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Abstract
Computational spectroscopy has emerged as a critical tool for researchers looking to achieve both
qualitative and quantitative interpretations of experimental spectra. Over the past decade,
increased interactions between experiment and theory have created a positive feedback loop that
has stimulated developments in both domains. In particular, the increased accuracy of calculations
has led to them becoming an indispensable tool for the analysis of spectroscopies across the
electromagnetic spectrum. This progress is especially well demonstrated for short-wavelength
techniques, e.g. core-hole (x-ray) spectroscopies, whose prevalence has increased following the
advent of modern x-ray facilities including third-generation synchrotrons and x-ray free-electron
lasers. While calculations based on well-established wavefunction or density-functional methods
continue to dominate the greater part of spectral analyses in the literature, emerging developments
in machine-learning algorithms are beginning to open up new opportunities to complement these
traditional techniques with fast, accurate, and affordable ‘black-box’ approaches. This Topical
Review recounts recent progress in data-driven/machine-learning approaches for computational
x-ray spectroscopy. We discuss the achievements and limitations of the presently-available
approaches and review the potential that these techniques have to expand the scope and reach of
computational and experimental x-ray spectroscopic studies.

1. Introduction

Spectroscopy is an indispensable and ubiquitous tool for the investigation of the electronic, magnetic, and
geometric structures of molecules and materials. Rapid developments in instrumentation and experimental
techniques, (including improvements in spatiotemporal resolution, in particular) [1–4] alongside the
development of increasingly sophisticated analysis based upon detailed theory (i.e. computational
spectroscopy) [5, 6] have had a marked impact on a broad range of research fields across the natural sciences
and beyond.

Propelled by continuous improvements in hardware, software, and infrastructure, computational
spectroscopy has become an indispensable tool for the modern spectroscopist that is capable of providing
predictions—and, consequently, interpretations—of experimental spectroscopic observables across the
electromagnetic spectrum. The predictive power of computational spectroscopy is perhaps best showcased
within x-ray spectroscopy [7–10] where the transformative effects of next-generation light sources [11, 12]
are pushing the limits of the technique, facilitating new insights into the structure and dynamics of molecules
and materials as well as opening up new possibilities across a wide range of research fields [13–22]. The
remarkable progress in x-ray spectroscopy continues to stimulate concomitant progress in theoretical
techniques to ensure that data can be accurately and affordably analysed, setting up one of the most effective
experiment-theory feedback loops [23].

© 2024 The Author(s). Published by IOP Publishing Ltd
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The surging popularity of x-ray spectroscopy makes it crucial that a broad range of computational
techniques are available to support the analysis of the experimental data recorded. Towards this goal, there
has been rapid progress in first-principles computational chemical strategies based upon both wavefunction
[24–30] and density-functional (DFT) [31, 32] methods. An increased understanding of the mechanisms
responsible for the form of the experimental observables (e.g. the factors governing x-ray spectral lineshape)
alongside the increased availability of data (e.g. from our ability to perform more numerous and more
sophisticated computational calculations) has opened up new opportunities to develop data-driven/
machine-learning approaches to complement the traditional techniques within computational spectroscopy
[33]. Machine-learning models have the potential to rapidly and precisely predict properties and observables,
often with very sparse external input. Consequently, they have begun to find extensive application across
various fields, including materials, catalyst, and drug design [34–37], chemical reaction forecasting [38], and
atomistic modelling [39–42].

In this Topical Review, we describe and illustrate recent progress in data-driven approaches for x-ray
spectroscopy, outlining the present achievements and limitations as well as the scope for these techniques.
We initially begin with a background to x-ray spectroscopy, describing the important aspects of the theory
which any machine learning (ML) model will need to capture. This is followed by a review of the recent
progress in all aspects of the ML models developed to date for x-ray spectroscopy, and an outline of
opportunities and areas for future work. Our review focuses upon the potential of machine-learning for
x-ray spectroscopy, but the core principles and challenges described herein are transferable to many other
types of spectroscopy. In addition, it is hoped that this Article will provide a guide for researchers new to ML
in their development of an understanding of the advantages and limitations of the methods available: to
support this, example problems and datasets are made available at [43–45].

2. Background to x-ray spectroscopy

X-ray spectroscopy offers valuable insights into the composition, structural characteristics, and electronic
properties of matter. The most widely-used techniques in this domain are x-ray photoelectron spectroscopy
(XPS), x-ray absorption spectroscopy (XAS), and x-ray emission spectroscopy (XES); these are illustrated
schematically in figure 1. While XAS and XES are bulk-sensitive techniques, XPS interrogates the electronic
structure of a material at (or near to) the surface.

X-ray spectroscopy involves the measurement of the interaction of x-ray radiation with matter. The
cross-section associated with this interaction generally diminishes with increasing energy but displays clear,
discrete steps at specific energies—absorption edges—that correspond to the ionisation thresholds of the
core electrons in different (low-lying) orbitals.

XPS measures the kinetic energy of (photo)electrons ejected subsequent to the interaction of a material
with x-ray radiation at an energy greater than the ionisation threshold (i.e. with energy sufficient to liberate a
(photo)electron; figure 1(a)). The (photo)electron carries the crucial information in the XPS experiment,
and its short inelastic mean free path limits the sensitivity of XPS to the surface only; electrons located at
greater depth in the material under study are unable to escape the bulk, even if they have been ionised on
interaction with the x-ray radiation. The XPS experiment hence provides element-specific information about
the chemical state, the electronic structure, and the density of electronic states in the material.

XAS measures the absorption of x-ray radiation—a process by which high-energy, core-hole-excited
states are created and through which it is possible to probe the unoccupied electronic states of the material
(figure 1(b)). On the lower-energy (pre-edge) front of the absorption edge, the XAS spectrum is shaped by
the electronic structure of the unoccupied valence orbitals of the material under study and by the oxidation
state of the absorbing atom. Resonances at slightly higher energies (<50 eV) in the x-ray absorption
near-edge structure (XANES) region of the XAS spectrum contain information about the three-dimensional
(geometric) structure around the absorbing atom(s). Resonances at even higher energies (>50 eV) above the
absorption edge comprise the extended x-ray absorption fine structure (EXAFS) region of the XAS spectrum
which, due to the shorter wavelength of the excited (photo)electrons, contains highly-local information
about the coordination number(s) of the absorbing atom(s) and the coordination distances between this
atom and its immediate (bonded) neighbours.

XES, by contrast, probes the occupied states of the material through measurement of x-ray radiation
emitted when the core-hole state collapses and the core-hole is filled by electrons from the occupied states
(figure 1(c)). XES spectra typically exhibit sensitivity to the charge and spin state(s) of the absorbing atom.
In the case of Valence-to-core XES (VtC-XES) [46], through the information that the technique provides on
the character of the highest-energy occupied (valence) electron orbitals involved in the Valence-to-
Core-filling transition, the nature of the bonding between the absorbing atom and its coordinated
neighbours is also unveiled.
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Figure 1. Schematic energy level diagrams of core-hole spectroscopies discussed herein: (a) x-ray photoelectron spectroscopy
(XPS), (b) x-ray absorption spectroscopy (XAS), and (c) (non-resonant) x-ray emission spectroscopy (XES).

Figure 2. Examples of (a) Fe K-, (b) Pt L3-, and (c) S K-edge XAS spectra. (a) is the Fe K-edge XAS spectrum of [Fe(bpy)3]2+; (b)
is the Pt L3-edge XAS spectrum of [Pt2(P2O5H2)4]4−; and (c) is the S K-edge XAS spectrum of C4H4S. The XAS spectra were
obtained via digitisation from (a) [47], (b) [48] and (c) [49].

The precise information encoded in a given x-ray spectrum is dependent on the element and the
absorption edge that the spectrum was measured for. This is illustrated in figure 2, which shows examples of
Fe K-, Pt L3- and S K-edge XAS spectra. The most dominant features in transition metal K-edge XAS spectra
represent structural (e.g. geometric) information, with the strongest spectral features appearing at—or
slightly above—the absorption edge (e.g.>7125 eV in figure 2(a). XAS spectral features corresponding to
transitions from core orbitals into low-lying unoccupied valence states appear in the pre-edge of the XAS
spectrum and correspond to dipole-forbidden (3d← 1s) transitions; these transitions consequently provide
limited insight into the electronic configuration of the absorbing atom because they typically manifest
spectral features that are both broad and weak [e.g. the feature(s)<7120 eV in figure 2(a)]. In contrast, both
the Pt L3- (figure 2(b)) and S K-edge (figure 2(c)) XAS spectra show strong spectral features at the rising
absorption edge; these spectral features correspond to dipole-allowed 5d← 2p (at the Pt L3-edge) and
3p← 1s (at the S K-edge) transitions, and probe effectively the electronic structure of the unoccupied
valence states. At energies above these electronic transitions, the yet-higher-energy XAS spectral features
correspond to transitions into diffuse, delocalised continuum states above the ionisation threshold
which—like the above-ionisation XAS spectral features in the Fe K-edge (figure 2(a)) XAS spectrum—also
encapsulate structural information.

Simulating XPS requires the calculation of core electron binding energies. This can be carried out
straightforwardly via, e.g. a two-step∆-self-consistent-field (∆SCF) [50–53] approach which, practically,
requires calculating the energy of the electronic ground state and the energy of the core-hole-excited state so
that the difference (the eponymous∆) can be obtained. The accuracy of a∆SCF calculation is determined
consequently and principally by the description of core orbitals and their response after removal of an
electron; this is influenced by factors such as, e.g. the inclusion of (scalar) relativisitic effects, and the choice
of basis set. Simulating XES is—in principle, at least—less straightforward as it is a second-order
spectroscopy (i.e. it measures the x-ray radiation emitted when an electron fills a core hole created by the

3
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Figure 3. (a) Pictorial representation of single and multiple scattering pathways of an outgoing (photo)electron wave (grey) as it
interacts with neighbouring atoms. (b) A ‘shell-by-shell’ theoretical simulation of the Fe K-edge XAS spectrum of
tris(bipyridine)iron(II), [Fe(bpy)3]2+ (inset), using a radius of 2 (black), 4 (blue), and 6 Å (grey) around the Fe absorption site.

excitation of a core electron into the continuum). An additional consideration over and beyond, e.g. the
∆SCF approach is that the electron orbitals of the intermediate core-hole state from which emission takes
place will undergo relaxation relative to the initial (e.g. ground electronic) state from which absorption takes
place as the former experience a greater nuclear charge. Although this influences the absolute energies of
emission, the effect on the XES spectral lineshapes is not so great at all and can often be neglected to good
approximation [54]. With this approximation put into practice, it is possible to simulate XES spectra using a
one-electron approach which requires only the energy differences and transition strengths between electron
orbitals to be calculated [55]. While effective in some cases, especially for VtC-XES, XES spectra calculated
using a one-electron approach cannot model multi-electron phenomena, e.g. multiplet effects, that influence
XES spectral lineshape [56–58]. Towards this objective, there has been a significant quantity of work aimed at
developing semi-empirical [59–62] and first-principles [63–68] computational spectroscopic strategies for
incorporating multiplet effects on XES (and XAS) spectral lineshapes.

The simulation of XAS presents a particular problem: that of treating accurately the final
(electronically-excited core-hole) state. The diffuse, delocalised continuum states above the ionisation
threshold are challenging to incorporate properly within computational simulations of XAS spectroscopy
[69]. Simulation of higher-energy windows in the XAS spectrum, e.g. in the EXAFS domain, is typically
carried out using the EXAFS equation [69] in which the scattering χ(k) is expressed as:

χ(k) =
∑

γ

NγS20Fγ (k,R)

kR2
γ

e−2Rγ/λ(k)e−2σ2k2 sin(2kRγ +ϕγ) . (1)

where γ is the scattering path index with degeneracy Nγ ; Fγ(k,R) is the backscattering amplitude; Rγ is the
‘half-path’ distance [i.e. half the length of the round-trip of the electron from the absorber to the
neighbouring atom(s) and back]; σ2 is the squared Debye-Waller factor; λ(k) is the energy-dependent mean
free path; and S20 is an amplitude reduction factor which accounts for many-body effects. Usually, the first
step towards obtaining a quantitative description of the structure is achieved using either a Fourier [70, 71]
or wavelet [72–75] transform of the (experimentally-acquired) EXAFS signal, yielding a pseudo-radial
distribution. The low computational cost of calculations using equation (1) (which can typically be
completed in a matter of seconds) is such that accurate first-principles computational spectroscopic
simulations and analyses of EXAFS data are common in the literature. Consequently, there has been little to
no obvious motivation for developing ML models to simulate EXAFS spectra. However, there are plenty of
examples of ML models having been applied to analyse automatically EXAFS spectra, [76, 77], assist EXAFS
fitting, [78] and invert EXAFS spectra to obtain directly structural parameters of interest [79–82].

Simulation of the lower-energy windows in the XAS spectrum, e.g. close to the absorption edge in the
XANES region, is commonly carried out under Multiple Scattering (MS) theory (represented pictorially in
figure 3(a)). Under MS theory, Fermi’s Golden Rule is re-expressed using Green’s functions [83–85]:

µ(E)∼− 1

π
ℑ
∑

i

|⟨i |ϵ · rG(r,r ′;E)ϵ · r ′|i⟩| (2)
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Figure 4. Backscattering amplitude, F, as a function of the momentum of the (photo)electron, k, for single (a) and multiple (b)
scattering pathways.

where G(r,r ′,E) is the energy-dependent Green’s function propagator with amplitude moving from r to r ′.
This approach is computationally efficient as it condenses the sum over the final states into a Green’s
function propagator which is expressed effectively as a MS path expansion [86]:

G= G0 +G0tG0 +G0tG0tG0 + · · · (3)

G0 describes the propagation of the (photo)electron wave between two atomic sites, and t describes how
the wave scatters from a neighbouring atom. Consequently, the first term in equation (3) (G0) accounts for
the atomic-like background (i.e. the XAS spectrum of the isolated atom) while the subsequent terms (G0tG0,
G0tG0tG0, etc) account for the fine structure of the oscillations in the XAS spectra that arise from the
interaction of the (photo)electron wave with neighbouring atoms. Each term is expanded to an increasing
order, i.e. the term (G0tG0) describes all single-scattering events (i.e. scattering events involving a single
neighbouring atom), the term (G0tG0tG0) includes MS processes involving two neighbouring atoms, and so
on.

MS theory is applicable both above and below the ionisation threshold, although the theory is formulated
in terms of electron scattering, since the scattering order of the expansion simply reflects how much the final
state deviates from that of an isolated atom [69]. In addition, the representation of continuum states in terms
of MS pathways facilitates the intuitive interpretation of spectral features using a ‘shell-by-shell’ analysis [87,
88]. In such an analysis, a series of theoretical simulations are carried out in which the cutoff radius around
the absorption site (and, by extension, the number of neighbouring atoms taken into account) is successively
expanded (an example is given in figure 3(b). Beyond providing an insight into the origin of spectral features
in an XAS spectrum, the ‘shell-by-shell’ analysis also provides a potential approach to assess the performance
of, and feature importance in, an ML model; this is discussed in greater detail later in this Topical Review.

Finally, as shown in equation (3), it is important to understand how the photoelectron scatters from a
particular atom, which can be characterised by the backscattering amplitude. The outgoing photoelectron
wave is scattered principally by the bound electrons of the neighbouring atoms and the scattering is
consequently enhanced under resonant conditions (i.e. where the electron orbital energy is equal to the
energy of the photoelectron). This makes backscattering amplitude an element-specific quantity that is
proportional to both the momentum of the photoelectron, k, and the distance between the two atoms, rIJ .
The former relationship is illustrated in figure 4(a) which shows the backscattering amplitude, F, as a
function of the momentum of the photoelectron, k, for four pairs of atoms: Fe–Fe, Fe–S, Fe–N, and Fe–C.
Figure 4(a) shows three distinct maxima in F as a function of k for Fe–N and Fe–C that are attributable to
scattering from electrons in the 2p (ca. 3 Å−1), 2 s (ca. 4 Å−1), and 1 s (ca. 11 Å−1) electron orbitals. For Fe–S,
a larger backscattered amplitude is observed with additional features which are attributable to scattering
from electrons in the 3 s (ca. 5.5 Å−1) and 3p (ca. 3.5 Å−1) electron orbitals observed. Fe–Fe presents an
additional feature corresponding to scattering from electrons in the 3d (ca. 5 Å−1) electron orbital. Typically,
the importance of a scattering pathway decreases with its increasing order (where order corresponds to the
number of scattering events). However, as shown in figure 4(b): an enhanced backscattering amplitude is
observed at second-order for a linear bond, e.g. Fe–C–N geometry [89]. In such a scenario, the lineshape of F
as a function of k remains consistent, yet the magnitude of F is increased due to the focusing effect [90].
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3. Representing x-ray absorption sites and spectra inMLmodels

A key element in the development of any high-performing ML model is the implementation of an optimal
representation of the data—that is, one which is at once compact, pertinent and comprehensive. Indeed, the
choice of representation is often critical in enabling the model to develop effectual and cogent interpretations
of the relationship between input and output data. In this section we discuss, and supply examples to
illustrate the importance of, structural and spectral representations used in ML for x-ray spectroscopy.

3.1. Representing x-ray absorption sites (featurisation)
An ML model that operates on atomic structures must map each atomistic system, i.e. the atomic identities
and their Cartesian (x, y, z) coordinates, onto some sort of suitable (typically lower-dimensional)
representation, or ‘feature vector’, through featurisation [91]. A (supervised) ML model might then learn the
mapping between the feature vector(s) and the target property (e.g. a structure→ spectrummapping). X-ray
spectroscopy is a local spectroscopic technique in that it is sensitive to the local atomic environment around
the absorption site, and so an ML model should carry out featurisation subject to the constraints that the
feature vector is:

• local, such that it does not encode the entire molecular structure—rather, it encodes the immediate molecu-
lar structure at an arbitrary point up to a maximum (radial) cutoff distance, usually up to ca. 6 AA;
• invariant to transformations that do not alter the target property, e.g. translations and rotations of the three-
dimensional structure within Cartesian coordinate space, or permutations of the atomic indexing scheme;
• unique, such that it should vary when the target property varies;
• general, such that it can be applied to any atomistic system;
• efficient, such that it should not take a long time to construct or parse programmatically.

There exist several representations for which these criteria are (at least largely) fulfilled [91]. The criteria of
locality, invariance, and efficiency are the least challenging to fulfil; generality (across the periodic table) is
less frequently fulfilled and often trades off against efficiency.

3.1.1. RDC
The radial distribution curve [RDC; also known as the pair distribution function (PDF)] is a simple local
descriptor that encodes the space around an x-ray absorption site via dimensionality reduction of the
three-dimensional space to a histogram of atomic densities, fRDC, as a function of the radial distance, r. fRDC
is defined as:

fRDC =
n

∑

i

n
∑

j>i

ZiZjexp
−α(rij−r)

2

(4)

where Z is nuclear charge and rij is the Euclidean distance between atoms i and j. fRDC is defined over an
auxiliary real-space grid, r, and smoothed using Gaussian-type functions with full-width half-maxima
(FWHM) moderated by the parameter α. The RDC fulfils the criteria of locality; invariance with respect to
atomic indexing, translation, and rotation; generality; and is computationally efficient to construct and parse
programmatically. It is also straightforward to extend the canonical RDC so as to construct a
property-weighted RDC by changing Z for an alternative atomic property, e.g. the electron affinity, [93, 94]
among other possibilities. A limitation of the RDC is that it only contains two-body terms (i.e. between the
x-ray absorption site and all atoms) which are insufficient alone to characterise completely the
three-dimensional molecular geometry, and—consequently—it does not fulfil the criterion of uniqueness.
The RDC is compared against alternative featurisation approaches in table 1, and it displays comparatively
poor performance.

3.1.2. wACSF
Higher-order terms that are not included in the RDC but that are nonetheless necessary to characterise
completely the three-dimensional molecular geometry (e.g. those that describe three- and four-body
relationships) can be incorporated into a feature vector of weighted atom-centered symmetry functions
(wACSF). wACSF are an extension of the ACSF of Behler [95, 96] and are designed to lend the ACSF
descriptor to molecular systems that contain any arbitrary number of different types of atoms. Indeed, the
limitation of the canonical ACSF descriptor (as with the SOAP and LMBTR descriptors) is that the feature
vector is stratified by atom type (i.e. chemical element). While this guarentees that the ACSF feature vector
fulfils the criterion of invariance with respect to permutation of the atomic indices, it also means that the size

6
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Table 1. Performance at the Fe K-edge using the structure→ spectrum XANESNET MLP network and different approaches to
featurisation. Performance was assessed according to the median percentage error between predicted and target XAS spectra for 250
held-out structure/spectrum pairs. The interquartile range associated with the percentage error is given in brackets. The held-out
structure-spectrum pairs are the same as those used in [92] and were selected via random partitioning of the full dataset. XAS spectra
were represented on a discretised energy grid. All input files, XANESNET MLP network details, and associated datasets are publicly
available at [45].

Structural rep. Input length Network weights Performance/%

RDC 121 441 058 14.8 (8.4)
wACSF 97 428 770 4.4 (3.6)
2MSR 38 398 562 4.7 (3.9)
2,3MSR 76 418 018 3.9 (3.0)
2,3,4MSR 114 437 474 3.9 (3.0)
2,3,4,5MSR 152 463 918 3.8 (3.1)
2,3AR-MSR 722 748 770 3.7 (3.0)

of the canonical ACSF descriptor grows commensurately with the number of different atom types that the
descriptor encodes. This can make it challenging to apply the canonical ACSF descriptor to datasets
containing many different atom types, ultimately limiting the generality. A wACSF feature vector for an
atom, i, can be constructed by concatenating a global (G1), N radial (G2; two-body), andM angular (G4;
three-body) terms, which have the functional forms:

G1
i =

∑

j ̸=i

fc
(

rij
)

(5)

G2
i =

∑

j ̸=i

Zj · fc
(

rij
)

· exp−η(rij−µ)
2

(6)

G4
i = 21−ζ

∑

j ̸=i

∑

k ̸=i,j

ZjZk ·
(

1+λcos
(

θjik
))ζ · fc

(

rij
)

· fc (rik) · fc
(

rjk
)

· exp−η(rij−µ)
2

·exp−η(rik−µ)2 ·exp−η(rjk−µ)
2

(7)

where i, j, and k are atomic sites, Zi is the nuclear charge of atom i, rij is the distance between atoms i and j,
and θjik is the angle between atoms j, i, and k. f c is a radial cutoff function ensuring the functions go to zero
where rij ⩾ rc. rc is usually chosen to be approximately 6.0 Å. In practice the global G1 wACSF is often
omitted from the feature vector, and the feature vector is not limited to wACSFs encoding up to three-body
terms; wACSFs encoding higher-order relationships can be constructed (see, for example, the definitions
given by Behler in [96]).

In comparison to the simple RDC descriptor (for which the only parameter is σ; equation (4)), wACSFs
have a number of parameters (η, µ, λ, and ζ) which have to be determined empirically [92]. A number of
automated parameter tuning strategies are effective at determining η, µ, λ, and ζ , however [e.g.
intelligent-sampling/Bayesian approaches, decomposition (principal component analysis (PCA)), [97] and
genetic algorithm [98] optimisation], and—in practice—tuning does not present an obstacle to the
application of wACSF. A feature vector of wACSFs displays significant improvement in performance over an
RDC representation (14.8% vs. 4.4% see table 1) without any substantial increase in the computational
overhead associated with translating the molecular structure into the descriptor. The use of wACSF also
tends to confer the advantage of improved compactness in the feature vector, reducing the propensity of the
ML model for overfitting.

3.1.3. Multiple scattering representation
The theoretical treatment of XS under the MS framework is often based on a path expansion to increasing
order (section 2; equation (3)). Two additional approaches to featurisation, inspired by MS theory, are the
multiple-scattering representation (MSR) and the angle-resolved MSR (AR-MSR); both representations are
available in the XANESNET code [43, 45]. The MSR and AR-MSR representations retain the two-body terms
from the wACSF representation (with which they share their functional form; equation (6)), although the
MSR representation implements an alternative three-body term:

S3i =
∑

j ̸=i

∑

k ̸=i,j

ZjZk · |cos
(

θjkl
)

| · fc
(

rijk
)

· exp−η(rijk−µ)
2

(8)
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and adds a four-body term:

S4i =
∑

j ̸=i

∑

k ̸=i,j

∑

l ̸=i,j,k

ZjZkZl · |cos
(

θijk
)

| · |cos
(

θjkl
)

|

· fc
(

rijkl
)

· exp−η(rijkl−µ)
2

. (9)

The MSR representation can be extended to an arbitrarily higher order (cf the wACSF representation)
albeit with an increase in the computational cost associated with constructing the descriptor. A limitation of
the MSR representation is that, for these higher orders, a large number of scattering pathways of similar
length will be present, as expected from first principles calculations. When these pathways are represented on
a single auxiliary radial grid, a significant overlap of terms may arise, resulting in a loss of information and
breaking the representational uniqueness. To overcome this limitation, the AR-MSR representation uses both
a radial grid and an auxiliary angular grid. The three- and four-body terms in the AR-MSR representation
are given as:

S3i,α =
∑

j ̸=i

∑

k̸=i,j

wjZjwkZk · fc
(

rijkl
)

· exp−η(rijk−µ)
2

·exp−σ(cos(θijk)−φ)
2

(10)

S4i,α,β =
∑

j ̸=i

∑

k̸=i,j

∑

l̸=i,j,k

wjZjwkZkwlZl · fc
(

rijkl
)

· exp−η(rijkl−µ)
2

·exp−σ(cos(θijk)−φ)
2

·exp−σ(cos(θjkl)−φ)
2

. (11)

The AR-MSR representation encodes more information, although at the cost of a longer, less compact
feature vector. Assuming a radial grid of 38 points and an angular grid of 18 points, the S3α,β component of
the AR-MSR feature vector would have a dimension of 722 and the S4α,β,γ component of the AR-MSR feature
vector would have a dimension of 10 368; practically, this would necessitate truncation of the order of
expansion to be tractable.

Table 1 shows the performance of these structural featurisations at the Fe K-edge. For the MS
representation, the inclusion of four- and five-body terms does not improve the performance of the network
which, as discussed above, is due to the many overlapping pathways exhibiting the same lengths leading to a
loss of information on a single auxiliary radial grid. Upon including angular resolution there is a very small
improvement, although this is likely to arise simply from the larger input vector length leading to more free
parameters within the network due to the increased resolution of the feature vector. These results suggest
that improvement in the performance of the network using these local atom-centred symmetric descriptors
is likely to be achieved only by using a larger training set or adopting alternative and/or extended
representations.

3.1.4. SOAP
The RDC, wACSF, (AS-)MSR descriptors all leverage an N-body interaction weighting term based on the
atomic number, Z, of the atom types involved in the interaction(s) encoded in the feature vector. An
alternative option is for the stratification of the feature vector according to atom type (cf the ACSF
descriptor)—this, in principle, enables the retention of more information. The smooth overlap of atomic
positions (SOAP) [99, 100] descriptor encodes the local environment around an x-ray absorption site using
an expansion of the Gaussian-smeared atomic density based on spherical harmonics and radial basis
functions. The local environment around an x-ray absorption site, i, is characterised by atomic
neighbourhood density:

ρi (r) =
∑

j

exp−|r−rij|
2/2σ2

atom fcut
(

rij
)

(12)

=

nmax
∑

n=0

lmax
∑

l=0

m=l
∑

m=−l

cinlmgn (r)Ylm (r) (13)

where rij are the vectors pointing to the neighbouring atoms; σatom is a parameter corresponding to the size
of the atoms, and fcut is the cutoff function. The expansion on the second line uses spherical harmonics and a
set of orthonormal radial basis functions, gn, limited by the number of radial and angular basis functions
defined using nmax and lmax. Accumulating the expansion coefficients, a power spectrum can be defined as:
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pss
′nn ′l

i = π

√

8

2l+ 1

∑

m

(csnlm)
∗ cs ′n ′lm. (14)

The full feature vector is constructed by concatenating the elements, pss;nn
′l

i , for all unique pairs of atoms,
all unique pairs of radial basis functions, n, n′ up to nmax, and the angular degree values l up to lmax.

SOAP has seen much success, however those who wish to apply it must be aware of a potential drawback
of this descriptor in that descriptor length scales drastically with the number of species due to be described.
The descriptor length of SOAP is expressed [101]:

L=
1

2
nmaxSn (nmaxSn + 1)(lmax + 1) (15)

where Sn is the number of atomic species, nmax is the number of radial basis functions and lmax is the number
of angular basis functions. We can see that the size of the SOAP feature vector scales quadratically with the
number of elements. This issue can be somewhat mitigated by exploiting sparsity, i.e. the SOAP feature
vector is sparse with respect to elements, so even for Stotal elements across a given dataset, only those present
in a given input need to be considered when computing an individual descriptor. This will not only reduces
the space required to store representations, but also reduces the number of model parameters. Other effective
compression strategies do exist [102] , although they have yet to be investigated in the context of in x-ray
spectroscopy.

3.1.5. MBTR
The many-body tensor representation (MBTR) [103] combines the ‘bag-of-bonds’ [104] and Coulomb
matrix [105] representations to overcome their shortcomings (including their non-uniqueness,
discontinuity, and limited generality). The MBTR descriptor is usually expressed in terms containing atomic
numbers (k1), (inverse) distances between atoms (k2), and the cosine of angles between atoms (k3). For x-ray
spectroscopy, the feature vector only needs to be calculated for atom combinations including the central
atom, this corresponds to the Local MBTR (LMBTR) representation. In this case, k1 is not used, so the two
and three body terms are expressed:

MBTR2
i =

∑

j ̸=i

wi,j
1

1

σ1
√
2π

exp
−

(

x− k2
(

Ri,Rj

))2

2σ2
2 (16)

MBTR3
i =

∑

j ̸=i

∑

k ̸=i,j

wi,j,k
1

1

σ1
√
2π

exp
−

(

x− k3
(

Ri,Rj,Rk

))2

2σ2
3 . (17)

Here σ is the standard deviation of the Gaussian kernel and x runs over a predefined range of values
covering the possible values for kn. Ri is the position vector of atom i and w is a weighting function that is
used to control the significance of different terms.

The output of the LMBTR descriptor, in common with SOAP and the ACSF descriptor, is stratified
according to the involved chemical elements, making the vector length dependent on the number of elements
considered. For training containing a lot of different elements, the input vector, if uncompressed, will
become very large. Resultantly, applications of the descriptor to date have focused upon specific systems
containing one or two elements. Kwon et al [106] used the LMBTR descriptor, alongside ACSF and SOAP to
directly predict XANES spectra of amorphous carbon from structural descriptors. They found that for this
case LMBTR outperforms ACSF and SOAP. The authors ascribe this improvement to the explicit inclusion of
bond lengths and angles which influence XANES spectra. Hirai et al [107] used linear regression of the input
descriptors (LMBRT, SOAP and ACSF) to predict and interpret the XANES spectra of amorphous Si and
SiO2 with SOAP displaying the lowest mean squared error.

3.1.6. On the explicit inclusion of electronic information
The feature vectors explored in this section all explicitly encode nuclear geometric information and rely on
implicit encoding of electronic information, i.e. allowing the ML model to infer/establish the connection
between the nuclear and electronic structure through relationships in the dataset. This is, in some sense, the
natural consequence of the fact that the construction of a purely geometric feature vector is computationally
inexpensive while the computation of the electronic structure is expensive. In the context of x-ray
spectroscopy, XAS spectra at the transition metal K edges principally contain structural information,
encoded via the scattering of the x-ray (photo)electrons (section 2), and so purely geometric feature vectors
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are easy to justify. In contrast, XES spectra [108, 109] and XAS spectra recorded at other (transition metal)
absorption edges [e.g. the Pt L2/3 edges, or the S K-edge (figure 2)], encode a wealth of electronic information
by virtue of the selection rules and orbital-to-orbital transitions that are measured. Consequently, the
question of whether electronic structural information (e.g. orbital information) should be included explicitly
in the feature vector alongside the nuclear structural information is a natural one and, at present, one that
requires further investigation. Watson et al [110] demonstrated that there remains a sufficiently strong
implicit link between geometric and electronic structural information to develop a sufficiently accurate ML
model at the Pt L2/3 edges using a purely geometric feature vector viathe wACSF representation. The authors
noted, however, that the error in the ML XAS spectral predictions was largest close to the L2/3 absorption
edges, i.e. in the spectral window which contains the greatest wealth of electronic information.

The literature contains examples of effective quantum-inspired representations which include electronic
structural information: these include the representation used in molecular-orbital-basis ML (MOB-ML);
[111] the F (Fock), J (Coulomb), and K (exchange) matrices (FJK) representation; [112] the
spectrum-of-approximated-Hamiltonian-matrices (SPAHM) representation; [113] and the
matrix-of-orthogonalised-atomic-orbital-coefficients representation [114]. However, these representations
are not specifically directed towards ML for x-ray spectroscopy and, while potentially suitable, have not been
applied to problems in this domain to date.

An alternative approach, trialled by Lüder [115], addresses the challenge associated with the inclusion of
electronic structural information in (transition metal) L-edge XAS spectra using a ML model motivated by
the multiplet theory framework. In this work the model is trained on theoretically-simulated L-edge XAS
spectra with the objective of enabling the relative energies of the 3d orbitals and the Coulomb and exchange
interactions to be extracted from experimental L-edge XAS spectra of transition metal complexes [60].
Middleton et al [116] have also addressed the challenge associated with the inclusion of electronic structural
information through the partial density-of-states (p-DOS) descriptor for ML x-ray spectroscopy. The
approach presented by Middleton et al is based on an expression of Fermi’s Golden Rule within the
one-electron approximation and the dipole approximation:

σ =
4π2

ω

∑

f

|⟨ϕun|D̂|ϕ1s⟩|2δ
(

Ei − Ef +ω
)

. (18)

Under this approximation, a transition dipole moment will only be non-zero if the selection rule,∆L=
±1, is satisfied and if there is sufficient spatial overlap between the initial and final states. Consequently, by
taking advantage of the localised nature of the initial core-hole state, an approximate spectrum can be
obtained using the partial density of states corresponding to dipole-allowed transitions from the core orbital.
For example, at the sulphur K-edge (as in [116]), this corresponds to (p← s) electronic transitions. The
p-DOS descriptor encodes information about the density of states on the absorbing sulphur atom from a
minimal basis set in conjunction with a guess (i.e. unconverged) electronic configuration. To this end, this
descriptor introduces a quantum-inspired representation for ML specifically tailored towards the simulation
of x-ray spectra. The form of the p-DOS descriptor is directly inspired by the spectral shapes within the
single-particle and dipole approximations and enables, for the first time, the inclusion of explicit electronic
information of the absorbing atom into structural featurisation.

3.1.7. Molecular graph representations
This section has so far only explored manually constructed, or ‘hand-crafted’, feature vectors of fixed
dimensions (’molecular descriptors’). These representations have been widely applied across the space of
chemical ML, motivated by the fact that they are computationally inexpensive to construct, intuitive,
interpretable (e.g. through feature importance assessment), and easy to visualise. An alternative (and equally
intuitive) approach, adopted increasingly commonly across the space of chemical ML, is based on using
molecular graphs as input [117–120].

In the field of ML interatomic potentials, Batatia et al [121] exploited the graph representation within the
MACE method, a message passing neural network to achieve high accuracy machine-learned potentials,
where the use of higher-order terms (messages) led to an improved learning rate. The MACE approach
extends the atomic cluster expansion (ACE) method [122] and achieves encoding of high-order many-body
information of the nuclear structure in a computationally efficient manner. This approach has been applied
to inter-atomic potentials [123], and recently to the modelling of infrared, Raman, and sum-frequency
generation spectra [124]. It has not yet been used to simulate x-ray spectroscopic observables.

For x-ray spectroscopy, graph-based representations have not yet been widely applied. Carbone et al
[125] implemented an approach based upon graph neural networks operating at the O and N K-edge. Their
featurisation included an adjacency matrix describing atomic connectivity, a list of atom features (absorber,
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Figure 5. Schematic showing different XAS spectral representations: (a) energy space, (b) Fourier space, (c) principle component
space, and (d) as a sum of Gaussian (or Lorentzian) functions.

atom type, hybridization, donor or acceptor status), and a list of bond features (bond type and length). Using
this, the authors demonstrated that the resulting network could predict spectra with 90% accuracy of the
predicted spectral peak locations being within 1 eV of the expected energy, very comparable to the
performance achieved by Rankine and Penfold [92], although this did not specifically take advantage of the
message passing framework to encode higher-order information. A similar approach was recently adopted by
Kotobi et al [126] in which the authors focused on developing an explainable network. Indeed, using feature
attribution the authors were able to quantify the contribution of each atom to peaks in the spectrum, which
subsequently could be compared to orbitals involved in the transitions.

3.2. Representing x-ray spectra
Besides featurisation of the (local) atomic structure around the x-ray absorption site, the spectrum, µ(E),
can also be represented in several ways. As with structural representation, the selection of representation for
the x-ray spectrum influences both the size of a neural network (i.e. the number of free parameters) and its
performance. The most common approach is discretisation, µi = µ(Ei), where Ei represents an individual
spectral energy point in the discretisation. While conceptually simple, and used in most models to date, this
approach does have two potential limitations: (i) a large number of points may be required to resolve sharp
peaks in spectra. (ii) small spectral shifts of narrow bands to slightly different positions in the spectrum can
transfer intensity from one output neuron to a neighbour. While this may correspond to a relatively small
change in spectroscopic lineshape, a machine-learning algorithm will be unable to differentiate these small
shifts in position from more pertinent changes in intensity which result from a truly spectroscopically
distinct peak. As such spectral shifts can arise from very small changes in the input structure, applying the
grid-discretisation technique reduce the correlation between inputs (i.e. structures) and outputs (i.e. spectra)
from the perspective of the ML algorithm, and so risks the development of a model which has not robustly
encoded a valid relationship between variant inputs and meaningful changes in spectroscopic features. Other
options to represent the spectra are illustrated in figure 5 and include polynomial regression, cosine
transform, Gaussian fitting and PCA. While polynomials can also be used to represent x-ray spectra in a
lower-dimensional form, a polynomial representation typically lacks generalisability in practice, as a
high-order polynomial is required to fit all of the x-ray spectra in the dataset satisfactorily and encountering
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Table 2. Performance at the Fe K-edge using the XANESNET MLP network as a function of the spectral representation, assessed using
250 held-out structure-spectrum pairs. The structure-spectrum pairs used in the held-out set are the same as those used in [92] and were
selected at random from the full training set and never seen by the network. While the nature of the held-out set will influence the
performance reported, this data which has never been seen by the network provides indicative performance. Structure represented using
the wACSF descriptor. Input files and associated data are available at [45].

Spectral rep. Output values Network weights Rel. performance

Energy discretisation 226 428 770 4.4 (3.6)
TDCT50 50 338 482 5.5 (3.8)
TDCT30 30 328 222 6.2 (3.9)
TDCT15 15 320 527 6.7 (4.0)
TDCT10 10 317 962 8.4 (4.4)
PCA50 50 338 482 4.0 (3.0)
PCA30 30 328 222 4.0 (3.2)
PCA15 15 320 527 4.2 (3.2)
PCA10 10 317 962 4.5 (3.3)

numerical instability is commonplace. Consequently, polynomial expansion is usually performed for the
small energy intervals of the spectrum instead of the whole spectrum as recently demonstrated by Torrisi
et al [127] in combination with a random forest ensembling ML model.

Table 2 shows the performance for the three spectral representations discussed in this section. We have
excluded the Gaussian basis representation as we have found that the construction of the representation from
an x-ray spectrum is time-intensive compared to the alternatives and, unless using a dense grid of Gaussians,
comparatively worse in performance. However, Chen et al [128] have recently demonstrated the advantages
of the Gaussian basis representation for the reverse (’spectrum-to-structure’) problem, although in this case,
the authors found that a cumulative distribution function representation of the x-ray spectrum achieved the
highest degree of accuracy and transferability.

Table 2 demonstrates that the energy grid discretisation and PCA representations provide the best
performance when assessed using the held-out datasets presented in [44]. A PCA representation, even when
reducing the dimensionality of the x-ray spectrum to as few as 10 components, achieves performance
comparable to energy grid discretisation while also reducing the size of the (MLP) network by>100 000 free
parameters. However, we note that the PCA space is dependent on the set of spectra from which it is
calculated. In addition, as this reduces the spectrum to coefficients of basis vectors over the whole spectrum,
the poor prediction of one coefficient influences the whole spectrum. For this representation, we observe that
some of the poor performers were significantly worse than those using energy discretisation, owing to this
global effect of the coefficients predicted by the model. For the cosine transform, while the spectra are
formally reproducible, the coefficients for the higher-frequency components approach zero. Consequently,
we adopt the Truncated Discrete Cosine Transform (TDCT), which includes only the first N coefficients and
assumes the remaining coefficients are zero. For TDCT(N = 50), the performance is only slightly worse than
the energy discretisation and PCA approaches, but in contrast to the latter, it shows a much faster decline in
performance as N is decreased.

The performance of the PCA representation in table 2 highlights the potential advantage of
dimensionality reduction and establishing descriptors not only for the input geometry but also the spectrum.
This is especially important in the context of spectral inversion, i.e. for models seeking to extract structure
from an input spectrum. Tetef et al have gone beyond the linear PCA method and employed non-linear
approaches including t-Distributed Stochastic Neighbor Embedding (t-SNE) [129] and uniform manifold
approximation (UMAP) [130] which could be used to perform clustering and classification analysis of both
XES and XAS spectra. Routh et al [131] and Liang et al have employed constructed spectral descriptors based
upon the latent space of an autoencoder. Importantly in [131], the authors not only generated spectral
descriptors based upon the autoencoder but were also able to interpret the latent space representations
highlighting the physical insight they can provide. Beyond mathematical deconstructions, Guda et al [132]
used chemical intuition to develop XANES descriptors based upon edge position, intensities, positions, and
curvatures of minima and maxima which they could demonstrate correlation to structural parameters such
as coordination number and first shell bond lengths.

Finally, for models seeking to transform structures into spectra, when representing any calculated
spectrum, it is also important to consider spectral broadening. Figure 2 illustrates that x-ray spectra are
typically broad in comparison to, for example, optical and vibrational spectroscopies. Consequently, the
calculated spectra must be transformed by incorporating factors including core-hole-lifetime broadening
and instrument response [110, 133] to enable them to be compared to the experiment. An example of the
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Figure 6. Example absorption cross-sections for the Fe K-edge of C20H18FeN6S2 (CCSD code: ABITEM) calculated using multiple
scattering theory implemented within the FDMNES package [134] (a) without any post-processing (light grey), (b) broadened
with a fixed-width Lorentzian function (FWHM= 1.25 eV, grey), and (c) broadened with an arctangent convolution model
(black). See [110] for a more in-depth discussion on this.

influence this has is shown in figure 6 and can be added as a pre-processing or post-processing step in the ML
models.

While the spectra without the aforementioned broadening (figure 6, light grey line) retain the most
spectral information, the sharp nature of the resonances, especially at low energy can make learning
challenging. In contrast, while the fully broadened (figure 6, black line) is the closest representation of
experimental spectra, it presumes a specific resolution and therefore lacks the flexibility to model different
experimental techniques (e.g. high-energy-resolution fluorescence detection (HERFD) [135] spectroscopy)
which offer higher resolution. Consequently, during our previous work [92], our models used spectra
containing a minimal core-hole lifetime broadening which represents a midpoint between the two extremes.

4. Types of networks

In the realm of x-ray spectroscopy analysis, ML models aim principally to tackle two challenges: the forward
(from property/structure to spectrum) and reverse (from spectrum to property/structure) mapping
problems. Beyond the treatment of these two categories of problems, there exist a broad range of other
applications, encompassing such diverse uses as automated diagnostics, data management and cleaning, and
even experimental control [136–140]. Whilst the innovative developments leveraging ML for utility in these
fields are undoubtedly exciting, a comprehensive delineation and assessment of the works within them is
beyond the scope of the present review, and so in this section we discuss treatments of the two principal
categories of forward and reversemapping problems.

4.1. Forwardmapping: structure→ spectrum
The focus of ML techniques applied to x-ray spectroscopy has, to date, largely been on the forwardmapping
problem. Here, in a manner akin to quantum chemistry calculations, an input structure is used to predict
binding energies for photoemission [141–143], which is converted into the lineshape for XAS [92, 110, 125,
144–148] or XES [108, 129, 149]. These methods have addressed light and heavy elements (e.g. C, N, O, Fe,
Mn, Ni, Pt) as well as different absorption edges (e.g. K and L2,3). Overall, while the methods differ in the
formulation of the network and training sets, they are conceptually similar. All exhibit promising results, and
clearly demonstrate an ability to transform easy-to-generate structural properties, such as nuclear geometry,
into spectroscopic observables.

ML models seeking to simulate XPS must establish a link between atomic structure and core electron
binding energies. To date, most of the work in this area has focused on the analysis of XPS spectra for
amorphous structures, which can be imprecise since the disorder can create overlapping bands and
broadening peaks. The computational prediction of XPS spectra of such materials requires extensive
sampling, which is time-consuming, and therefore ML methods can potentially bridge this gap. Sun et al
[150] used the LMBTR descriptor with a random forest model to predict XPS at the carbon K-edge
specifically for solid-electrolyte interfaces reporting an MSE in peak positions as low as 0.05 eV. Golze et al
[151] used the SOAP descriptor to develop a kernel regression model that can predict the XPS spectra for
CHO-containing molecules and materials. This is achieved using a comprehensive database of calculated
core-binding energies at DFT and GW levels of theory. Their work is implemented within an openly available
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Figure 7. (a), (b) XANES and FT-EXAFS (c) spectra of [RuBr2(CO)3]2 (black) and [RuCl2(CO)3]2 (orange). The solid lines are
experimental data and the dashed lines are best fits obtained using PyFitIt. (d), (e) show contour plots of the error (L2-norm) as a
function of key structural parameters. Reprinted with permission from [153]. Copyright (2021) American Chemical Society.

XPS prediction server, nancarbon.fi/xps, which highlights the accessibility accurate ML models can provide.
In this work, the authors found ~10 000 training samples were required to achieve an MSE below 0.02 eV
which suggests this approach could be more broadly applied to different elements and edges. ML models for
XPS have to date focused upon lighter elements as extensive theoretical work means that computational
simulations used to generate the training sets are most accurate in this energy range [51]. For heavier
elements, there is an increased significance of relativistic effects and the self-interaction error associated with
the approximate treatment of exchange in density functional-based methods making developing training sets
as accurate as the errors achievable using the ML models above a challenge [53, 152].

For XAS, as the underlying relationship between the input structure and spectroscopic observables is
well-understood (see section 2) there has been a large number of works aimed at developing models
connecting the two using a variety of levels of sophistication. Amongst the most widely used is the FitIT
[154] code developed by Smolentsev et al This approach uses a multi-dimensional interpolation of spectra
calculated within a user-defined structural parameter space to develop a model which can subsequently be
used to optimise structures by fitting XAS spectra within the defined structural parameter. This limits the
number of calculations needed to achieve a detailed spectral interpretation. However, while powerful, it
requires a bespoke model to be initiated for each new system. Recently Martini et al [148] have extended this
method to produce PyFitIt software which incorporates multiple ML algorithms including ridge regressions,
decision trees and neural networks, which have been used for both XANES [155, 156] and EXAFS [79]
spectra. As an illustrative example, figure 7 shows the application of PyFitIt to refine the structures of dimeric
[RuX2(CO)3]2 (X= Cl, Br) complexes. The structure was refined using 5 structural degrees of freedom
focused upon first coordination shell bond length and the model within this space developed using a training
set of ~9000 spectra, i.e. a fairly comprehensive coverage of nuclear configuration space. The authors also
demonstrated that the model developed can determine the uncertainty of the predicted structures and
associated confidence. These methods provide a powerful approach that is highly adaptable to a wide variety
of models. However, a limitation is its lack of generality meaning that it requires a bespoke model to be
initiated for each new system studied.

To increase generality, several works have implemented DNN to predict spectral lineshapes. figure 8
shows an illustration of the general workflow for the forwardmapping approach using DNN. While this
directly refers to the XANESNET method [43], describing the approach adopted in [92], the general
principles remain broadly relevant across all approaches in this field. Firstly, structures (‘samples’) from
datasets such as tmQM [157], QM9 [105, 158, 159] and materials project [160] are used to calculate the

14



Mach. Learn.: Sci. Technol. 5 (2024) 021001 T Penfold et al

Figure 8. Illustration of the XANESNET workflow as described in [92]. The nuclear geometries are featurised and, alongside their
corresponding calculated spectra, form pairs of data used during training. The objective of the DNN is to establish a ‘forward’
mapping by optimising the internal weights. Reproduced from [92]. CC BY 3.0.

theoretically-calculated spectra (‘labels’). This represents the first key step and the method used to simulate
the spectra determines the overall accuracy of the model. The samples are encoded as a feature vector, as
described in section 3.1, and subsequently fed into the DNN, which attempts to establish a mapping from the
feature vector to the spectrum through iterative modification of the network weights.

The influence of structural (section 3.1) and spectral (section 3.2) representations have been discussed
above. Table 3 illustrates the effect of the network architecture for three architectures implemented within
the XANESNET package [43], namely multilayer perceptron (MLP), convolutional neural network (CNN)
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Table 3. Performance of XANESNET for predicting transition metal K-edge using an MLP (428 770 free parameters) CNN (246 626 free
parameters) or LSTM (422 376 free parameters), assessed using 250 held-out structure-spectrum pairs. The structure-spectrum pairs
used in the held-out set are the same as those used in [92] and were selected at random from the full training set and never seen by the
network. While the nature of the held-out set will influence the performance reported, this data which has never been seen by the
network provides indicative performance. Structure represented using the wACSF descriptor. Input files and associated data are
available at [45].

Performance/%

Element MLP CNN LSTM

Ti 4.6 (3.1) 5.8 (3.1) 4.5 (3.7)
V 4.5 (5.0) 6.2 (4.7) 4.9 (4.9)
Cr 3.6 (3.9) 4.2 (3.7) 3.6 (3.7)
Mn 4.3 (2.9) 5.4 (2.5) 3.7 (2.6)
Fe 4.4 (3.6) 5.4 (3.5) 4.4 (3.7)
Co 4.3 (2.9) 7.0 (3.3) 4.2 (3.1)
Ni 4.5 (2.8) 5.3 (3.5) 4.3 (3.0)
Cu 3.6 (2.7) 6.0 (3.4) 3.3 (2.4)
Zn 4.0 (2.6) 5.1 (2.3) 3.3 (2.4)

Mean 4.2 (3.2) 5.8 (3.5) 3.8 (3.3)

Figure 9. Representative Cu K-edge XANES spectra. The top three show spectra taken from the 20th–30th percentiles, i.e. around
the lower quartile. The centre three show spectra from the 45th–55th percentiles, i.e. around the median. The lower three panels
show K-edge XANES spectra from the 70th–80th percentiles, i.e. around the upper quartile. The six-character labels in the lower
right of each panel are the Cambridge Structural Database (CSD) codes for the samples. Reproduced from [92]. CC BY 3.0.

and long short-term memory (LSTM) network. As representative examples, these have been applied to the
transition metal training data described in [92] and openly available at [44]. In all cases, similar performance
is observed across all of the first-row transition metal K-edge, with slightly better performance for the Cu and
Zn edges, which is associated with the weaker pre-edge in these spectra. This shows that both MLP and
LSTM yield overall very similar performance, with the latter yielding a slightly low percentage difference for
µpredicted when compared to µtarget of 250 held-out examples. The performance of CNN is slightly worse than
the other two. Overall, this is achieved with almost half the internal network weights. To provide context for
these numbers, figure 9 illustrates an example of K-edge XANES spectra predicted using the MLP network
described above and in [92]. This clearly illustrates that even for the worst performers in the held-out dataset
(figure 9 bottom line), the network captures the general spectral shape. The training data and input
associated with these simulations can be obtained from [45].
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The focus of the work discussed in the previous paragraph has been upon achieving generality, in the
sense that networks are aimed at being able to simulate an x-ray spectrum for an arbitrary absorbing atom in
any coordination environment for a given absorption edge. We refer to this as a ‘Type I’ model, a type which
is generally preferable as it avoids the time-consuming requirement to develop a new model for every specific
problem. The main challenge associated with developing accurate training sets and achieving generality, as
with innumerable ML tasks across all fields, is scale. Indeed, recent DNN models for predicting XAS spectral
lineshapes of transition metal K-edges [92] have been trained using molecules from the tmQM training set
[157] containing a single geometry of the mono-metallic complexes harvested from the Cambridge
structural database (CSD). While—as shown above—this is accurate when used to predict spectral shapes of
compounds in a similar chemical space, large uncertainties arise when considering complexes with multiple
heavy atoms within the cutoff radius (6 Å) of the absorbing atom or which are strongly distorted from their
equilibrium geometry [147, 161]. Consequently, further developments in this field should focus on both the
training set and how the structures are represented to optimise performance. However, achieving
comprehensive coverage of the chemical space is a significant challenge, especially when seeking to develop a
training set using a high-level theory with a large computational burden.

An alternative approach, the so-called ‘Type II’ method, is to tailor one’s model to a more specialised
problem. These models are trained using data for a specific class of systems [162–165]. Indeed, this is the
concept behind the originally developed FitIt [154] approach. Kwon et al [106] used an MLP in conjunction
with the LMBTR, ACSF and SOAP descriptors to directly predict XANES spectra of amorphous carbon.
They reported that LMBTR outperforms ACSF and SOAP which the authors attribute to the explicit
inclusion of bond lengths and angles that influence XANES spectra. In total, they used 12 528 training
samples although did not show how the convergence of the model varies with the size of the training set.
These works demonstrate high-level accuracy that can be achieved in the ‘Type II’ models, although with the
disadvantage that a new model needs to be trained for each new problem addressed. Consequently, it may be
beneficial to apply classification models to break inputs into established subgroups, which could then be used
to automatically develop individual bespoke models able to achieve generality or their specific class, i.e. use a
neural network with a classifier architecture, such as a decision tree, to automatically subdivide chemical
space into more manageable groups. Recently, Tefet et al [129, 166] have used unsupervised ML methods to
classify XAS and XES spectra, distinguishing key properties including oxidation state, bonding, coordination
number, and aromaticity. The success of these classification methods could address the challenge of collating
sufficent data of sufficient scale to satisfactorily train general ‘Type I’ models.

4.2. Reverse mapping: structure← spectrum
In the previous section, our focus was on the ‘forward’ mapping task, i.e. the task of mapping structures
and/or structural properties onto the spectroscopic observables (structure→ spectrum). This task is
analogous to the objective of computational spectroscopy in that a first-principles or density-functional-
derived wavefunction is used to compute the spectrum/spectroscopic observable from an (initial) geometry.
However, as it provides a direct data-to-interpretation channel, the ‘reverse’ mapping task, i.e. the task of
translating an (experimental) spectrum into a structure or structural property (structure← spectrum), is of
substantially greater interest to experimentally-focused end-users.

The simplest approach (in terms of conception and implementation) has origins dating back to the
inception of x-ray spectroscopic analysis, and involves interpreting experimental x-ray spectra through direct
comparison to reference data. While it is possible to carry out such a comparison with a limited subset of
domain-specific reference data, general application requires an extensive dataset of reference data and a
robust method for the quantitative assessment of the degree of similarity between the recorded and reference
x-ray spectra; currently available datasets contain only a small number of experimental x-ray spectral [167] ,
which greatly limits this approach. The generation of suitably large datasets of x-ray spectral references is
presently only practicably possible through theoretical simulation [168]. Zheng and Mathew et al [168, 169]
for example, have generated such a database (comprising over 800 000 K-edge x-ray spectra) through
theoretical simulation. These x-ray spectral references can be compared to experimental x-ray spectral data
using a diversity of similarity metrics to limit bias. While such comparisons are undoubtedly useful, they are
typically only effective for well-defined (e.g. crystalline) molecules and materials [80] and, in addition, as any
comparisons are based on a comparison between experiment and theory, they will fail to deliver where the
theory does not provide a satisfactory description of the molecules/materials under study.

Clustering and dimensionality-reduction approaches [170, 171] represent appealing methods, widely
applied to simplify the problem and provide spectral interpretations. The objective of clustering approaches
is to identify a few basis x-ray spectra that can, by their combination, represent satisfactorily a larger dataset;
these approaches have been used to great effect for the processing of spatially-resolved x-ray spectra, [130,
172–174] analysis of in operando XANES for catalysts and battery materials, [175–178] and for feature
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Figure 10. GP classifier prediction accuracy with corresponding average probability for all classifications of x-ray (XANES and
valence-to-core XES) spectra. Reprinted with permission from [166]. Copyright (2022) American Chemical Society.

extraction from x-ray spectra [166]. Aarva et al [179, 180] have, for example, generated a series of
spectroscopic fingerprints which can be compared to—and, crucially, used to interpret—experimental x-ray
spectra. The authors used the SOAP descriptor to characterise and cluster based on the chemical
environment, providing a direct link between spectrum and (local) structure. Additional unsupervised
approaches, e.g. dimensionality reduction [including principle component analysis (PCA)], [181]
t-distributed stochastic neighbor embeddings (t-SNE), [129] uniform manifold approximation and
projection (UMAP) operations, [166] multivariate curve resolution, [182–184] and autoencoding [129, 131]
have all been applied to x-ray spectroscopy with the objective of finding simplified representations of x-ray
spectra which can then be connected directly to the structural/electronic properties of the molecules and
materials under study.

An example of the application of decomposition/dimensionality reduction approaches is shown in
figure 10 (derived from work by Tetef et al [166]). Tetef et al [166] carried out a UMAP-embedding-based
cluster analysis to investigate the spectral sensitivity of x-ray spectroscopy (P K-edge XANES and
valence-to-core XES) to structural features of complexes including coordination number and oxidation state.
The authors used their cluster analysis to prepare the input for a Gaussian process (GP) classifier to interpret
directly the x-ray spectra in the context of a ‘reverse’ (structure← spectrum) mapping task. Figure 10 shows
the accuracy of the scheme as a predictor of coordination number, number of oxygen/sulphur/hydroxyl
ligands, and phosphate classification. Except for the latter (phosphate classification from valence-to-core
XES) the authors were able to achieve accuracy close to or above 80% across all subtasks.

In contrast to mathematical decomposition/dimensionality reduction approaches, Guda et al [132] have
experimented with the use of physical/chemical intuition to develop compact x-ray spectroscopic (XANES)
descriptors. Figure 11(a) illustrates such a descriptor based on x-ray absorption edge position and intensity,
and the curvature of post-edge minima and maxima, to give a compact fingerprint of the (local) electronic
and geometric structure of the absorbing atom(s). The authors demonstrated (figures 11(b)–(e)) that these
compact fingerprints correlate well with the structural properties of interest. In combination with regression
and classification machine-learning models, the authors could optimise the exact composition of these
descriptors to achieve not only spectral interpretation but also physical/chemical insight.

It is also possible—and perhaps desirable, moreover—to use machine-learned/extracted features (e.g.
those derived directly from the data by, for example, a neural network feature extractor) instead of
handcrafted features (e.g. those constructed based on physical/chemical intuition or
decomposition/dimensionality reduction). Drera et al [141] and Pielsticker et al [142] for example, have both
implemented CNN feature extractors that can be coupled to a regressor/classifier head for the automatic
analysis of x-ray (XPS) spectroscopy. Drera et al [141] used a dataset of ca. 100 000 theoretical x-ray spectra
to detect and quantify chemical elements/composition based on the XPS spectrum, while Pielsticker et al
[142] adopted a similar approach targeting automatic quantification based on transition metal XPS data; the
authors also included an uncertainty quantification approach using Monte-Carlo dropout.

Timoshenko et al [76, 80, 80, 164, 165] have carried out pioneering work in the XAS domain along these
lines, demonstrating the predictive power of neural networks to obtain structural insights from both XANES
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Figure 11. (a) Set of XANES descriptors, including edge energy and slope, white line intensity, curvature, and position, pit
intensity, curvature, and position. (b)–(e) show scatter plots of pairs of descriptors against structural parameters, i.e. first
coordination shell bond lengths and coordination numbers. Reproduced from [132]. CC BY 4.0.

Figure 12. Performance of a random forest (ensemble) ML model reported by Torrisi et al [127] evaluated on the task of
extracting geometric and electronic parameters from x-ray spectra. Reproduced from [127]. CC BY 4.0.

and EXAFS spectra across and wide variety of systems. This is especially important within the context of the
disordered catalytic materials focused upon in their work (for which a satisfactory first-principles analysis is
a far-from-trivial task on account of the large number of atomic configurations that have to be considered).
While the results are highly encouraging, the authors focus on Type-II, i.e. system/class-specific ML models,
and—as such—there remains scope to explore ML models with greater generality in the future.

Carbone et al [185] have also carried out work in this space, having developing a framework to classify
the symmetry of the coordination environment around an x-ray absorption site. For the first-row transition
metal elements, the authors were able to achieve an 86% classification accuracy and were also able to
demonstrate that only a small decrease in performance was observed when using only the pre-edge region of
the XAS spectrum. These observations are consistent with empirical knowledge which holds that changes in
the local coordination environment will modulate most strongly the shape of the resonances in the pre-edge
(XANES) region of the XAS spectrum [186]. Torrisi et al [127] have also demonstrated that coordination
numbers, average first-coordination-shell bond lengths, and the atomic charge of the absorbing atom, in
addition to the symmetry of the coordination environment, can also all be learned using a random forest ML
model. Their results, reproduced in figure 12, demonstrate>80% classification accuracy against these
properties and balanced treatment across the first-row transition metals. Kiyohara et al explored a

19



Mach. Learn.: Sci. Technol. 5 (2024) 021001 T Penfold et al

Figure 13. G2 wACSF derived by the XANESNET CNN applied to experimental spectra, as documented in [190]. The grey lines
represent the predicted distributions, while the lighter grey areas indicate the range of variation within±2σ, determined using
bootstrap resampling. The black traces depict the expected distributions based on structures reported in experimental studies The
top three panels are the best predictions, while the bottom three panels are the worst predictions. Reproduced from [190].
CC BY 4.0.

combination clustering and decision-tree ML model where, for a selection of oxygen and carbon K-edge XAS
spectra, categories of spectra were first clustered together and a decision-tree model was used to derive
subsequently the correspondence between the distinctive x-ray spectral features characterising each cluster of
x-ray spectra and the geometric properties. of interest [187]. In addition to these classification ML models,
an earlier study by Kiyohara and Mizoguchi [188] and a study from Higashi and Ikeno [189] both reported
regression ML models for mapping x-ray spectra onto two-body PDFs and applied these to the analysis of
oxygen K-edge XAS spectra. The authors were able to use the PDFs to extract geometric parameters, such as
the expected first-coordination-shell bond lengths, to high accuracy with relative errors<0.2 Å.

However, although these previous works showcase highly effective ML models, to date they have largely
been developed using—and evaluated against—theoretical x-ray spectra. This fails to align with the
proposed practical intent of these methodologies, which is to extract information from experimental x-ray
spectra. David et al [190] have recently implemented a CNN that maps Fe K-edge XAS spectra into a
pseudo-PDF based on the two-body wACSF (G2) terms. Although David et al trained their CNN using
theoretically-generated x-ray spectra, the authors evaluated the performance of their CNN against
experimental x-ray spectra. Figure 13 shows six G2 wACSF predicted for the experimental Fe K-edge XAS
spectra of Fe(acac)3; [191] [Fe(bpy)3]2+; [192] MbO2; [193] [Fe(CN)6]4−; [194] FeCO5; [195] and
Fe(dedtc)3 [196].

Fe(acac)3, [Fe(bpy)3]2+, and MbO2) show strong performance for the first two coordination shells.
However, in the spirit of improving the performance of these approaches, it is more instructive to understand
the examples for which the CNN delivers poor performance, i.e. [Fe(CN)6]4−, FeCO5, and Fe(dedtc)3. For
the former two transition metal complexes, previous work has highlighted the challenge of the network for
describing systems containing linear bonds like carbonyls and cyanides, [161] owing to an x-ray ‘focusing
effect’ that exerts a strong influence on the appearance of the x-ray spectrum. However, while the predictions
for [Fe(CN)6]4− and FeCO5 are poor, the uncertainty is also large, demonstrating that the ML model is
aware of its limitations. In contrast, Fe(dedtc)3 not only yields an inaccurate set of predicted G2 wACSF
but—judged by a low uncertainty—exhibits over-confidence. This arises from the challenge of transferring a
network trained on theoretical x-ray spectra to experimental x-ray spectra. The long Fe-S bonds (ca. 2.3 Å)
in Fe(dedtc)3 lead to a breakdown of the ‘muffin-tin’ approximation used to simulate the Fe K-edge XAS
spectra under the MS approach. Hence, even though the network is trained on molecules sharing a similar
structure, leading to a high level of confidence, this confidence is misplaced because the training data fails to
coincide with experimental spectra for such scenarios.
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Figure 14. Schematic representation of the Auto-Encoder Generative Adversarial Network (AEGAN) implemented within the
XANESNET package [43] The dual learning cycle-consistent model uses two coupled autoencoders with a shared latent space to
ensure consistent forward and reverse interpretations of the structure and spectra.

This could be solved by training on well-characterised experimental data. Nonetheless, despite
advancements like laboratory-based x-ray spectroscopy [197, 198], which have improved our capacity to
obtain experimental x-ray spectra, it remains a formidable challenge to gather the quantity and quality of
x-ray spectra necessary for ML model training. This is not to say that it is not possible; indeed, Chen et al
[128] recently used experimental data during the training of their network to predict properties such as
oxidation state. The authors demonstrated that when representing the spectra as a continuous distribution
function, they were able to classify the changing oxidation state of a battery material during cycling. However,
despite the promising results, the authors highlighted the challenge associated with cases where a mismatch
between experimental and computational spectra emerges. An alternative approach, recently applied to
inelastic neutron scattering (INS) data [199] is to use generative adversarial networks to translate theoretical
spectra into those which mimic their experimental counterparts. In [199], their Exp2SimGAN, based upon
dual contrastive learning GAN (DCLGAN) [200] was designed to convert a simulated dataset into one that
resembles an experiment and was applied to convert between convolved and unconvolved INS spectra. In this
area, cycleGANs have received attention, owing to their ability to translate information between two domains
within an unsupervised framework [201, 202]. This approach, to date, has been used to translate from one
domain to another but exploits a cycle consistency loss to ensure that the data can be trained without the
need for paired and transformations are kept as close to the original as possible. Consequently, considering
the results presented in [199], it should be considered that a similar approach could be used to overcome the
absence of experimental data for training reverse networks, where networks such as cycleGANs are used to
translate calculated spectra to appear more like their experimental counterparts. Here, theoretically derived
spectra could be passed through a cycleGAN to generate pseudo-experimental data, with the potential to
improve the performance of reversemodels. However, this still requires the development of a database of
well-characterised experimental x-ray spectra, which should be a key focus of future work.

4.3. Self-consistency: bidirectional networks
Sections 4.1 and 4.2 outlined methods capable of addressing the structure/property to spectrum and
spectrum to structure/property mapping problems. However, one of the potential limitations of this
approach is the independent nature of the networks and therefore there is no way of guaranteeing
self-consistency i.e. the forward and reverse predictions give the consistent with each other. This could be
enforced using cycle consistency as discussed in the previous section. To address this, figure 14 shows an
Auto-Encoder Generative Adversarial Network (AEGAN) implemented within the XANESNET package
[43]. This model adopts two coupled autoencoders with a shared latent space and cycle consistency loss to
ensure consistent forward and reverse interpretations of the structure and spectra. Consequently, the network
incorporates 6 loss functions, which must be carefully balanced to optimise network performance. This
highlights the challenge associated with optimising the performance of more complicated networks.
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Table 4. Performance of the XANESNET AEGAN network for all of the transition metal K-edge spectra, assessed using 250 held-out
structure-spectrum pairs. The structure-spectrum pairs used in the held-out set is the same as those used in [92] and were selected at
random from the full training set and never seen by the network. While the nature of the held-out set will influence the performance
reported, this data which has never been seen by the network provides indicative performance. Spectra are represented as discretised
energy points and the structure is represented using 32 G2 wACSFs and 64 G4 wACSFs. Input files and associated data are available at
[45].

Element

Performance/%

Predict Reconstruct

Forward Reverse Forward Reverse

Ti 9.3 (5.6) 4.3 (3.7) 6.9 (3.6) 4.1 (2.7)
V 7.6 (9.8) 5.1 (4.9) 6.8 (7.3) 4.5 (3.2)
Cr 4.8 (5.4) 2.7 (3.6) 3.8 (4.2) 2.3 (2.9)
Mn 17.4 (11.9) 6.8 (3.2) 10.7 (6.5) 7.2 (4.6)
Fe 7.6 (4.6) 3.3 (2.7) 6.1 (3.0) 2.5 (1.7)
Co 9.5 (5.6) 3.6 (2.6) 8.2 (4.7) 3.4 (2.5)
Ni 7.9 (4.6) 4.4 (3.0) 7.4 (3.8) 5.1 (3.3)
Cu 14.5 (8.3) 4.1 (3.3) 13.1 (8.0) 4.4 (2.7)
Zn 7.1 (4.9) 3.8 (2.9) 6.7 (3.8) 3.6 (2.5)

Mean 9.5 (6.7) 4.2 (3.3) 7.7 (5.0) 4.1 (2.9)

Table 4 shows the performance of this model across the first-row transition metal training set [44].
Overall the performance on predicting the spectra and indeed reconstruction is slightly worse than presented
in section 4.1. This difference in performance is likely to be linked to the complexity of the network, which in
contrast to independent networks is more sensitive to variations in the hyperparameters of the network. This
is especially true for the description of the loss functions, indeed overall this network has 6 independent loss
functions that are combined and the relative weighting between them can influence performance. In
addition, while appealing due to their cycle consistency, these dual-learning models exhibit larger networks
which usually necessitate more free parameters. For example, the model used in table 4 contains just over
1300 000 free parameters. Consequently, while the present performance is non-optimal, the ability to ensure
cycle consistency is an appealing property, and further work should be invested in the development of such
networks.

4.4.∆-learning
The objectives of the ML techniques explained thus far have been to transform and translate between
structural and spectral representations without a need for first-principles calculations. While these have been
successful, a substantial obstacle in creating models which are both precise and broadly applicable is the scale
of training data required. Achieving comprehensive coverage of the chemical space remains a formidable
challenge, particularly when attempting to create a training dataset using a high-level theory that demands
substantial computational resources.

However, it is important to recognise that while the most accurate and costly calculations provide precise,
quantitative agreement between experiment and theory, much simpler calculations can still provide
qualitative/semi-quantitative interpretations of experiments [23]. Indeed, the general spectral shape and
most of the relevant physics are often captured through computationally inexpensive methods (e.g. multiple
scattering theory [69]), while the outstanding small corrections to the spectral shape required to achieve
quantitative agreement are usually by far the most computationally demanding. Consequently, one approach
to reducing the computational expense and the requirement to develop large training sets is to adopt the
composite strategy,∆-learning as introduced by Ramakrishnan et al [204].

In the∆-learning framework, models are engineered to correct characteristics acquired from a less
computationally demanding calculation to align with those associated with a more advanced yet
computationally intensive methodology, effectively performing a correction from low-level to high-level
theory without entailing the costs of high-level methods. This approach has been widely used across
quantum chemistry [205–207]. For x-ray spectroscopy, one can deploy an ansatz:

µ(E)H = µ(E)L +∆(E)ML (19)

where µ(E)H is the spectrum calculated at a high level of theory, µ(E)L is the spectrum computed at the
lower level of theory and∆(E)ML is the correction learned (see figure 15).

Figure 16 shows recent results obtained using the∆-learning strategy by Watson et al [203] applied to the
Rh L3-edge. This work demonstrates that the∆-learning strategy can quickly learn the difference between
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Figure 15. Schematic of the∆-learning approach. The featurised local geometries are used in conjunction with the difference
between their TDDFT(BLYP) and TDDFT(B3LYP) calculated spectra are outputs. Once optimised, the predicted difference is
added to the TDDFT(BLYP) spectrum to recreate a spectrum equivalent to TDDFT(B3LYP). Reproduced from [203]. CC BY 4.0.

Figure 16. Ground state (black) and transient Rh L3 spectra at 250 fs (orange), 10 ps (blue) and>190 ns (green) of
cyclopentadienyl rhodium carbonyl, CpRh(CO)2. (a) Experimental spectra reproduced from [208]. (b) Spectra calculated using
TDDFT(BLYP), (c) TDDFT(B3LYP) and (d)∆-Learning model. The dashed line represents zero intensity. Reproduced from
[203]. CC BY 4.0.

TDDFT(BLYP) and TDDFT(B3LYP) computed spectra, providing a composite method for obtaining
accurate core-hole spectra at reduced computational cost, as µ(E)H can be achieved using µ(E)L and the
predicted∆(E)ML from the developed model. The accuracy of this approach, shown in figure 16, is
demonstrated by simulating Rh L3-edge spectra tracking the C-H activation of octane by a cyclopentadienyl
rhodium carbonyl complex [208], where we demonstrate the∆-learning model can accurately reproduce the
TDDFT(B3LYP) spectra at TDDFT(BLYP) cost.
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Future developments in this area should prioritise the expansion of this approach, with particular
attention to enlarging both the training dataset and the∆, i.e. the disparity in quality between the lower and
higher-level quantum chemistry methods. Indeed, in this respect, the p-DOS representation developed by
Middleton et al [116] could be classed as a∆-learning scheme as it involves translating an input closely
related to the single particle spectrum within the dipole approximation to a higher-level of theory. This
approach shows significant promise, although requires further testing across a broader profile of
applications. Furthermore, considering that the∆ values aim to address deficiencies in the underlying theory
linked to the lower-level methods, it may be feasible to discern patterns. In such instances, as exemplified in
section 3.2, representing the∆s as a reduced number of principal components could streamline the
network’s operations.

5. Developing accurate training sets

The performance of any model will only ever be as good as the training data with which it is developed.
Indeed, to replicate spectral features accurately, high-quality training data must be supplied which covers a
representative proportion of the feature space of interest. As identified in the previous section, a significant
challenge associated with developing accurate training sets is scale. The quantity of experimental data
available is simply insufficient and, therefore, datasets are presently generated using theoretical calculations.

To date, ML models in x-ray spectroscopy have used available structures and spectra. However, to
continue progress in this area, an increasing focus needs to be placed on developing accurate training sets.
For those based on computational spectra, there are three main considerations: (i) the computational level of
theory used, (ii) the sampling approach for choosing additional systems to include in the training set, and
(iii) the training strategy. For the computational level of theory, the field has witnessed significant progress
across the last decade [23], so it is now possible to calculate x-ray spectra using a hierarchy of methods
meaning the principal bottleneck is scale, which could be addressed using efficient sampling and training
strategies. There are myriad methods and examples in the literature to sub-sample and train the ML models
[209–224], yet few have explored this avenue for developing training sets for ML in x-ray spectroscopy.

Figure 17 (grey points) shows the performance of the XANESNET MLP model developed for the Pt
L3-edge [110] as a function of training set size when using four different sampling techniques, namely
random sampling (RS), furthest point sampling (FPS) [211], similarity-based sampling (SBL) [210] and
uncertainty based active learning (AL) sampling [213]. The datasets and input files for this data are available
at [45]. Starting from an initial training set of 1000 randomly selected samples, the first approach increases
the training set size based upon randomly selecting additional samples, while the furthest-based sampling
and similarity-based sampling calculate the Euclidean distance between the samples in the training set and
add new samples based upon those furthest away or closest to the existing samples. Finally, uncertainty-based
learning uses the bootstrapping technique (section 7) to establish and add samples that exhibit a large
uncertainty and therefore are likely to be poorly represented within the training set. All examples exhibit a
rapid decay, followed by a slower progress after ~4000 structure-spectra pairs. The furthest point sampling
provides the lowest mean squared error when 16 000 samples have been added to the training set.

Beyond simply the size of the training set, the training strategy can influence the performance of the
models. For the data in figure 17 (grey points), each point is essentially independent in the sense that it is
derived from a model trained with that number of samples, without knowledge of previous models for
smaller training sets. In contrast, figure 17 (black) shows the effect of using curriculum learning (CL) [215,
216] to train the models. CL is a strategy that aims at training an ML model from easier data to more
complex data, which imitates the meaningful learning order in human curricula. For x-ray spectroscopy, it is
not immediately apparent what constitutes an easy or difficult x-ray spectrum to learn [203]. Consequently,
the curriculum is developed based on the sampling strategies discussed in the previous paragraph. Here each
model is initiated using the optimal weights of the previous model and consequently, aligned with the
fundamental idea behind CL, the complexity of the model, defined as the size of the training set, is gradually
increased throughout training. By building upon the existing model, the subsequent models inherit the
benefits and insights gained from the previous training iterations. The results of figure 17 (black points)
show that all sampling methods have a distinct advantage with the CL approach, for samples greater than
4000, with the largest influence being observed for the uncertainty-based sampling. In addition to the
significant improvement, this learning curve for the uncertainty-based sampling also retains a significant
gradient at 16 000 samples suggesting that increasing the size of the training sets can still yield sizeable
increases in performance.

Overall, this section has highlighted some of the strategies used in the literature to develop and refine
training sets. While this is highlighted for a specific example, i.e. the Pt L3-edge, these have been rarely
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Figure 17. Performance of the DNN in terms of the loss function, MSE, of the DNN model as a function of training set size for
the Pt L2-edge training dataset with (black) and without (grey) using CL in the training process. The upper left, upper right, lower
left, and lower right panels show the performance after sampling with Random Sampling (RS), Furthest point sampling (FPS),
Similarity-based learning (SBL), and active learning (AL) respectively. All results presented are obtained from five-times-repeated
five-fold cross-validation.

applied and/or investigated in detail for x-ray spectroscopy, and consequently this represents an area for
development in this field.

6. Interpreting model behaviour

A key limitation associated with the use of ML models is that they are often used in a black-box manner and
therefore the rationale behind predictions, i.e. spectral interpretation, is not obtained. As the fundamental,
principal power and draw of ML algorithms, particularly deep networks, is that they are able to extract and
encode higher-dimensional patterns and relationships within datasets which are non-trivial for human
beings to perceive and interpret (i.e. they derive connections which naturally resist perception via human
intuition), creating any digestible, rationalisable interpretation of the algorithm’s behaviour, during either
training or application, naturally presents a non-trivial challenge. The philosophical question of how to
define trustworthy, cogent metrics of interpretability for any given machine algorithm is extant within ML
generally, and remains a lively topic of general discussion [225]. Nevertheless, in the field of computational
spectroscopy, one of the key objectives is not simply to provide a calculation that agrees with the experiment,
but to permit a detailed interpretation of the peak assignments or the physical origin of changes observed
between samples. Consequently, understanding and explaining the performance of a network, without the
use of additional first-principles theoretical calculations is a key challenge. Indeed, for end users
interpretability is important for the contextualisation of results and for developers, it provides a means to
interrogate whether the models are getting the correct prediction for the ‘right reasons’. Therefore, ML
researchers for spectroscopy have implemented several such techniques in order to better enable informed
decision-making and effectual application of ML models for developers and users.

Several such strategies have been created to make models interpretable, as discussed in [226, 227]. These
can be divided into two groups, model-specific and model-agnostic (or model-independent) strategies.
Methods can also provide local explanations, i.e. inform why a model has made a specific prediction.
Alternatively, global explanations can inform, in a general sense, why a model behaves as it does. However,
despite its importance, there are relatively few applications of interpretability applied within the context of
x-ray spectroscopy [126, 127, 130, 132, 228].
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Figure 18. Relative importance of the G2 wACSF terms as a function of distance from the absorbing atom for high- and
low-energy spectral regions at the Fe K-edge. Positive differences indicate a stronger importance of these distances to high-energy
spectral features, while negative differences indicate a stronger importance of low-energy spectral features. Reproduced from [92].
CC BY 4.0.

The simplest insight into performance can be measured by reducing the number of input features and
assessing their influence on the performance of the model. For x-ray absorption this has been achieved using
the action of a variance threshold filter, i.e. removing the features in order of which demonstrates the least
variance when averaged over the whole training set [92]. This will provide a global insight into the
importance of specific input features but provide limited insight for individual predictions. A similar global
perspective can be obtained using relative feature importance, assessed via scrambling the values of each
input feature over the reference dataset and assessing the performance penalty. Using this approach, figure 18
assesses the difference feature importance as a function of distance from the absorbing atom for high- and
low-energy spectral regions at the Fe K-edge [92]. Indeed, if the difference feature importance is positive, it
indicates that this region is more important for the high-energy spectral region. In contrast, if the difference
feature importance is negative the distance is more important for the low-energy spectral region. Figure 18
displays a general shift in the difference from positive to negative values as the distance from the absorbing
atom is increased illustrating that atoms closest to the absorbing atom are more important at the high energy
region, while the low energy region has a larger field-of-view. Crucially, this aligns with the underlying
physics: i.e. when core photoelectrons have low energy near the absorption edge they exhibit longer
wavelengths, and consequently this spectral region is more responsive to structural features that are located
farther from the x-ray absorption site. Conversely, in the higher-energy region, photoelectrons have greater
kinetic energy, leading to shorter wavelengths, and reducing the range of structural information they can
yield [10].

Although feature importance can offer insights, they can be misleading. A key challenge is that if high
levels of correlation exist between input features, if a feature is removed from the model, it may be
compensated for by a correlated feature, thus masking the true level of importance of the feature. An
alternative approach is Shapley analysis based on the SHAP method [30], which can also provide local
explanations, i.e. explain each prediction from the model. However, it should be stressed that this approach
does not remove the challenge of correlation between features. To illustrate this approach, figure 19 shows
the absolute SHAP feature importance (black), for predictions of the held-out Fe K-edge training set [161].
These are compared to the curved waved amplitude of 2 body multiple scattering pathways extracted from
the FEFF software (grey). Overall, there is broad agreement between the two, consistent with a model
mimicking the correct physics. This analysis is promising, but presently only includes the two body terms
and therefore future extensions should incorporate the influence of high-body MS expansions, which are
known to be important in the XANES spectra. In addition, a detailed analysis of how this interpretation is
correlated to the quality of spectral prediction should be established.

The aforementioned approaches have focused on structural representations. Recently Kotobi et al [126]
used a graph neural network combined with feature attribution to deliver interpretation in terms of a linear
combination of core-to-valence orbital transitions, comparable to information that arises from a quantum
chemistry calculation. Figure 20 shows an example of these attributions, which inform the interpretation of
each peak in terms of both the core (especially important when multiple absorbers contribute to the same
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Figure 19. Normalised G2 wACSF feature importance arising from the Shapley analysis (grey) and curved waved amplitude of 2
body multiple scattering pathways extracted from FEFF simulations. The upper three panels show K-edge XANES spectra from
the 0th–10th percentiles, i.e. the best performers when the held-out set is ranked by MSE. The center three panels show K-edge
XANES spectra from the 45th–55th percentiles, i.e. around the median. The lower three panels show K-edge XANES spectra from
the 90th–100th percentiles, i.e. the lowest performance. The six-character labels in the lower right of each panel are the
Cambridge Structural Database (CSD) codes for the samples.

space) and valence orbitals from which the transition derives. This work demonstrated excellent agreement
between core orbitals and spectral peaks, and although the performance slightly declined with valence orbital
assignment, the results remain highly promising for incorporating explainability into ML models, which
enables end-users to access insight into the physical origin of spectroscopic predictions.

Finally, it has been proposed that the attention mechanism [229], increasingly populated in modern ML
architectures, could potentially be used to provide interpretations visualisation of the attention weights that
have been used to interpret the performance of the model [230, 231]. However, some studies argue this is not
the case [232, 233] and therefore further work is required, especially in x-ray spectroscopy, where such
interpretation has not yet been applied.

7. Quantifying uncertainty

Accurate ML models are beginning to open up new possibilities to accelerate analyses in x-ray spectroscopy
while, through taking advantage of the recent developments outlined in section 6, simultaneously also
providing insight into interpretation. ML model performance remains nonetheless dependent on the quality
of the data that the ML models are trained with and, consequently—unless the training data cover as
completely as possible the relevant chemical space. Poor performance inevitably arises in some cases. The
ability to quantify accurately the uncertainty in ML model predictions is valuable, especially when provided
as a metric for (non-expert) users who may not be familiar with the (limited) coverage of the training data.
Fortunately, a number of approaches and metrics are available for quantifying uncertainty; in the domain of
chemical ML, examples can be found for, e.g. the design of experiments used to synthesise nanoparticles,
[234–236] the optimisation of the mechanical properties of materials, [237, 238] and, more generally, in the
space of molecular property prediction [239].
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Figure 20. Attributions (green) are compared with the ground truth of core (red) and virtual (blue) orbitals via area under the
curve (AUC) values for two peaks of an XAS spectrum predicted by the GATv2model in [126]. The model has higher AUC values
when a peak in the predicted spectrum follows the TDDFT result. Reproduced from [126]. CC BY 4.0.

Figure 21. Schematic of simple approaches for quantifying uncertainty in ML model predictions: (a) ensembling, (b)
Monte-Carlo dropout, and (c) bootstrap resampling as applied to a neural network. The red circles indicate neurons that are
dropped out of the neural network. Reproduced from [108]. CC BY 4.0.

Uncertainty in ML model predictions arises principally in two forms: aleatoric and epistemic [240]. The
former (aleatoric uncertainty) arises from incomplete training data, i.e. an ML model is used to produce a
prediction for an input outside the scope of the training dataset; the latter (epistemic uncertainty) arises from
model variability in the sense that there are multiple (similar) solutions to the task of optimising the ML
model weights and this introduces a degree of variability into the ML model that is built even when exposed
to the same training dataset. To attempt to address and quantify uncertainty, three approaches have been
applied in the domain of x-ray spectroscopy: (i) ensembling, [108, 147], (ii) Monte-Carlo dropout, [108]
and (iii) bootstrap resampling [108, 161]. All of these approaches are shown schematically in figure 21.

Ensembling (figure 21(a)) is discussed in the context of x-ray spectroscopy in [108, 147]; principally, it
involves the optimisation of multiple ML models using the same training dataset. Although each ML model
in the ensemble learns from the same data, each is instantiated probabilistically with a different set of initial
internal weights before learning, and the outcome is that the optimal internal weights of the trained ML
models all vary slightly. From the ensemble of probabilistically-instantiated ML models, the mean prediction
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Figure 22. Example K-edge XANES spectra for Fe-containing samples, where the solid grey is the average prediction and the light
grey shaded region represents±3σ. The ground truth spectrum is shown using the blue points, which become red when the
ground truth is outside the±3σ of the predicted spectrum. Reproduced from [161]. CC BY 4.0.

and standard deviation can be derived. Consequently, the ensembling method supplies metrics which are
able to quantify the uncertainty arising from intrinsicmodel uncertainty, and therefore also quantify
epistemic uncertainty. Monte-Carlo dropout (figure 21(b)) exploits probabilistic dropout during prediction,
where the model variability derives from the use of dropout during prediction in addition to during training
[108]. Finally, bootstrap resampling [108, 161] (figure 21(c)) serves as a method for estimating statistics on a
population by repeatedly drawing samples from a dataset, with replacement of samples at each repetition.
The advantages of this approach are most clearly observed when characterising the uncertainty associated
with incomplete training data. The bootstrap-sampled reference datasets, which are of the same size as the
original and therefore will contain duplicates, introduce dataset diversity to each instance of the ML model
and consequently, the multiple models used can again be used to predict the mean prediction and standard
deviation of spectral predictions.

Figure 22 exemplifies the performance of the uncertainty quantification at the Fe K-edge [161]. This
clearly shows that uncertainty increases as the quality of the predictions decreases, especially for the lowest
three panels. Indeed, in [161] the authors showed that±3σ from the predicted spectrum covered>90% of
the points in the truly calculated spectra and therefore could be reliably used to assess the quality of any
prediction. Importantly, consistent with previous work [147], the model also exhibited a slight
underconfidence, in that it was more likely to provide a large uncertainty for the good prediction than vice
versa. Underconfidence was most commonly observed when linear bonds, such as CO or CN were present in
the sample. This clearly highlights a limitation of the model for capturing the well established focusing effect
on x-ray spectra.

8. Applications: interpretation of disorder and time-resolved experiments

In this section, we will explore the performance of the ML methodologies discussed above through a curated
selection of case studies. The advantage of ML methodologies in x-ray spectroscopy is most obvious when a
large number of computational x-ray spectroscopic simulations are required to describe satisfactorily the
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Figure 23.MCR analyses of (a) Cu3Pd, (b) Cu4Pd, and (c) Cu4 resolved into pure species. Temperature-dependent concentration
profiles obtained by MCR for (d) Cu3Pd, (e) Cu4Pd, and (f) Cu4. Reprinted with permission from [258]. Copyright (2021)
American Chemical Society.

system under study: the clearest examples of such cases are when the x-ray spectra contain dynamical
information, either as a consequence of the intrinsic disorder of the system under study or during
time-resolved studies in which dynamics are (photochemically) induced. Indeed, such studies often require a
large number of configurational ‘snapshots’ [241–253] of the system to be sampled [e.g. from a molecular
dynamics (MD) simulation] to describe adequately the x-ray spectrum. This is a time- and
resource-intensive task for first-principles simulations but can be addressed using ML algorithms [130, 145,
146, 156, 162, 174, 254–257] that alleviate the bottleneck associated with computing the x-ray spectra for all
of the sampled configurations.

8.1. Dynamics of size-selected CuxPdy clusters during catalysis
Size-selected clusters are important model catalysts and establishing structure-activity relationships for such
species is a key step towards mechanistic understanding. In [258], Liu et al studied propane oxidation
reactions using size-selected CuxPdy clusters. Interpretation of experiments like those carried out by Liu et al
is often challenging owing in part to the small sizes of the clusters and in part to the continuous structural
changes occurring under reaction (e.g. operando) conditions. In this work, the authors used multivariate
curve resolution (MCR) analysis to identify the different phases (figures 23(a)–(c)) of each cluster and to
quantify their concentration under operando conditions as a function of temperature (figures 23(d)–(f)).

Liu et al [258] further developed a CNN to predict the coordination numbers of the clusters which, given
their small sizes, can be conveniently connected to their structure [80]. Their CNN was trained upon
calculated spectra, obtained using MS calculations as implemented within the FEFF package. For this specific
case, the authors were able to demonstrate a strong agreement between calculated and experimental spectra
which enhances the accuracy of the network. Based upon this approach, the authors were able to extract the
chemical states and compositions of the clusters, along with information about their structures, which could
be correlated to their catalytic activity and selectivity.

8.2. Structural changes during reduction of polyoxometalates
Owing to their ability to store reversibly multiple electrons, polyoxometalates (POMs) [259] are appealing
materials for the electrochemical storage of energy and, consequently, have been both employed in redox
flow batteries [260] and as an alternative to carbon-based cathodes in molecular cluster batteries [261]. To
improve the performance of energy storage materials like these, it is crucial to understand the electronic and
geometric structural properties that govern their redox behavior. Figure 24 shows a comparison between an
experimental [262] and DNN-predicted Mo K-edge XANES spectrum of PMo123−, [145] and also presents
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Figure 24. (a) Experimental (Wang et al [262]) Mo K-edge XANES spectrum of the charged PMo123− POM (dashed) and
operando (Wang et al [262]) Mo K-edge XANES spectrum recorded during discharge with a cell voltage of 2.5 V (solid). (b)
DNN-predicted ensemble-averaged Mo K-edge XANES spectra for PMo123− (dashed) and PMo1215− (solid) obtained using a
nuclear ensemble of 65 000 QM/MMMD snapshots. Reprinted from [262], Copyright (2021), with permission from Elsevier.

the in-operando-acquired Mo K-edge XANES spectrum during active discharging [262]. These x-ray spectra
are challenging to model computationally for a number of reasons, not least because of the dynamic nature
of POMs, coupled with their strong interaction with the solvent environment [263]. As such, configurational
sampling via MD simulation provides the most statistically-reliable insight into their (ensemble-averaged)
properties and their x-ray spectra are most appropriately calculated computationally by sampling
configurations obtained through these MD simulations (i.e. under the nuclear ensemble approximation).

The key spectral changes accompanying discharge of PMo123− (figure 24(a)) can be summarised in four
points: (i) a loss in pre-edge intensity associated with the elongation of the Mo-O bond distances; (ii) a red
shift of the x-ray absorption edge; (iii) an increase in the white-line intensity; (iv) and a loss of intensity in
the spectral feature around ca. 20.06 keV. As Falbo et al discuss in [145], the DNN/MD ensembling approach
reproduces all of the key features observed in the experimental Mo K-edge XANES spectrum; this is not the
case if one computes the Mo K-edge XANES spectrum using only a single indicative equilibrium structure
(i.e. without configurational averaging via the nuclear ensemble approximation). The red shift of the x-ray
absorption edge is associated with the reduction of the Mo sites in PMo123−, the consequence of which is a
lowering of the binding energy of the core electrons. The decrease in pre-edge intensity is a response to the
lengthening of the Mo-O bonds in PMo123−, and the tendency of the O-Mo-O angles to adopt a more
right-angular geometry brings the (local) coordination environment around each Mo x-ray absorption site
closer to C4v symmetry, leading to a commensurate decrease in 4d/5p orbital mixing. Surprisingly, despite
strong solute-solvent interactions, the explicit modelling of the environment (e.g. the presence of Li+ and the
solvent) has no great effect on the Mo K-edge XANES spectra.

8.3. NN-EXAFS reveals oxygen evolution reaction (OER) mechanism of CoxFe3−xO4materials
Bimetallic transition metal oxides such as spinel-like CoxFe3−xO4 materials are attractive catalysts for the
OER in alkaline electrolytes. However, there remains work to be done towards understanding the
catalytically-active state of these CoxFe3−xO4 materials; such information is crucial to guide the design and
development of further-improved catalysts. In [256], Timoshenko et al applied operando quick EXAFS
(QEXAFS) at the Co K-edge to study the structural changes and phase transitions taking place in these
CoxFe3−xO4 catalysts under operational conditions. The authors performed PCA analysis of the Co K-edge
x-ray spectra over the whole time domain and reported that only four principal component vectors were
sufficient to describe the entire dataset. Using the distinct differences between the principal component
vectors, the authors were able to propose structural/chemical changes consistent with their observation.

To support their analysis, the authors also used the NN-EXAFS [80, 264] approach (figure 25) to
investigate the evolution of the (local) structure (including concentration, coordination numbers, and bond
lengths) around the Co x-ray absorption sites during active catalysis. This NN is developed using calculated
data and applied to experimental data to extract the aforementioned spectral details. Their NN-EXAFS
indicated that the local structural environment around the tetrahedral Co2+ sites could be characterised as a
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Figure 25. Evolution of the (local) structure parameters associated with Co x-ray absorption sites in (a) CoOx , (b) Co2.25Fe0.75O4,
(c) CoFe2O4, and (d) Co0.25Fe2.75O4 under oxygen evolution reaction conditions (e.g. in operando) as obtained using QEXAFS.
The (local) structural parameters were extracted by integrating PDFs obtained via an NN-EXAFS analysis. Reproduced from
[256]. CC BY 4.0.

disordered spinel-like structure. Alongside their PCA analysis, the authors concluded that these catalysts
exhibit a segregated structure in which an Fe-rich but electrochemically-passive phase coexists with a
catalytically-active Co-rich phase. For the latter, NN-EXAFS demonstrated the formation of active sites
exhibiting Co3+ octahedra. Besides the significant catalytic insight, this work highlighted the strength of the
NN-EXAFS approach and its suitability for aiding the interpretation of dynamical data from disordered
samples in operando: indeed, the QEXAFS experiment provides a large quantity of data, presenting a
particular challenge for traditional analyses, yet a NN-EXAFS analysis can be carried out within seconds
(after the neural network has been trained).

8.4. On-the-Fly deep neural networks for simulating time-resolved spectroscopy
ML can also be applied to dynamical data acquired on a much faster timescale, opening up the possibility for
ML-aided interpretation of experiments using ultrashort and ultrabright x-ray pulses at X-FELs. Figure 26
shows the performance of a DNN applied in such a case to a proposed time-resolved x-ray experiment [162].
Middleton et al [162] used a DNN to simulate the experimental S K-edge XANES signal using excited-state
MD simulations of the ring-opening mechanism of the small cyclic disulphide 1,2-dithiane [265]. The DNN
was trained on-the-fly from first-principles computational data with a train-test process that was repeated
through the timesteps of the excited-state MD simulation until such a time as the predicted S K-edge XANES
spectra could be produced with sufficient accuracy to replace the computationally-intensive quantum
chemical calculations. Middleton et al demonstrated that ca. 100 fs of excited-state MD simulation provided
sufficient first-principles computational data to train the DNN which was then able to predict accurately and
affordably the S K-edge XANES spectra at future (i.e. unseen) times.

Figures 26(a) and (b) show a comparison between the calculated and DNN-predicted S K-edge XAS
spectra from 110 fs (i.e. the time that the DNN was trained up until) to 900 fs. There is good agreement
between the two, and the DNN captures the periodic behavior observed in both spectral bands which are
associated with changes in electronic state populations and changes in the S-S internuclear distance.
Figures 26(c) and (d) present a more detailed evaluation of performance by illustrating the ability of the
DNN to produce predictions reliably for an individual trajectory. This scenario exhibits more pronounced
shifts in the predicted spectra compared to predictions on the entire ensemble of trajectories (figures 26(a)
and (b)), which is attributed to the incoherent nature of the extended temporal dynamics of 1,2-dithiane.
Despite the higher resolution of the spectra for the single trajectory, there is still a notable accord between the
computed and predicted spectra.

For this test case, it is clear that the use of structural and spectral data up until 110 fs is sufficient to train
the DNN as the (photo)dynamics of dithiane after S-S bond fission are principally expressed within this
period. Through analysis of the magnitude and positions of the spectral features alongside the geometric
distortions, the authors showed that the majority of the geometric and spectral (i.e. input and output) space
has been traversed by the 110 fs mark, facilitating the DNN to predict the x-ray spectra for future times,
where most geometries fall within this space. However, for future applications where the selection of training
data required to achieve convergence may be less intuitive, it has been demonstrated that the ensemble
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Figure 26. Time-resolved S K-edge XANES spectra associated with the ultrafast excited-state ring-opening dynamics of
1,2-dithiane. (a) Calculated using REW-TDDFT at the DKH-BP86/def2-TZVP level. (b) Predicted using the XANESNET DNN.
Plots are shown for unseen data from 120 fs onwards; the XANESNET DNN was trained on the data from all timesteps up until
120 fs. Example spectra for a specific trajectory calculated using REW-TDDFT at the DKH-BP86/def2-TZVP level and predicted
using the DNN are shown in (c) and (d), respectively. Reproduced from [162]. CC BY 4.0.

approach to quantify DNN uncertainty (as described in section 7) can be employed to gauge the
performance. The ensembling technique presents a robust method for determining whether the DNN is
trained satisfactorily to produce reliably the key features of the x-ray spectra.

9. Conclusions

Rapid advances in instrumentation and experimental methodology, coupled with increasing data acquisition
rates and ever-improving spectral and spatiotemporal resolution, have pushed the envelope considerably in
x-ray spectroscopy, transforming the technique beyond recognition. These developments have not only
widened the accessibility and applicability of x-ray spectroscopy but have enabled novel experiments utilising
the ultrashort and ultrabright x-ray pulses available at X-FELs. Underpinning the qualitative and quantitative
interpretations of the experimental data, computational spectroscopy has become an increasingly important
tool to complement these experiments and has, in itself, been driven forward in response to the challenges
presented by experimental developments. While computational x-ray spectroscopy has, to date, focused
primarily on the development of ever-faster and ever-better first-principles computational chemical
techniques, machine-learning methods are beginning to emerge and expand the scope and reach of data
analysis.

In this Topical Review, we have detailed recent developments in machine-learning methods for
computational x-ray spectroscopy, exploring each step of the workflow from the underpinning theory which
the machine-learning models are tasked with replicating to the preparation of the datasets and optimisation
of the models, the interpretation of their outputs, and the quantification of their uncertainties. It is clear that
recent research efforts in this space have led to significant progress; machine-learning approaches are now
capable of ‘forward’ (structure→ spectrum) and ‘reverse’ (structure← spectrum) mappings between
structure and x-ray spectroscopic observables across multiple x-ray absorption edges, elements, and
experiments.

While these works illustrate the significant progress achieved, they also highlight extensive opportunities
to enhance the application of ML techniques for x-ray spectroscopy. In particular, for forward-mapping ML
models, a need remains to develop accurate training sets that cover chemical space satisfactorily to enable the
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MLmodels that make use of them to be applicable with genuine generality across a broad range of practical
problems. However, these training sets also need to be able to capture spectral trends associated with minor
structural changes if these ML models are also to be used for the fitting of experimental x-ray spectra. For
reverse-mapping ML models, the key challenge relates to identifying and handling appropriately the
mismatches (arising from limitations of the underlying theory) between the theoretical x-ray spectra used
during training and the experimental x-ray spectra to which these ML models are most usefully applied.
Progress in each of these domains will significantly increase the quantity and quality of information that can
be extracted from experimental spectra using forward- and reverse-mapping ML models, providing
unparalleled support for direct experimental data analysis in x-ray spectroscopy.
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