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Abstract—Due to the rapid growth of smart devices and
5G technology increase the requirement of computational
tasks, unmanned aerial vehicles (UAVs) assisted Mobile Edge
Computing (MEC) networks are designed to improve the task
processing by reducing latency. Considering the necessity to
complete the task quickly, the UE must seamlessly handover
(HO) to the optimal BS, which may lead to frequent HO.
This paper introduces a Fuzzy Inference System (FIS) based
HO decision-making scheme for UAV-assisted Mobile Edge
Computing (MEC) networks, addressing the increasing demand
for computational tasks. At first, the proposed method optimizes
HO decisions using RSS, distance, and number of serving users.
Then, it employs a two-layer FIS to select the target base
station (BS), considering SINR, time of stay (ToS), distance, and
user connectivity. Simulation results demonstrate the FIS-based
method can achieve less HO frequency and task delay compared
to RSS-based and TOPSIS-based schemes.

Index Terms—UAV, mobile edge computing, fuzzy inference
system, handover, task delay

I. INTRODUCTION

The rapid growth of smart devices and the evolution

of 5G technology increase the demand for computationally

intensive services, burdening mobile service providers [1].

Traditional cloud data processing faces challenges due to

increasing real-time tasks, prompting the adoption of Mobile

Edge Computing (MEC) to reduce latency [2]. In MEC,

mobile edge nodes, typically situated at base stations (BSs),

offer proximity to user equipment (UEs) in Heterogeneous

Networks (HetNets) [2]. Unmanned aerial vehicles (UAVs) are

integrated into HetNets to enhance communication services

cost-effectively, leveraging air-to-ground (A2G) channels for

line-of-sight (LoS) links with ground UEs [3]. UAVs are

enabled to handle processing and storage tasks, promoting the

appearance of UAV-assisted MEC networks [3].

MEC can be used to meet the requirement of faster

and efficient data processing responses. There are several

existing studies about optimising the task offloading in

UAV-assisted edge computing network. [4] addresses task

delay minimization in UAV-aided MEC networks through user

association and UAV deployment optimization. Additionally,

[5] presents a framework for minimizing total task delay and

proposes joint computing offloading and resource allocation,

considering varying BS computing capacities. Furthermore,

[6] proposes a game-theoretic approach to minimize energy

consumption and time latency, achieving optimal computation

offloading decisions with minimal system costs.

The existing literature emphasizes task processing

performance. Yet with the integration of edge servers into

BSs, the BSs assume dual roles as communication nodes and

edge server. Consequently, selecting the target BS entails

considerations beyond task response delay, encompassing

communication quality while UEs are in motion. The link

quality between UEs and BSs is affected by the motion

of UEs, and the allocated CPU cycles are fluctuated over

time, therefore, UEs may need to initiate handovers (HO)

to connect to better BSs. Given the importance for swift

task completion, UEs must seamlessly HO to an optimal

BS, potentially increasing the number of HOs. HO involves

transferring an ongoing call or data session from a serving BS

to a target BS without degrading service quality. However,

frequent HOs pose challenges such as increased signaling

overhead, elevated call drop rates, and packet loss. Hence,

finding a balance between short task response times with less

number of HOs is essential.

Motivated by the observation of HO issues above, this

paper presents an fuzzy inference system (FIS) based HO

decision-making scheme to tackle this issue. The method

employs a FIS to optimize HO decisions based on three

criteria: Received Signal Strength (RSS), distance, and the

number of serving users. Upon HO triggering, a two-layer

FIS is deployed to select the appropriate target BS considering

candidate BS criteria such as Signal-to-Interference-plus-Noise

Ratio (SINR), distance, Time of Stay (ToS), and the number

of connected users. This approach aims to reduce both the

number of HOs and task delays effectively.

The rest of paper is organized as follows. Section II presents

the system model, and in Section III, the proposed scheme is

introduced. Section IV shows the performance and the results

analysis. Finally, the paper is concluded in Section V.979-8-3503-7786-6/24/$31.00 © 2024 IEEE



II. SYSTEM MODEL

A. UAV assisted mobile edge computing system

Usually, MEC is deployed close to the users. In rural,

the different BSs are suitable to integrate edge servers, and

UAVs are hovering beyond the terrestrial facilities to assist

the network [4]. As shown in Fig. 1, this paper investigates

a three-tier UAV-assisted MEC system with K BSs, including

small BSs (SBSs) distributed within the coverage area of an

macro BSs (MBS), and UAVs deployed above. The MBS is

located at the centre of the area, and the SBSs and UAVs

are distributed following the Poisson Point Process (PPP)

with a specific density λs and λu. These BSs, irrespective

of their type, are equipped with communication and edge

computing capabilities for data transmission and local data

processing. Both MBS and UAVs operate within the LTE band

to ensure wide-area coverage, while SBSs utilise millimeter

wave frequencies to support high data rates and massive

connectivity. Each BS is equipped with a central processing

unit (CPU) for edge computing tasks. Also, there are M
Ground UEs randomly distributed and offload computing tasks

to BSs.

Fig. 1. Model of three-tier UAV assisted MEC system.

B. Propagation model

In this model, two types of data transmission are considered:

downlink for communication service and uplink for edge

computing. The network integrates ground BSs and UAVs,

using both ground-to-ground (G2G) and air-to-ground (A2G)

channels. A2G channels consist of line-of-sight (LoS) and

non-line-of-sight (NLoS) links, determined using a ray tracing

model [7]. Obstacles are randomly generated following a

Poisson distribution with density β, and building heights

follow a Rayleigh distribution with scale parameter κ. A link

is LoS if there are no obstacles blocking the path; otherwise,

it is NLoS.

Path loss is a crucial metric to measure the quality of a

channel. According to [8], the calculation of the path loss of

the LoS and NLoS links are given below:

PLLoS = 30.9 + 20 log10 (fc)

+ (22.25− 0.5 log10 (hU )) log10 (d3d),
(1)

PLNLoS = 32.4 + 20 log10 (fc)+

(43.2− 7.6 log10 (hU )) log10 (d3d),
(2)

where fc is the carrier frequency, hU is the height of the

UAV and d3d is the distance between the ground UE and the

UAV in 3D environment.

However, the G2G path are usually blocked by terrestrial

obstacles, therefore, it is assumed that G2G channels are

NLoS. From [9], the path loss model of G2G channels for

SBSs and MBSs can be given as:

PLG2G = 32.4 + 20 log10 (fc) + 30 log10 (d3d). (3)

C. Task Model

In this model, all tasks are generated by ground UEs and

offloaded to BSs for processing, and each task can only be

transmitted and processed in its entirety. We assume the CPU

in each BS has the same operating frequency, which is fm
cycles per second. For a specific BS, the computation capacity

for each offloaded task is equally distributed. To describe a

specific jth task Uij of UE i, we define a 2-tuple as Uij =
(Dij , Cij), where Dij represents the data size and Cij is the

total number of the CPU cycles.

Task delay consists of transmission time and execution time.

The task data is transmitted via uplink channel. Thus, the data

rate of uplink channel is expressed as [10]:

rik =Bi × log2

(

1 +
hiPi

Bin0

)

,

∀i = {1, 2, ...,M}, ∀k = {1, 2, ...,K},

(4)

where Bi denotes the channel bandwidth of UE i, Pi denotes

transmission power of UE i, hi is the channel power gain and

n0 the noise power spectral density. For complex environments

with various obstructions, hi is described using Rayleigh

fading model as below. When the channel is LoS, the channel

power gain is denoted by [10]:

hlos
i = g0 × d3d

−αlos , (5)

and the channel power gain for NLoS channel is represented

as:

hnlos
i = g0 × d3d

−αnlos × ζi, (6)

where g0 denotes the reference channel power, ζi denotes the

Rayleigh fading coefficient, and αlos and αnlos are the path

loss exponent for LoS link and NLoS link respectively.

Then, the transmission time of task j from UE i to BS k
can calculated as:

TTr
ij =

Dij

rik
, ∀i = {1, 2, ...,M}, ∀{k = 1, 2, ...,K}, (7)

After the transmission, the data is executed by a BS k. The

execution time of task Uij can be calculated as:

TE
ij =

Cij

fm
Nk

, ∀i = {1, 2, ...,M}, ∀k = {1, 2, ...,K}, (8)



where Nk is the number of connected UEs of the BS k, and

fm is the CPU operating frequency. Thus, the task delay TD
ij

can be denoted by:

TD
ij = TTr

ij +TE
ij , ∀i = {1, 2, ...,M}, ∀k = {1, 2, ...,K}, (9)

D. HO decision criterion

1) Downlink RSS and SINR: RSS and SINR are the

important indicators to measure the quality of channels. The

RSS in dBm can be calculated by:

RSS = Pt +Gt +Gr − PL+ SF, (10)

where Pt represents the transmission power from the serving

BS, Gt and Gr denote the antenna gains of the transmitter

and receiver respectively. Additionally, PL stands for the path

loss as described previously, while SF signifies the shadow

fading, which follows Gaussian distribution with a mean of 0

and a standard deviation denoted by σSF :

SF ∼ N (0, σSF ). (11)

The values of σSF for LoS A2G, NLoS A2G and G2G

channels are given below [11]:

σLoS
SF = max(5× e(−0.01×hU ), 2), (12)

σNLoS
SF = 8, (13)

σG2G
SF = 7.8. (14)

Downlink interference arises from neighboring BSs. In our

system model, there exists one MBS, Ks SBSs, and Ku UAVs.

When user equipment (UE) i is served by BS k′, which could

be any of the MBS, SBSs, or UAVs, and given that the carrier

frequency of SBSs differs from that of the MBS and UAVs,

the interference of SBSs, UAVs and MBSs, which are denoted

as Isi , Iui , and Imi respectively, can be expressed as follows:

Isi =

Ks
∑

k=1,k ̸=k′

RSSk
i , (15)

Iui =

Ku+Km
∑

k=1,k ̸=k′

RSSk
i , (16)

Imi =

Ku+Km
∑

k=1,k ̸=k′

RSSk
i , (17)

where Km is the number of MBS, which equals to 1, k
represents a BS. Therefore, SINR is given by:

SINRk′

i =
RSSk′

i

Ik
′

i + σn
2
, (18)

where Ik
′

i represents the interference of the path from BS k′

to UE i, and σn is noise power, which can be calculated as:

σn = 10−3 × 10(−174+10×log10
B

k
′

i )/10, (19)

where Bk′

i is the allocated bandwidth of UE i from BS k′.

Fig. 2. UE is moving through a BS coverage.

2) Time of Stay: The ToS denotes the duration for which

a UE remains connected to a BS. If the ToS of the target BS

is insufficient or even zero, it will potentially result in task

failures as UEs cannot receive task outcomes. As depicted in

Fig 2, a UE can be positioned at A, B, or C while traversing

a BS. The respective ToS at each position is represented as

follows:

ToSA =
2×RBS ×

√

1− (d2d×sin(ωA)
RBS

)

vUE
, (20)

ToSB =

√

RBS
2 − (d2d × sin(ωB)

2
) + d2d × cos(ωB))

vUE
,

(21)

ToSC =

√

RBS
2 − (d2d × sin(180− ωC)

2
)

vUE

−
d2d × cos(180− ωC))

vUE
,

(22)

where RBS represents the radius of the BS, d2d denotes the

distance between the UE and the BS in a two-dimensional

environment, while ωA, ωB , and ωC signify the angles formed

between the trajectory of the UE and the connection line

between the UE and the BS, measured in degrees.

III. PROPOSED FUZZY INFERENCE BASED HANDOVER

SCHEME

A. Overview of the proposed method

In the context of UAV-assisted MEC systems, we propose

a HO decision-making scheme based on FIS principles. At

first, all inputs of FIS will be mapped into a fuzzy set, which

is a set of degree descriptions, according to the membership

function. Then, Using the If-Then rules in Knowledge base,

it performs reasoning by producing a fuzzy output. At last,

it converts the fuzzy output given by the output membership

function to produce a real-valued output [12]. The primary aim

of our method is to address the dual challenge of reducing

the frequency of HO events while minimizing task delay,

thereby enhancing the efficiency of both HO management and

edge computing operations. Fig. 3 illustrate the process of the

proposed algorithem.



Fig. 3. Process of the proposed algorithm

Our method comprises two main components: HO

decision-making and BS selection. In the HO decision-making

stage, various factors are considered to determine whether

a HO event should be initiated based on the quality of the

network. A FIS evaluates factors including RSS, distance,

and the number of serving users to determine whether

HO should take place. Through an FIS model, these input

variables are dynamically analysed to produce an output

representing the tendency for HO. If the FIS output surpasses

a threshold, indicating potential degradation of connectivity,

HO is activated. Algorithm 1 outlines this process.

Algorithm 1 First Stage: HO Decision Making

1: Input: RSS, Distance, Users Number

2: Output: HO Decision

3: HO Tendency ← FuzzyInference(RSS, Distance,

Users Number)

4: return HO Tendency

5: if HO Tendency > Threshold then

6: HO Occurs ← True

7: BS Selection()

8: else

9: HO Occurs ← False

10: Stay with current BS

11: end if

In the BS selection phase, a multi-level FIS evaluates key

criteria including SINR, ToS, distance, and user connectivity at

each BS. Two FIS modules in the first layer operate in parallel,

with their outputs aggregated and fed into a higher-level FIS in

the second layer. This comprehensive assessment generates a

rating for each candidate BS, indicating its suitability to meet

the UE’s needs. Algorithm 2 illustrates this process.

Algorithm 2 Second Stage: BS Selection

1: function BS SELECTION

2: Input: SINR, ToS, Distance, Serving Users

3: Output: Best BS

4: Criteria 1 ← FIS1(SINR, ToS)

5: Criteria 2 ← FIS2(Distance, Serving Users)

6: Rating ← FuzzyInference(Criteria 1, Criteria 2)

7: Best BS ← ChooseBestBS(Rating)

8: return Best BS

9: end function

(a) RSS (b) Distance

(c) Number of Serving Users (d) HO Tendency

Fig. 4. Membership function of HO decision-making FIS

B. FIS details

1) membership function: In the FIS, the goal is to enhance

both HO decision making and BS selection performance

simultaneously. Fuzzy logic employs partial membership to

categorize criteria instead of strict thresholds. In this approach,

criteria values are assigned membership degrees, which allow

them to belong to multiple categories to varying extends. These

membership degrees are then used to define the membership

function.

At the HO decision-making stage, inputs include RSS,

distance, and number of serving users, and the output is the HO

tendency. Fig. 4 displays corresponding membership functions.

For RSS, “Low” is assumed below -65 dBm, transitioning to

“High” beyond -75 dBm. Distance is assumed to be “Close” if

it is less than 300m and “Far” when it longer than 75m, while

for number of users, “Less” signifies a value below 20, and

“Many” indicates a value exceeding 10. During BS selection,

four inputs and three outputs are considered, depicted by

Fig. 5. The SINR is categorized as “Low” when its value falls

below -8 dB, “Medium” if it ranges from -15 dB to 2 dB,

and “Good” if it exceeds 0 dB. ToS is classified as “Long”

if it exceeds 0.7 seconds; otherwise it is considered “Short”.

Regarding the number of users and Distance, the membership

functions remain consistent with those of the first stage. All

output memberships are configured as triangular.

2) Fuzzy Rules: Fuzzy rules are proposed to take account

of all those key measurements. All the rules are defined

with IF-Then logical operation. Following the rules, the fuzzy

inference results can be generated by the inputs and the

membership function. After that, centre of gravity method is

used for defuzzification. Table I, Table II illustrate the four

FIS in the proposed method respectively.



(a) SINR (b) Time of Stay (c) Number of
Serving Users

(d) Fuzzy Result 1 (e) Fuzzy Result 2 (f) BS Rating

Fig. 5. Membership function of BS selection FIS

TABLE I
RULES OF HO DECISION-MAKING FIS

Input Output

NO. Distance RSS Users Number HO Tendency

1 Close High Many Stay
2 Close High Less Stay
4 Close Low Many HO
5 Close Low Less Stay
7 Far High Many Stay
8 Far High Less Stay
9 Far Low Many HO

10 Far Low Less HO

TABLE II
RULES OF BS SELECTION FIS 1, FIS 2 AND FIS 3

Input Output

NO. SINR ToS Fuzzy Result 1

1 Low Short Bad
2 Low Long Medium
3 Medium Short Bad
4 Medium Long Medium
5 Good Short Bad
6 Good Long Good

Input Output

NO. Distance User Number Fuzzy Result 2

1 Close Less Good
2 Close Many Medium
3 Far Less Medium
4 Far Many Bad

Input Output

NO. Fuzzy Result 1 Fuzzy Result 2 BS rating

1 Bad Bad Bad
2 Bad Medium Bad
3 Bad Good Bad
4 Medium Bad Bad
5 Medium Medium Medium
6 Medium Good Good
7 Good Bad Bad
8 Good Medium Good
9 Good Good Good

IV. PERFORMANCE AND RESULTS ANALYSIS

We evaluate the performance of FIS-based HO scheme by

comparing it with two alternatives: a RSS-based scheme and a

TOPSIS-based scheme. RSS-based approach is a conventional

scheme and widely used in mobile communication network,

while TOPSIS is a popular method for decision-making

problems with multiple criteria. In the RSS-based approach,

HO occurs when there is a BS with better RSS. In the

TOPSIS-based method, similar criteria are used, but the

top-ranked BS is chosen for HO. Simulations use a random

waypoint model for UE movement, with velocities ranging

from 1m/s to 5m/s. Tasks are generated every 10 seconds,

and their sizes follow a Gaussian distribution with mean

10× 105 and standard deviation σtask = 1× 106. Additional

simulation parameters are listed in Table III.

TABLE III
SIMULATION PARAMETERS

Parameters Values

Bandwidth (B)

BSBS = 500 MHz
BMBS = 20 MHz
BUBS = 20 MHz
Bue = 10 MHz

Transmit Power (Pt)

PSBS
t

= 35 dBm
PMBS
t

= 46 dBm
PUBS
t

= 20 dBm
Transmit Power of UEs(Pue) Pue = 0.1 W

Carrier Frequency (CF )
CFSBS = 28 GHz
CFMBS = 2 GHz
CFUBS = 2 GHz

Density of BSs (λ)
λs = 10 (10−6/m2)
λu = 10 (10−6/m2)

Density of Buildings (β) 100 (10−6/m2)

Radius of BSs (R)
RSBS = 50 m
RMBS = 1000 m
RUBS = 150 m

UE moving duration (L) 50 to 100 s

Height of BSs(h)
hSBS = 4 m
hMBS = 20 m
hUBS = 100 m

Scale Parameter (κ) 20
Number of UEs (M ) 100

CPU Frequency (fm) 1× 10
10

Reference Channel Power Gain (g0) 1.42× 10
−4

path loss exponent (α)
αLoS = 2.5 m
αNLoS = 3.5 m

A. Average Number of Handover

The average number of HOs of the three methods over

varying duration time is depicted in Fig. 6. This metric

represents the average count of HOs experienced by each UE

during their movement period. It’s evident that the number

of HOs increases over time for all methods. This is because

UEs are more likely to pass through cell boundaries with

longer movement. Fig. 6 illustrates the proposed FIS-based

method, denoted as “FIS”, experienced minimal HOs. It is

due to the various membership degrees of multiple criteria

that determine whether HO or not instead of a fixed threshold.

Conversely, because the TOPSIS-based method ranks BSs with



multiple criteria, the top-ranked BS changes more frequently

than RSS-based method, TOPSIS-based method causes the

higher number of HOs than RSS-based method.

Fig. 6. Average number of HO against moving time

B. Average Task Delay

The average task delay is measured by transmission and

execution time of all tasks per UE during their movement

period. The performance of average task delay is illustrated in

Fig. 7. As shown, the average task delay increases over time

for all methods. This is attributed to the higher task generation

rate over extended duration. As the proposed method can find

an appropriate balance between high quality service from BSs

and HO frequency, in comparison to alternative methods, the

proposed FIS-based approach achieves the shortest average

task delay. The TOPSIS-based method exhibits improved

performance over the RSS-based method, primarily due to

the consideration of multiple criteria in the TOPSIS-based

approach.

Fig. 7. Average task delay against moving time

V. CONCLUSION

This paper proposes an FIS-based HO decision-making

scheme for a UAV-assisted three-tier MEC system, consisting

of two stages: HO decision-making and BS selection. The

HO decision-making stage employs an FIS with three criteria

inputs to determine the HO tendency. The BS selection stage

employs three FIS modules in two layers. The first FIS involves

SINR and ToS, while the second FIS evaluates distance and

number of connected users. These fuzzy results are then used

as inputs for the third FIS to calculate the BS rating, then

the highest-rated BS is selected as the target BS. Simulation

results demonstrate the superiority of the proposed FIS-based

method in average number of HO and task delay compared

to RSS-based and TOPSIS-based methods. However, although

the method can achieve the good performance, the design of

it is mainly based on experience. More accurate and detailed

designs are required to optimise the results.
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