜕𝑧

)]
(2)

𝜌̄
𝐷𝑣̄

𝐷𝑡
= −

𝜕𝑝

𝜕𝑦̄
+

1

𝑅𝜆

𝜕

𝜕𝑦̄

[
2

3
𝜇

(
2
𝜕𝑣̄

𝜕𝑦̄
−
𝜕𝑢̄

𝜕𝑥
−
𝜕𝑤̄

𝜕𝑧

)]
+
𝜕

𝜕𝑥

[
𝜇

(
𝜕𝑣̄

𝜕𝑥
+
𝜕𝑢̄

𝜕𝑦̄

)]
+
𝜕

𝜕𝑧

[
𝜇

(
𝜕𝑣̄

𝜕𝑧
+
𝜕𝑤̄

𝜕𝑦̄

)]
(3)
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𝜌̄
𝐷𝑤̄

𝐷𝑡
= −

𝜕𝑝

𝜕𝑧
+

1

𝑅𝜆

𝜕

𝜕𝑧

[
2

3
𝜇

(
2
𝜕𝑤̄

𝜕𝑧
−
𝜕𝑢̄

𝜕𝑥
−
𝜕𝑣̄

𝜕𝑦̄

)]
+
𝜕

𝜕𝑥

[
𝜇

(
𝜕𝑤̄

𝜕𝑥
+
𝜕𝑢̄

𝜕𝑧

)]
+
𝜕

𝜕𝑦̄

[
𝜇

(
𝜕𝑣̄

𝜕𝑧
+
𝜕𝑤̄

𝜕𝑦̄

)]
(4)

𝜌̄
𝐷𝑇

𝐷𝑡
=

1

𝑃𝑟𝑅𝜆

[
𝜕

𝜕𝑥

(
𝑘
𝜕𝑇

𝜕𝑥

)
+
𝜕

𝜕𝑦̄

(
𝑘
𝜕𝑇

𝜕𝑦̄

)
+
𝜕

𝜕𝑧

(
𝑘
𝜕𝑇

𝜕𝑧

)]

− (𝛾 − 1)𝑀2
∞

[

𝑝

(
𝜕𝑢̄

𝜕𝑥
+
𝜕𝑣̄

𝜕𝑦̄
+
𝜕𝑤̄

𝜕𝑧

)
−

2

3
𝜇

(
𝜕𝑢̄

𝜕𝑥
+
𝜕𝑣̄

𝜕𝑦̄
+
𝜕𝑤̄

𝜕𝑧

)2
]

(5)

+ (𝛾 − 1)𝑀2
∞

𝜇

𝑅𝜆

[

2

(
𝜕𝑢̄

𝜕𝑥

)2

+ 2

(
𝜕𝑣̄

𝜕𝑦̄

)2

+ 2

(
𝜕𝑤̄

𝜕𝑧

)2

+

(
𝜕𝑢̄

𝜕𝑦̄
+
𝜕𝑣̄

𝜕𝑥

)2

+

(
𝜕𝑤̄

𝜕𝑥
+
𝜕𝑢̄

𝜕𝑧

)2

+

(
𝜕𝑣̄

𝜕𝑧
+
𝜕𝑤̄

𝜕𝑦̄

)2
]

where

𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑢̄

𝜕

𝜕𝑥
+ 𝑣̄

𝜕

𝜕𝑦̄
+ 𝑤̄

𝜕

𝜕𝑧
(6)

is the substantial derivative (for what follows, we consider the steady-state case for the N-S equations, i.e. 𝜕/𝜕𝑡 = 0).

The pressure 𝑝, the temperature 𝑇 and the density 𝜌 of the fluid are combined in the equation of state in non-dimensional

form, 𝑝 = 𝜌̄𝑇/𝛾𝑀2
∞, under the assumption of non-chemically-reacting flows. Other notations include the dynamic

viscosity 𝜇, the thermal conductivity 𝑘 , and the free-stream Mach number 𝑀∞ = 𝑈∗
∞/𝑐

∗
∞, which is otherwise O(1). We

write 𝜇 and 𝑘 as a function of the temperature using the power law of viscosity in the form

𝜇 = 𝑇𝑏; 𝑘 =
𝐶𝑝𝜇

𝑃𝑟
(7)

where 𝑏 = 0.76 (Ricco & Wu [45]), 𝐶1 = 1.458 × 10−6, 𝐶2 = 110.4, 𝐶𝑝 = 𝛾𝑅/(𝛾 − 1), 𝛾 = 1.4, and 𝑃𝑟 = 0.72 for air.

C. Nonlinear Compressible Boundary-Region Equations (NCBRE)

We consider a compressible flow of uniform velocity𝑈∗
∞ and temperature 𝑇∗

∞ past a flat or curved surface. The air

is treated as a perfect gas so that the sound speed in the free-stream 𝑐∗∞ =

√︁
𝛾𝑅𝑇∗

∞, where 𝛾 = 1.4 is the ratio of the

specific heats, and 𝑅 = 287.05𝑁𝑚/(𝑘𝑔𝐾) is the universal gas constant; Mach number is assumed to be of order one.

The asymptotic structure of the flow is composed of four regions as in Leib et al. [31], Ricco & Wu [44] or Marensi et

al. [38] (see figure 1).

Close to the leading edge, and outside the boundary layer, is region I, where the flow is inviscid and the disturbances

are small perturbations of the base flow. Region II is the boundary layer close to the leading edge with a thickness

much smaller than the freestream disturbances spanwise wavelength, 𝜆. The linearized boundary region equations now

govern the perturbation field solutions in which the spanwise diffusion is of the same order of magnitude as that in the

wall-normal direction. Region III is the fully viscous region governed by the nonlinear compressible boundary region
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Fig. 1 The flow domains illustrating the asymptotic structure and the four regions of the flow domain. The

box distinguishes regions I and II with I inside the box and outside the boundary layer and II inside the box and

inside the boundary layer

equations (NCBRE) where the boundary layer thickness is of the same order of magnitude as 𝜆. Region IV is inviscid

since the viscous effects are negligible. In the latter region, the displacement effect due to the increased thickness of the

viscous layer influences the flow at leading order.

We derive the NCBRE from the full steady-state compressible N-S equations. Thanks to the characteristics of the

flow in region III, we re-scale the streamwise distance and time co-ordinate at which the vortex system forms by the

following O(1) variables: 𝑥 = 𝑥/𝑅𝜆, and the time as 𝑡 = 𝑡/𝑅𝜆. Note that the distance in the wall-normal and spanwise

directions are the same, 𝑦 = 𝑦̄, 𝑧 = 𝑧. Another thing to mention is that, in this region, the crossflow velocity component

is small compared to the streamwise component, and pressure variations are negligible. Appropriate dominant balance

considerations suggest that the dependent variables in this region must also re-scale as follows:

𝑢 = 𝑢̄; 𝑣 = 𝑣̄/𝑅𝜆; 𝑤 = 𝑤̄/𝑅𝜆; 𝜌 = 𝜌̄;

𝑝 = 𝑝/𝑅2
𝜆; 𝑇 = 𝑇 ; 𝜇 = 𝜇̄; 𝑘 = 𝑘̄

Inserting the above re-scaled dependent and independent variables into the full unsteady continuity (1), Navier Stokes

(2)-(4) and energy equation (5) gives the following leading order equations in curvilinear coordinates (that we refer to as

the NCBRE):

V · ∇𝜌 + 𝜌∇ · V = 0 (8)
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𝜌V · ∇𝑢 = ∇𝑐 · (𝜇∇𝑐𝑢) (9)

𝜌V · ∇𝑣 + 𝐺𝜆𝑢
2
= −

𝜕𝑝

𝜕𝑦
+
𝜕

𝜕𝑦

[
2

3
𝜇

(
3
𝜕𝑣

𝜕𝑦
− ∇ · V

)]
+
𝜕

𝜕𝑥

(
𝜇
𝜕𝑢

𝜕𝑦

)
+
𝜕

𝜕𝑧

[
𝜇

(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

)]
(10)

𝜌V · ∇𝑤 = −
𝜕𝑝

𝜕𝑧
+
𝜕

𝜕𝑧

[
2

3
𝜇

(
3
𝜕𝑤

𝜕𝑧
− ∇ · V

)]
+
𝜕

𝜕𝑥

(
𝜇
𝜕𝑢

𝜕𝑧

)
+
𝜕

𝜕𝑦

[
𝜇

(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

)]
(11)

𝜌V · ∇𝑇 =
1

𝑃𝑟
∇𝑐 · (𝑘∇𝑐𝑇) + (𝛾 − 1)𝑀2

∞𝜇

[(
𝜕𝑢

𝜕𝑦

)2

+

(
𝜕𝑢

𝜕𝑧

)2
]

(12)

where V is the velocity vector and ∇𝑐 is the crossflow nabla operator:

V = 𝑢®𝑖 + 𝑣 ®𝑗 + 𝑤®𝑘; ∇𝑐 =
𝜕

𝜕𝑦
®𝑗 +

𝜕

𝜕𝑧
®𝑘, (13)

and the temporal and streamwise derivatives are absent because they remain O(1/𝑅𝜆) and are therefore asymptotically

small for the vortex flow in region III. The effect of the wall curvature is contained in the term involving the global

Görtler number, 𝐺𝜆 = O(1).

This set of equations is parabolic in the streamwise direction and elliptic in the spanwise direction. Appropriate

initial/upstream and boundary conditions are necessary to close the problem; these conditions will be the same as those

used by Ricco & Wu [44]. We solve the NCBRE using the numerical algorithm developed in Es-Sahli et al. [11].

III. Optimal control problem in the nonlinear regime

While it is common for an optimal flow control problem to be formulated in the framework of a dynamical system

(usually described by a set of equations that are parabolic in time), in the present case we replace the time direction

by the 𝑥-direction owing to the parabolic character of the NCBRE in the stream-wise direction, which necessitates

stream-wise marching to obtain a solution.

A. Generic optimal control formalism

To fix ideas, we first write equations (8)-(12) in the generic and more compact form

G(q) = 0, (14)

for brevity, with initial and boundary conditions

9



q(0, 𝑦, 𝑧) = q0 (𝑦, 𝑧) (15)

q(𝑥, 0, 𝑧) = 𝜙, lim
𝑦→∞

q(𝑥, 𝑦, 𝑧) = q𝐵 (𝑥, 𝑧), (16)

along the wall-normal direction, and periodic or symmetry boundary conditions in the span-wise direction, 𝑧. In

equation (14), G() is the NCBRE differential operator in abstract notation, q = (𝜌, 𝑢, 𝑣, 𝑤, 𝑇) is the vector of state

variables, 𝜙 is the control variable associated with the boundary conditions (e.g., the transpiration velocity at the wall,

𝑣𝑤 ), q0 (𝑦, 𝑧) represents the upstream or initial condition in 𝑥 = 0, and q𝐵 is a given function that specifies the boundary

condition at infinity. We define an objective (or cost) functional as

J (q, 𝜙) = E(q) + 𝜎
(
‖𝜙𝑥 ‖

𝛽2 + ‖𝜙‖𝛽2

)
, (17)

where E(q) is a specified target function to be minimized (e.g., the energy of the disturbance, or the wall shear stress; the

latter is considered in this study), the second term on the right hand side of (17) is a penalization term depending on the

norm of the control variable (usually, this quantity place a constraint on the magnitude of the admissible control variable,

since it cannot increase or decrease indefinitely), 𝜎 and 𝛽 are given constants, and subscript 𝑥 denotes derivative with

respect to 𝑥. The norm ‖‖ in equation (17) is now associated with an appropriate inner product of two complex functions,

𝑓 and 𝑔, defined as

〈 𝑓 , 𝑔〉 =

∫ 𝑋𝑡

0

𝑓 ∗𝑔𝑑𝑋 (18)

in the space [0, 𝑋𝑡 ], with 𝑋𝑡 being the terminal streamwise location (the star in (18) denotes complex conjugate).

A common approach to transform a (nonlinear) constrained optimization problem into an unconstrained problem is

by using the method of Lagrange multipliers (see, for example, Joslin et al. [24], Gunzburger [18], Zuccher et al. [65]).

To this end, we consider the Lagrangian

L(q, 𝜙, q𝑎) = J (q, 𝜙) − 〈G(q), q𝑎〉, (19)

where q𝑎 is the vector of Lagrange multipliers (𝜌𝑎, 𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑇𝑎), also known as the adjoint vector. In other words, the

Lagrange multipliers are introduced in order to transform the minimization of J (q, 𝜙) under the constraint G(q) = 0

into the unconstrained minimization of L(q, 𝜙, q𝑎). The unconstrained optimization problem can be formulated as:

Find the control variable 𝜙, the state variables q, and the adjoint variables q
𝑎 such that the Lagrangian L(q, 𝜙, q𝑎)

is a stationary function, that is

10



𝛿L =
𝜕L

𝜕q
𝛿q +

𝜕L

𝜕𝜙
𝛿𝜙 +

𝜕L

𝜕q𝑎
𝛿q𝑎

= 0 (20)

where

𝜕L

𝜕𝑎
𝛿𝑎 =

L(𝑎 + 𝜖𝛿𝑎) − L(𝑎)

𝜖
(21)

represents directional differentiation in the generic direction 𝛿𝑎. All directional derivatives in (20) must vanish, providing

different sets of equations:

• adjoint BRE equations are obtained by taking the derivative with respect to q,

𝜕L

𝜕q
= 0 ⇒ G𝑎 (q𝑎) = 0 (22)

• optimality conditions are obtained by taking the derivatives with respect to 𝜙,

𝜕L

𝜕𝜙
= 0 ⇒ O(q𝑎, q, 𝜙) = 0 (23)

• the original BRE equations are obtained by taking the derivative with respect to q𝑎,

𝜕L

𝜕q𝑎
= 0 ⇒ G(q, 𝜓) = 0. (24)

Equations (22)-(24) form the optimal control system that can be utilized to determine the optimal states and

the control variables. One can note that the stationarity of the Lagrangian with respect to the adjoint variables

q𝑎
= (𝜌𝑎, 𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑇𝑎) essentially yields the original state equations, while the stationarity with respect to the state

variables q = (𝜌, 𝑢, 𝑣, 𝑤, 𝑇) yields the adjoint equations that depend on the state variables. The relationship between the

state variables and the adjoint variables can be expressed by the following adjoint identity:

〈G(q), q𝑎〉 = 〈q,G𝑎 (q𝑎)〉 + B(𝜙) (25)

where the last term, B, represents a residual from the boundary conditions.

11



B. Adjoint nonlinear compressible boundary region equations (ACBRE)

In our particular case of a boundary layer flow over a flat or concave surface with wall transpiration, the ACBRE are

derived starting with the integral

L(𝜌, 𝑢, 𝑣, 𝑤, 𝑇, 𝑝, 𝜇, 𝑘, 𝑣𝑤 , 𝜌
𝑎, 𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑇𝑎, 𝑝𝑎, 𝜇𝑎, 𝑘𝑎, 𝑠)

=
𝜎

2

∫ 𝑋1

𝑋0

∫

Γ






𝜕𝑣𝑤

𝜕𝑋






2

+ ‖𝑣𝑤 ‖2𝑑Γ𝑑𝑋 −

∫ 𝑋0

0

∫

Γ

𝑠𝑣𝑑Γ𝑑𝑋 −

∫ 𝑋1

𝑋0

∫

Γ

𝑠 (𝑣 − 𝑣𝑤 ) 𝑑Γ𝑑𝑋 −

∫ 𝑋𝑡

𝑋1

∫

Γ

𝑠𝑣𝑑Γ𝑑𝑋

+
𝛼

2

∫ 𝑋𝑠1

𝑋𝑠0

∫

Γ

‖𝜏𝑤 − 𝜏0‖
2𝑑Γ𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝜌𝑎 (V · ∇𝜌 + 𝜌∇V) 𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝑢𝑎 [𝜌V.∇𝑢 − ∇𝑐 · (𝜇∇𝑐𝑢)] 𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝑣𝑎
{
𝜌V · ∇𝑣 + 𝐺Λ𝑢

2 +
𝜕𝑝

𝜕𝑦
−
𝜕

𝜕𝑦

[
2

3
𝜇

(
3
𝜕𝑣

𝜕𝑦
− ∇ · V

)]
−
𝜕

𝜕𝑥

(
𝜇
𝜕𝑢

𝜕𝑦

)
−
𝜕

𝜕𝑧

[
𝜇

(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

)]}
𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝑤𝑎

{
𝜌𝑽 · ∇𝑤 +

𝜕𝑝

𝜕𝑧
−
𝜕

𝜕𝑧

[
2

3
𝜇

(
3
𝜕𝑤

𝜕𝑧
− ∇ · V

)]
−
𝜕

𝜕𝑥

(
𝜇
𝜕𝑢

𝜕𝑧

)
−
𝜕

𝜕𝑦

[
𝜇

(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

)]}
𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝑇𝑎

{

𝜌V · ∇𝑇 −
1

𝑃𝑟
∇𝑐 · (𝑘∇𝑐𝑇) − (𝛾 − 1)𝑀2

∞𝜇

[(
𝜕𝑢

𝜕𝑦

)2

+

(
𝜕𝑢

𝜕𝑧

)2
]}

𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝑝𝑎
(
𝑝 −

𝜌𝑇

𝛾𝑀2
∞

𝑅2
𝑒𝜆

)
𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝜇𝑎 (𝜇 − 𝑇𝑏)𝑑Ω𝑑𝑋

−

∫ 𝑋𝑡

0

∫

Ω

𝑘𝑎 (𝑘 − 𝜇)𝑑Ω𝑑𝑋 (26)

In the above equations, the control is applied in specified intervals [𝑋0, 𝑋1] only. Ω is the cross-section domain

[0,∞] × [𝑧1, 𝑧2] ranging from the wall (𝑦 = 0) to infinity and from 𝑧1 to 𝑧2 in the spanwise direction, and Γ is the wall

boundary line for a given 𝑋 , 𝜏𝑤 is the wall shear stress, 𝜏0 is a target shear stress (equal to the value corresponding

to the Blasius solution), and [𝑋𝑠0, 𝑋𝑠1] is the interval where the cost function is defined. The last three integrals in

(26) are used to enforce the boundary condition on 𝑣, which includes the wall transpiration. If we take the directional

derivative of the Lagrangian with respect to 𝜌, the result is

∫ 𝑋𝑡

0

∫

Ω

𝜌𝑎 (V · ∇𝛿𝜌 + 𝛿𝜌∇ · V) + 𝛿𝜌V · (𝑢𝑎∇𝑢 + 𝑣𝑎∇𝑣 + 𝑤𝑎∇𝑤 + 𝑇𝑎∇𝑇) +
𝑇𝑅2

𝑒𝜆

𝛾𝑀2
∞

(
𝑣𝑎
𝜕𝛿𝜌

𝜕𝑦
+ 𝑤𝑎 𝜕𝛿𝜌

𝜕𝑧

)

𝛿𝜌𝑅2
𝑒𝜆

𝛾𝑀2
∞

(
𝑣𝑎
𝜕𝑇

𝜕𝑦
+ 𝑤𝑎 𝜕𝑇

𝜕𝑧

)
− 𝑝𝑎

𝛿𝜌𝑇

𝛾𝑀2
∞

𝑅2
𝑒𝜆𝑑Ω𝑑𝑋 = 0 (27)
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The first adjoint equation is obtained by working the integration by parts in [0, 𝑋𝑡 ] and in Ω. We assume arbitrary

variations of 𝛿𝜌 in [0, 𝑋𝑡 ] ×Ω and that 𝛿𝜌 |Γ = 0 (spanwise variation) and 𝛿𝜌 |𝑋𝑡

0
= 0 (streamwise variation).

V · (𝑢𝑎∇𝑢 + 𝑣𝑎∇𝑣 + 𝑤𝑎∇𝑤 + 𝑇𝑎∇𝑇) − 𝑝𝑎
𝑇𝑅2

𝑒𝜆

𝛾𝑀2
∞

− V · ∇𝜌𝑎 −
𝑅2
𝑒𝜆

𝛾𝑀2
∞

𝑇∇𝑐 · V𝑎
= 0 𝑜𝑛 [0, 𝑋𝑡 ] ×Ω (28)

where V𝑎
= 𝑢𝑎®𝑖 + 𝑣𝑎 ®𝑗 + 𝑤𝑎 ®𝑘 .

We obtain the ACBRE corresponding to the rest of the state variables in a similar fashion by taking the directional

derivative of the Lagrangian with respect 𝑢, 𝑣, 𝑤, and 𝑇 , respectively as

𝜌

(
V𝑎 ·

𝜕V

𝜕𝑥
+ 𝑇𝑎 𝜕𝑇

𝜕𝑥

)
+ 2𝐺Λ𝑢𝑣

𝑎 − 𝜌
𝜕𝜌𝑎

𝜕𝑥
− 𝜌V · ∇𝑢𝑎 − (𝜇∇𝑐 · (∇𝑐𝑢

𝑎) + ∇𝑐𝜇 · ∇𝑐𝑢
𝑎) +

2

3

𝜕𝜇

𝜕𝑥
(∇𝑐 · V𝑎)

−

(
1

3
𝜇∇𝑐 ·

𝜕V𝑎

𝜕𝑥
+ ∇𝑐𝜇 ·

𝜕V𝑎

𝜕𝑥

)
+ 2(𝛾 − 1) (𝑇𝑎𝜇∇𝑐 · ∇𝑐𝑢 + 𝜇∇𝑐𝑢 · ∇𝑐𝑇

𝑎 + 𝑇∇𝑐𝑢 · ∇𝑐𝜇) = 0 𝑜𝑛 [0, 𝑋𝑡 ] ×Ω

(29)

𝜌

(
V𝑎 ·

𝜕V

𝜕𝑦
+ 𝑇𝑎 𝜕𝑇

𝜕𝑦

)
− 𝜌

𝜕𝜌𝑎

𝜕𝑦
− 𝜌𝑽 · ∇𝑣𝑎 −

[
4

3

(
𝜕𝜇

𝜕𝑦

𝜕𝑣𝑎

𝜕𝑦
+ 𝜇

𝜕2𝑣𝑎

𝜕𝑦2

)
+
𝜕𝜇

𝜕𝑧

𝜕𝑣𝑎

𝜕𝑧
+ 𝜇

𝜕2𝑣𝑎

𝜕𝑧2
+

1

3
𝜇
𝜕2𝑤𝑎

𝜕𝑦𝜕𝑧

+
𝜕𝜇

𝜕𝑧

𝜕𝑤𝑎

𝜕𝑦

]

+
2

3

𝜕𝜇

𝜕𝑦

𝜕𝑤𝑎

𝜕𝑧
= 0 𝑜𝑛 [0, 𝑋𝑡 ] ×Ω (30)

𝜌

(
V𝑎 ·

𝜕V

𝜕𝑧
+ 𝑇𝑎 𝜕𝑇

𝜕𝑧

)
− 𝜌

𝜕𝜌𝑎

𝜕𝑧
− 𝜌𝑽 · ∇𝑤𝑎 −

[
4

3

(
𝜕𝜇

𝜕𝑧

𝜕𝑤𝑎

𝜕𝑧
+ 𝜇

𝜕2𝑤𝑎

𝜕𝑧2

)
+
𝜕𝜇

𝜕𝑦

𝜕𝑤𝑎

𝜕𝑦
+ 𝜇

𝜕2𝑤𝑎

𝜕𝑦2
+

1

3
𝜇
𝜕2𝑣𝑎

𝜕𝑦𝜕𝑧

+
𝜕𝜇

𝜕𝑦

𝜕𝑣𝑎

𝜕𝑧

]

+
2

3

𝜕𝜇

𝜕𝑧

𝜕𝑣𝑎

𝜕𝑦
= 0 𝑜𝑛 [0, 𝑋𝑡 ] ×Ω (31)

𝜌𝑽 · ∇𝑇𝑎 +
1

𝑃𝑟

(
∇𝑐𝑘 · ∇𝑐𝑇

𝑎 + 𝑘∇2
𝑐𝑇

𝑎
)
+ 𝑝𝑎

𝜌𝑅2
𝑒𝜆

𝛾𝑀2
∞

+ 𝜇𝑎𝑏𝑇𝑏−1
= 0 𝑜𝑛 [0, 𝑋𝑡 ] ×Ω (32)

The initial and boundary conditions associated with the ACBRE are

(𝜌𝑎, 𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑇𝑎) |𝑋=𝑋𝑡
= (0, 0, 0, 0, 0) 𝑖𝑛 Ω, (33)
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(𝑢𝑎, 𝑣𝑎, 𝑤𝑎) |Γ =





(𝛼(𝜏𝑤 − 𝜏0), 0, 0) 𝑓 𝑜𝑟 𝑋 ∈ [𝑋𝑠0, 𝑋𝑠1]

(0, 0, 0) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(34)

and

(𝜌𝑎, 𝑢𝑎, 𝑣𝑎, 𝑤𝑎, 𝑇𝑎) |𝑌→∞ = (0, 0, 0, 0) (35)

where 𝛼 is a constant pre-factor that controls the penalization of the wall shear stress. With the state variables

(𝜌, 𝑢, 𝑣, 𝑤, 𝑇) determined from equations (8)-(12), the ACBRE (28)-(32) are linear and parabolic, and can be solved via

a marching procedure in the backward direction, starting from the terminal streamwise location, 𝑋𝑡 , towards the initial

streamwise location 𝑋0. In the present study, the values of the constant factors 𝛼 and 𝜎 are set to 1 and 0.1, respectively.

The non time-dependent adjoint variables 𝑝𝑎, 𝜇𝑎, 𝑘𝑎 are determined in a similar fashion as

𝑝𝑎 = ∇𝑐 · V𝑎 (36)

𝑘𝑎 = −
1

𝑃𝑟
(∇𝑐𝑇

𝑎 · ∇𝑐𝑇) (37)

𝜇𝑎 = 𝑘𝑎 + 𝑇𝑎 (𝛾 − 1)𝑀2
∞

[(
𝜕𝑢

𝜕𝑦

)2

+

(
𝜕𝑢

𝜕𝑧

)2
]

−

[

∇𝑐𝑢
𝑎 · ∇𝑐𝑢 +

2

3

𝜕𝑣𝑎

𝜕𝑦

(
3
𝜕𝑣

𝜕𝑦
− ∇ · V

)
+

2

3

𝜕𝑤𝑎

𝜕𝑧

(
3
𝜕𝑤

𝜕𝑧
− ∇ · V

)

+ ∇𝑐𝑢 ·
𝜕𝑽𝑎

𝜕𝑥
+

(
𝜕𝑣𝑎

𝜕𝑧
+
𝜕𝑤𝑎

𝜕𝑦

) (
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

) ]

(38)

The control variables are updated using the optimality conditions given by

𝜎

(
𝑣𝑤 −

𝜕2𝑣𝑤

𝜕𝑥2

)
+ 𝑠 = 0 (39)

where 𝑠 is the Lagrange multiplier corresponding to the transpiration condition. It is obtained from the derivation of the

third adjoint equation (30) as result of the integration by parts

𝑠 = −𝜌𝑎𝜌 − 𝑣𝑎𝜌(𝑢 + 𝑣 + 𝑤) + 𝜇

(
4

3

𝜕𝑣𝑎

𝜕𝑦
+
𝜕𝑣𝑎

𝜕𝑧
−

2

3

𝜕𝑤𝑎

𝜕𝑧
+
𝜕𝑤𝑎

𝜕𝑦

)
(40)

The control algorithm starts with the solution to the NCBRE for the uncontrolled boundary layer, followed by the

solution to the ACBRE (note that the ACBRE depend on the solution to the NCBRE). The difference between the wall

shear stress and the original laminar wall shear stress is then compared to a desired value; if the difference is larger than

a given threshold then the steepest descent method is utilized to determine the new wall transpiration velocity 𝑣𝑤 . Once
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these are determined, the loop is repeated. In total, we apply 10 control iterations.

The adjoint equations (28)-(32) and the associated initial and boundary conditions (33)-(35) are solved numerically

on the same grid as the original NCBRE state equations (8)-(12), and utilizing the same numerical algorithm (as for the

NCBRE equations), except that the marching is preformed backwards, starting from the terminal streamwise location.

Thanks to the robust mathematical model of the NCBRE and the associated numerical algorithm investigated in our

previous work, Es-Sahli et al.[11], the overall computational cost of the control algorithm is reduced.

C. Flow domain and numerical simulation setup

The 3D flow domain including region III (starting at the initial streamwise location 𝑋0) extends 50 × 𝜆∗ in the

streamwise direction, 10 × 𝜆∗ in the wall-normal direction, and 1 × 𝜆∗ in the spanwise direction.

In terms of the numerical setup of the simulations, we use second and fourth-order finite-difference schemes to

discretize the spatial derivatives in the wall-normal and spanwise directions, respectively. We implement periodic

conditions in the spanwise direction to avoid compromising the stability and a staggered arrangement in the wall-normal

direction to avoid decoupling between the velocity and pressure (this in turn visually extends the domain to 2 × 𝜆∗ in the

spanwise direction, as seen in subsequent figures in the results section). We apply a first-order finite-difference marching

scheme in the streamwise direction and converge the set of equations using a nonlinear time relaxation method.

Appropriate initial/upstream and boundary conditions are necessary to close the problem. In this work, we trigger

the perturbations in the boundary layer using a small amplitude transpiration velocity (𝑣𝑡 ) at the wall, in the form;

𝑣𝑡 = 𝐴 sin

[
𝜋
(𝑥 − 𝑥𝑠)

(𝑥𝑒 − 𝑥𝑠)

]2

cos

(
𝜋
𝑧

𝜆

)
(41)

where 𝐴 is the amplitude, 𝑥𝑠 = 1.5𝜆∗ and 𝑥𝑒 = 4.5𝜆∗ are the start and end streamwise locations of the perturbation,

respectively. 𝑋0 (set to 0.8m from the leading edge of the boundary layer) denotes the initial streamwise location

where region III starts. We denote the streamwise location of the control starting point (measured from 𝑋0) where the

transpiration velocity control kicks off by 𝑋𝑐 . Figure 2 illustrates the different components of the domain and their

respective placement.

We numerically solve the NCBRE using an algorithm similar to the one employed by Sescu & Thompson [49] in the

incompressible regime. In the compressible regime, the continuity equation does not result in the usual divergence-free

condition, thus making the compressible set of equations numerically stiff. Instead, it is an equation for density.

Therefore, the same numerical algorithm is much faster when applied to the compressible regime. We impose vanishing

gradients for all dependent variables along the top boundary.

We generate the mean inflow condition from a similarity solution obtained using the Dorodnitsyn-Howarth coordinate

transformation 𝑌 (𝑥, 𝑦) =
∫ 𝑦

0
𝜌(𝑥, 𝑦̃)𝑑𝑦̃. We define the similarity variable as 𝜂 = 𝑌 (𝑅𝑒𝑥/2𝑥)

1/2 , where 𝑅𝑒𝑥 is the
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Reynolds number calculated based on the freestream velocity and the distance from the leading edge 𝑋0.

We express the base velocity and temperature as

𝑈 = 𝐹 ′(𝜂), 𝑉 = (2𝑥𝑅𝑒𝑥)
−1/2 (𝜂𝑐𝑇𝐹

′ − 𝑇𝐹), 𝑇 = 𝑇 (𝜂) (42)

where the prime superscript represents differentiation with respect to 𝜂, and 𝜂𝑐 = 1/𝑇
∫ 𝜂

0
𝑇 (𝜂)𝑑𝜂. 𝐹 and 𝑇 satisfy the

following coupled equations

( 𝜇
𝑇
𝐹 ′′

) ′
+ 𝐹𝐹 ′′

= 0,

1

𝑃𝑟

( 𝜇
𝑇
𝑇 ′
) ′
+ 𝐹𝑇 ′ + (𝛾 − 1)𝑀2 𝜇

𝑇
𝐹 ′′2

= 0, (43)

subject to the boundary conditions 𝐹 (0) = 𝐹 ′(0) = 0, 𝑇 ′(0) = 0, 𝐹 ′ → 1, 𝑇 → 1 → 𝑎𝑠 𝜂 → ∞. Equations

(43) were solved numerically to determine 𝐹 and 𝑇 , which were then used in equations (42) to obtain the mean inflow

condition.

Fig. 2 3D flow domain

IV. Results

We present the numerical simulation results of the boundary layer optimal control approach. We assess the efficiency

of the control approach across different flow conditions, including two high-supersonic cases (𝑀∞ = 3 and 𝑀∞ = 4)

and two hypersonic cases (𝑀∞ = 5 and 𝑀∞ = 6), by examining two main criterion; the spanwise averaged wall shear

stress and the vortex kinetic energy. Since we are using wall transpiration to control the flow, the cumulative blowing

or suction at the wall is employed such that a zero mass flow rate is maintained to avoid injecting or absorbing mass

into/from the flow.
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We evaluate the spanwise averaged wall shear stress using the integral

𝜏𝑤 (𝑥) =
1

(𝑧2 − 𝑧1)

𝑧2∫

𝑧1

𝜕𝑢

𝜕𝑦

����
𝑦=0

(𝑥, 0, 𝑧)𝑑𝑧 (44)

While we calculate the vortex kinetic energy distribution according to the characteristic length 𝐿 as

𝐸 (𝑥) =

𝑧2∫

𝑧1

∞∫

−∞

|𝑢(𝑥, 𝑦, 𝑧) − 𝑢𝑚 (𝑥, 𝑦) |
2 + |𝑣(𝑥, 𝑦, 𝑧) − 𝑣𝑚 (𝑥, 𝑦) |

2 (45)

+ |𝑤(𝑥, 𝑦, 𝑧) − 𝑤𝑚 (𝑥, 𝑦) |
2 𝑑𝑧𝑑𝑦

where 𝑢𝑚 (𝑥, 𝑦), 𝑣𝑚 (𝑥, 𝑦), and 𝑤𝑚 (𝑥, 𝑦) are the spanwise mean components of velocity, and 𝑧1 and 𝑧2 are the coordinates

of the boundaries in the spanwise direction.

We test three different 𝑋𝑐 locations to determine the optimal streamwise location to apply the transpiration velocity

control; 𝑋𝑐1
= 4𝜆∗, 𝑋𝑐2

= 8𝜆∗, and 𝑋𝑐3
= 12𝜆∗. In figures 3 and 4, we compare the wall shear stress and vortex energy

of the uncontrolled flow with that of the last (10𝑡ℎ) control iteration of each 𝑋𝑐 for all considered Mach numbers. We

notice that as we move the control streamwise location starting point farther from 𝑋0 (as 𝑋𝑐 increases), the control

approach effect on the wall shear stress and vortex kinetic energy weakens due to the shrinkage of the control surface.

Therefore, for all Mach numbers, starting the control mechanism at 𝑋𝑐1
results in the highest reduction in the wall shear

stress and the vortex kinetic energy of the centrifugal instabilities. We quantitatively assess the drop in the wall shear

stress 𝜏𝑤 and vortex kinetic energy 𝐸 due to the control method by calculating the decrease percentage at the terminal

streamwise location (𝑋𝑡 ) of the 10𝑡ℎ control iteration with respect to the uncontrolled boundary layer flow parameters

(considering the Blasius solution as a base reference) as

𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒(%) =

����
𝑎(𝑥𝑚𝑎𝑥) − 𝑎𝑢 (𝑥𝑚𝑎𝑥)

𝑎𝑢 (𝑥𝑚𝑎𝑥) − 𝑎𝑏 (𝑥𝑚𝑎𝑥)

���� × 100

where 𝑎 is a generic variable representing 𝜏𝑤 or 𝐸 , and the subscripts 𝑢 and 𝑏 denote the uncontrolled flow and Blasius

solution parameters. Results are summarized in table 1.

The reduction in the wall shear stress directly translates to a decrease in the boundary layer skin friction. While the

reduction in the kinetic energy of the flow delays the occurrence of the secondary instabilities leading to transition,

consequently elongating the laminar region of the boundary layer. Ultimately, this results in a more stable and attached

boundary layer.

The present findings indicate that a larger control surface results in a larger drop in the wall shear stress and the

vortex kinetic energy of the Görtler vortices. On the other hand, increasing the control surface adversely affects the
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Table 1 Percentage drop in wall shear stress and vortex kinetic energy due to the control approach at the

control locations 𝑋𝑐1
, 𝑋𝑐2

, and 𝑋𝑐3
for all considered Mach numbers.

Wall shear stress 𝜏𝑤 Vortex energy 𝐸

Mach number 𝑋𝑐1
𝑋𝑐2

𝑋𝑐3
𝑋𝑐1

𝑋𝑐2
𝑋𝑐3

𝑀∞ = 3 47.7 45.28 36.46 72.31 68.61 58.65

𝑀∞ = 4 36.64 33.41 29.77 72.38 69.52 63.98

𝑀∞ = 5 29.56 25.80 20.27 73.27 71.24 60.42

𝑀∞ = 6 28.51 22.90 18.94 83.27 76.88 74.30

computational efficiency of the method as the simulation becomes more computationally expensive, although the

increase in the computational cost is relatively insignificant.

Although the control streamwise locations 𝑋𝑐2
and 𝑋𝑐3

also cause a significant decrease in the wall shear stress and

vortex kinetic energy compared to the uncontrolled case, for what follows, we exclusively show results for the 𝑋𝑐1
case.

Next, we consider the effect of increasing the optimal control iterations on the wall shear stress and the vortex kinetic

energy, as shown in figures 5 and 6. As priorly mentioned, we apply a total of ten control iterations. However, we reduce

the number of curves and only plot six of the control iterations and the uncontrolled flow case to avoid clustered figures.

As expected, more control iterations lower the wall shear stress and vortex kinetic energy of the boundary layer flow.

We also observe the number of iterations required to achieve a maximum decrease in the shear stress and vortex kinetic

energy scales with the Mach number. For instance, for the two high-supersonic cases, the method achieves maximum

reduction after six iterations (figures 5 and 6 a and b). On the other hand, the method requires ten iterations for the two

hypersonic cases (figures 5 and 6 c and d).

The streamwise velocity contours in figure 7 visually show the effect of the control approach on the centrifugal

instabilities of the boundary layer. In the case of the uncontrolled flow (first contour from the top), the Görtler vortices

correspond to fully developed mushroom-like structures with alternating low and high-speed streaks in the spanwise

direction. As we apply more control iterations, the shape of the instabilities, especially in the region closest to the wall,

considerably changes. Developed instability structures gradually flatten as the number of control iterations increases

due to the drop in the wall shear stress and vortex energy levels in the boundary layer, as discussed above.

Contour plots in figure 8 show the streamwise velocity distribution in the ZX-plane for the uncontrolled (top contour)

flow and the 10𝑡ℎ control iteration (bottom contour). We can see the alternating high- and low-speed streaks for the

uncontrolled flow case. However, the contours of the controlled flow show a more uniform spanwise distribution of the

streamwise velocity, indicating the disappearance of the streamwise oriented vortical structures. Figure 9 illustrates

streamwise contour plots of the transpiration velocity, 𝑣𝑤 . The contours show how the distribution and intensity of the

control velocity vary with control iterations.

18



(a) (b)

(c) (d)

Fig. 3 Effect of the optimal control starting point on the wall shear stress for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏),
𝑀∞ = 5 (𝑐), and 𝑀∞ = 6 (𝑑)

(a) (b)

(c) (d)

Fig. 4 Effect of the optimal control starting point on the vortex energy for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏), 𝑀∞ = 5 (𝑐),
and 𝑀∞ = 6 (𝑑)
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(a) (b)

(c) (d)

Fig. 5 Effect of increasing optimal control iterations on the wall shear stress for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏),
𝑀∞ = 5 (𝑐), and 𝑀∞ = 6 (𝑑)

(a) (b)

(c) (d)

Fig. 6 Effect of increasing optimal control iterations on the vortex energy for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏),
𝑀∞ = 5 (𝑐), and 𝑀∞ = 6 (𝑑)
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(a) (b) (c) (d)

Fig. 7 Streamwise velocity contours in the YZ-plane for the uncontrolled flow (top), 3𝑟𝑑 control iteration

(middle), and 10𝑡ℎ control iteration (bottom) for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏), 𝑀∞ = 5 (𝑐), and 𝑀∞ = 6 (𝑑)
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(a) (b)

(c) (d)

Fig. 8 Streamwise velocity contours in the ZX-plane for the uncontrolled flow (top) and 10𝑡ℎ control iteration

(bottom) for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏), 𝑀∞ = 5 (𝑐), and 𝑀∞ = 6 (𝑑)
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(a) (b)

(c) (d)

Fig. 9 Transpiration velocity contours in the ZX-plane for the 1𝑠𝑡 control iteration (top) and 10𝑡ℎ control

iteration (bottom) for 𝑀∞ = 3 (𝑎), 𝑀∞ = 4 (𝑏), 𝑀∞ = 5 (𝑐), and 𝑀∞ = 6 (𝑑)

V. Conclusion

In this paper we conducted an optimal control study by formulating a novel algorithm that is capable of suppressing

the growth of the centrifugal instabilities (i.e. Gortler vortices) developing in a compressible boundary layer flow

over a curved surface. The method involved using the numerical solution to the nonlinear compressible boundary

region equations (NCBRE), that are a parabolized form of the Navier-Stokes equations, and Lagrange multipliers within

an optimal control varational problem. We implemented the control mechanism of the boundary layer flow using

transpiration velocity (blowing and suction) applied at the wall in the wall-normal direction as control variables. The

wall shear stress was used as the so-called ’cost-functional’ for the optimal control algorithm.

We applied the control strategy at different streamwise locations to determine the subsequent optimal streamwise

location that yields the highest reduction in the wall shear stress and vortex kinetic energy. As shown in figures 3 and 4,

our results demonstrate that the closer one moves the control point (𝑋𝑐) toward the offset point in region III (𝑋0), the

higher the decrease in the wall shear stress, and commensurately the vortex kinetic energy because of the increase in the

control surface area.

Figures 5 and 6 showed that the optimal control approach induces a significant reduction in wall shear stress and
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vortex kinetic energy as a result of the blowing or suction associated with the transpiration velocity control variable. We

report 12.09%, 11.61%, 10.56%, and 11.02% reduction in the wall shear stress and 72.31%, 72.38%, 73.27%, and

83.27% drop in the vortex kinetic energy for respectively for the 𝑀∞ = 3, 𝑀∞ = 4, 𝑀∞ = 5, and 𝑀∞ = 6 cases when

applying the control method at 𝑋𝑐1
and comparing the 10𝑡ℎ control iteration to the uncontrolled flow case. We have

noticed that the method requires more control iterations to achieve maximum reduction as the Mach number increases.

For instance, the two high-supersonic cases (𝑀∞ = 3 and 𝑀∞ = 4) required six control iterations, whereas the two

hypersonic ones (𝑀∞ = 5 and 𝑀∞ = 5) required ten. The reduction in the wall shear stress directly translates to a

decrease in the boundary layer skin friction. While the reduction in the kinetic energy of the flow delays the occurrence

of the secondary instabilities leading to transition, consequently elongating the laminar region of the boundary layer.

Ultimately, this results in a more stable and attached boundary layer.

The crossflow contours of the streamwise primary instability in figure 7 visually captured the effect of the control

approach on the centrifugal instabilities of the boundary layer. The control iterations gradually flatten out the flow

instabilities (especially near the wall). This finding goes hand in hand with the drop in the kinetic energy and wall shear

stress levels in the boundary layer. Consistent with these results, contour plots in figure 8 demonstrated how the optimal

control approach results in a more uniform streamwise velocity distribution parallel to the wall as opposed to the high

and low speed streaks of the uncontrolled flow case.

To conclude, the results presented in this paper demonstrate that the optimal control algorithm based on the ACBRE

(adjoint compressible boundary region equations) suppresses the growth rate of the streamwise vortex system of high

supersonic and hypersonic boundary layer flows.
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