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Abstract 
Background.  Medulloblastoma (MB) is the most common malignant pediatric brain tumor, with 5-year survival 
rates > 70%. Cranial radiotherapy (CRT) to the whole brain, with posterior fossa boost (PFB), underpins treatment for 
non-infants; however, radiotherapeutic insult to the normal brain has deleterious consequences to neurocognitive 
and physical functioning, and causes accelerated aging/frailty. Approaches to ameliorate radiotherapy-induced 
late-effects are lacking and a paucity of appropriate model systems hinders their development.
Methods.  We have developed a clinically relevant in vivo model system that recapitulates the radiotherapy 
dose, targeting, and developmental stage of childhood medulloblastoma. Consistent with human regimens, age-
equivalent (postnatal days 35–37) male C57Bl/6J mice received computerized tomography image-guided CRT 
(human-equivalent 37.5 Gy EQD2, n = 12) ± PFB (human-equivalent 48.7 Gy EQD2, n = 12), via the small animal 
radiation research platform and were longitudinally assessed for > 12 months.
Results.  CRT was well tolerated, independent of PFB receipt. Compared to a sham-irradiated group (n = 12), ir-
radiated mice were significantly frailer following irradiation (frailty index; P = .0002) and had reduced physical 
functioning; time to fall from a rotating rod (rotarod; P = .026) and grip strength (P = .006) were significantly lower. 
Neurocognitive deficits were consistent with childhood MB survivors; irradiated mice displayed significantly worse 
working memory (Y-maze; P = .009) and exhibited spatial memory deficits (Barnes maze; P = .029). Receipt of PFB 
did not induce a more severe late-effect profile.
Conclusions.  Our in vivo model mirrored childhood MB radiotherapy and recapitulated features observed in the 
late-effect profile of MB survivors. Our clinically relevant model will facilitate both the elucidation of novel/target 
mechanisms underpinning MB late effects and the development of novel interventions for their amelioration.

Key Points

1. In vivo model system recapitulates the radiotherapy dose, targeting, and developmental 
stage of childhood medulloblastoma.

2. Irradiated mice display MB-like deficits to neurocognitive and physical functioning, and 
frailty, independent of receipt of PFB dose.

Intensified therapies for children with cancer have led to 
5-year survival rates approaching 85%1; however, this has 
come at a huge cost. Survivors have a high risk of developing 

life-changing or life-threatening late effects as a result of 
cancer treatment that affects the majority of physiological and 
psychosocial systems; examples include cardiotoxicity, renal 

In vivo modeling recapitulates radiotherapy delivery 
and late-effect profile for childhood medulloblastoma  
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toxicity, ototoxicity, endocrine impairment, subsequent 
malignancies, neurocognitive deficits, impaired neuro-
muscular function, and accelerated aging.2–6

Cranial radiotherapy (CRT), the mainstay of pediatric 
brain tumor treatment in non-infants, is a causative factor 
in lasting neurocognitive deficits, with survivors suffering 
intellectual disability, low levels of academic attainment, 
poor psychosocial satisfaction, and reduced independ-
ence in adulthood.7–9 Many survivors experience impaired 
physical functioning,10 and neurological difficulties such 
as ataxia and co-ordination disorders, as well as reduced 
fine motor skills.11 While these deficits present and persist 
in the years following treatment, others have a longer la-
tency; adult survivors of childhood brain tumors develop 
numerous co-morbidities12,13 and become more frail over 
their life course.14

Medulloblastoma (MB), the most common malignant 
pediatric brain tumor, is typically treated with high doses 
of craniospinal irradiation (CSI) including CRT (up to 36 Gy) 
with a posterior fossa boost dose (PFB; total dose up to 54 
Gy).15 CSI is omitted from treatment protocols for the very 
youngest patients due to its intolerable toxicity and late-
effect profile in this age group and is reserved for children 
aged over either 3 or 5 years, depending on national treat-
ment philosophies. High-dose CRT promotes the greatest 
intellectual impairment; the mean loss of IQ points is be-
tween 2.5 and 3.9 per year,16–18 reaching a plateau of im-
pairment around 2 standard deviations below average. 
70%–90% of this group demonstrate a significant impair-
ment in global intellectual functioning; many survivors ex-
perience attention deficits, slower processing speed, and 
impaired working memory,11,19–21 which are in turn strongly 
correlated with decreased quality of life.22–25

There is a critical need for the development of inter-
ventions to prevent or ameliorate the MB late effects that 
burden survivors throughout their adolescent and adult 
life.12,13 However, the development of such interventions 
is hindered by a lack of suitable experimental model sys-
tems. Previous in vivo cranial irradiation studies have typ-
ically failed to fully model pediatric brain tumor regimens 
(Supplementary Table 1). Many have been limited by a 
common tradeoff, which was either the use of clinically rel-
evant radiotherapy doses in adult mice26–32 or sub-relevant 
doses in juvenile mice.33–38 Furthermore, traditional ap-
proaches did not allow for the delivery of targeted cranial 

irradiation, and instead typically employed whole-head 
irradiation, incorporating vulnerable structures such as 
the ears, eyes, and mouth in the radiation field,27,33,39–42 
resulting in high levels of acute toxicity with little clin-
ical relevance.43,44 Moreover, non-targeted radiation ap-
proaches are not able to deliver radiation specifically to 
substructures of the brain, and therefore cannot recapitu-
late the PFB commonly used in MB radiotherapy regimens. 
Previous studies have also typically focused solely on 
neurocognition to the exclusion of other facets of the late-
effect profile, and have rarely characterized models beyond 
6 months post-irradiation, therefore failing to describe the 
chronic burden over the life course.27,28,41,45–47 To address 
these limitations, we developed a novel in vivo model 
through the combination of the delivery of MB-like frac-
tionated high-dose radiotherapy to juvenile mice, to mirror 
those MB treatment paradigms that result in the greatest 
risk of severe late-effects. We performed longitudinal as-
sessments across the life course up to human-equivalent 
middle age, to model the long-term burden suffered by 
survivors of childhood brain tumors.

Materials and Methods

Mice

Juvenile male C57BL/6J mice (n = 36) were purchased 
from Charles River post-weaning (aged 21 postnatal days) 
and maintained in groups of 3 littermates in individually 
ventilated cages. Cages contained sawdust, paper bed-
ding, and environmental enrichment. Mice were housed at 
20 ± 2 °C under a 12-hour light/12-hour dark photoperiod. 
They received standard rodent-pelleted chow ad libitum 
(Special Diets Services, Witham, UK). Age (approximate 
postnatal days; ~PND) was calculated using the mean 
age at the start of each procedure. Human-equivalent life 
stage details are provided in Supplementary Table 2. At the 
end of the study (~PND 394), mice were humanely culled 
via cervical dislocation. The work was licensed by the UK 
Home Office (PBDAFDFB0 and P67C4EBE4) and complied 
with the guiding principles for the care and use of labora-
tory animals. Ethical approval was granted by Newcastle 
University Animal Welfare and Ethics Review Body.

Importance of the Study

Eighty percent of children diagnosed with a brain tumor 
now become 5-year survivors, driven by the delivery of 
combination and intensified treatments. This exposure 
to intensive treatments leaves pediatric brain tumor 
survivors at increased risk of detrimental life-long late 
effects associated with their disease and its therapy. 
Medulloblastoma (MB) survivors are particularly bur-
dened due to the routine use of curative high-dose 
regimens that include irradiation to the whole brain 
(CRT) plus an additional posterior fossa boost (PFB) 
dose. The development of effective pharmacological 

or other interventions aimed at prevention/treatment 
of therapy-associated deficits is a major clinical goal; 
however, a paucity of appropriate model systems hin-
ders their development. Our highly disease-relevant 
model recapitulates childhood MB radiotherapy dose, 
targeting, and late-effect profile, at an equivalent devel-
opmental stage. Thus, our clinically relevant model pro-
vides an essential platform that will both facilitate the 
elucidation of novel/target mechanisms underpinning 
MB late effects and the development of novel neuro-
interventional strategies.
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Cranial-Irradiation With PFB

We used the small animal radiation research platform 
(SARRP) to precisely deliver MB-like CRT with PFB via 
computerized tomography imaging guidance.48 Irradiation 
was performed at Leeds University. Mice were ran-
domly allocated into 3 treatment groups: cranial (whole-
brain) irradiation (“CRT only,” human-equivalent 37.5 Gy 
EQD2; n = 12), cranial-irradiation with an additional PFB 
(“CRT+PFB,” human-equivalent 37.5 Gy EQD2 with 11.25 
Gy EQD2 [48.75 Gy EQD2 to the posterior fossa]; n = 12) 
and a control group that did not receive any irradiation 
(sham, 0 Gy, n = 12). Doses were calculated with an equiv-
alent dose in 2Gy fractions (EQD2) assuming an α/β ratio of 
2. Irradiation was delivered at a dose rate of 3.66 Gy/min. 
For mice in the CRT-only group, treatment began on PND 
35 and lasted for 10 days. For the CRT + PFB group, treat-
ment commenced at PND 37 and required an additional 3 
days of treatment (details are provided in Supplementary 
Figure 1). All mice (n = 36) including the sham group were 
anesthetized with isoflurane and placed into the SARRP, 
independent of receipt of radiation. A 10 × 10 mm colli-
mator with arc from −60 to 60 °C was used to deliver both 
CRT and the high-dose boost to the posterior fossa. While 
MB patients receive CSI, here spinal cord irradiation was 
omitted to limit the development of acute toxicities arising 
from off-target radiation to the thoracic cavity. Beam an-
gles were selected to avoid the oral cavity, olfactory bulbs, 
ear, and ear canal. Dose verification was carried out by 
end-to-end testing by NPL and Innovate UK. This was car-
ried out using 10 × 10 mm and 5 × 5 collimators with both 
static and arc beams. Differences between alanine pellets 
and gafchromic film were calculated when exposed to a 
dose of 12 Gy in a mouse phantom model. The difference 
between the treatment planning system dose and the 
measured dose was approximately 5% for film and 3% for 
pellets. Radiation protocols for each treatment group are 
summarized in Table 1 and a detailed timeline is provided 
in Supplementary Figure 1.

Following recovery, mice were transferred to Newcastle 
University (~PND 63) for subsequent assessment, where as-
sessors were blind to the allocation of radiation group. After 
acclimatization, mice received radiofrequency identification 
(RFID; IMI-500 Read Only Transponder), implanted subcuta-
neously under general anesthesia. Mice were longitudinally 
assessed for over one year (up to ~PND 394).

Frailty Assessment

Frailty assessment was carried out using the Rockwood-
style FI as previously described.49 Briefly, 30 parameters of 
frailty (summarized in Supplementary Table 3) were scored 
on a scale from 0 (no impairment) to 1 (severe impairment). 
Grip strength was measured using the BIO-GS3 (BIOSEB), 
and the mean of 3 attempts was calculated from the max-
imal peak force generated (grams, g) from the forepaws. 
Body weight, body temperature, and grip strength were 
scored according to degrees of standard deviation (S.D.) 
from the mean of age- and sex-matched controls (0: < 1SD; 
0.3: 1SD–2SD; 0.7: 2SD–3SD; 1: ≥ 3SD). To minimize subjec-
tivity, assessors (n = 2) were kept the same throughout and 
blind to the allocation of radiation group; however, some un-
avoidable visual indications of therapy receipt were present.

Physical Functioning Assessment

Grip strength.—Neuromuscular function was assessed 
using the Grip Strength Test (BIO-GS3, BIOSEB) on fore-
paws. Mice were lowered via the tail onto the device, and 
the maximal peak force was recorded (grams, g). The mean 
was calculated from 3 attempts.

Rotarod.—To assess balance, co-ordination, and endur-
ance, mice were placed on the rotarod (Roto-Rod Series 
8, IITC Life Science), which began to rotate at an initial 
speed of 4 rpm, and gradually accelerated by 7.2 rpm per 
minute.50 Time on the rod (seconds) was recorded auto-
matically when mice fell from the rotarod. Quiet, low-light 
conditions were used to minimize stress during testing. 
Mice were tested 3 times per day, for 2 consecutive days, 
with approximately 20-minute intervals between trials. The 
mean was calculated using scores across both days.

Neurocognitive Assessment

The Y-maze was used to assess working memory.51 The 
maze consisted of 3 arms made of dark gray plastic; each 
arm was 40 cm long, 5 cm wide, and 10 cm high. Mice were 
placed in arm A and observed for 8 minutes; arm entry was 
manually recorded. Quiet, low-light conditions were used 
to minimize stress during testing. Spontaneous alternation 

Table 1. Small Animal Radiation Research Platform Irradiation Regimen

Group Radiation dose Radiation schedule Equivalent radiation dose in 2 Gy fractions (EQD2)

CRT only Whole brain: 10F × 3 Gy (30 Gy) 5 days per week for 2 weeks Whole-brain: 37.5 Gy

CRT + PFB Posterior fossa only: 3F × 3 Gy 
(9 Gy)
Whole brain: 10F × 3 Gy (30 Gy)

3 consecutive days
5 days per week for 2 weeks

PF only: 11.25 Gy [48.75 total]
Whole-brain: 37.5 Gy

Sham Did not receive radiation

Radiation dose and frequency for cranial-radiation (CRT) only, CRT with posterior fossa boost (CRT + PFB), and sham-irradiated control group (sham); 
n = 12 for each group. The total human-equivalent radiation dose per area is given in brackets. While < 2 Gy per fraction is typical for human MB ra-
diotherapy regimens, regulatory limitations necessitated the delivery of 3 Gy per fraction in our model, resulting in an overall dose equivalent to 37.5 
Gy EQD2. Anesthesia (isoflurane) was administered to all groups independent of receipt of CRT.
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was defined as the frequency of a mouse entering a novel 
arm of the maze in 3 consecutive entries (eg, A-B-C), di-
vided by the total arm entries, minus 2.

Learning, short- and long-term memory (LTM) was as-
sessed using the Barnes maze (BM) as previously de-
scribed.52 The BM consisted of 20 holes, surrounded by 
visual cues (square, circle, cross, and triangle). The target 
hole contained an escape box underneath. Target hole al-
location was randomly assigned across visual cues and 
treatment groups. The maze was thoroughly cleaned and 
rotated 90° between each mouse and trial to remove po-
tential olfactory cues. Briefly, testing consisted of 4 steps. 
(1) Day 1: Initial acclimatization—the mouse was placed in 
an opaque holding chamber for 10 seconds, then gently 
guided to the target hole. The mouse stayed in the escape 
box for 2 minutes. (2) Day 1–4: Spatial acquisition (training 
period)—after 10 seconds in the holding chamber, the 
mouse attempted to locate the target hole for up to 3 min-
utes, after which the mouse remained in the escape box for 
1 minute. This was repeated for 4 trials per day for 4 days, 
with approximately 25 minutes between trials for memory 
consolidation. (3) Day 5: Probe 1 (short-term memory 
[STM] test)—24 hours after the final day of spatial acqui-
sition, the escape box was removed from the target hole 
and the mice explored the maze for 90 seconds. 4) Day 12: 
Probe 2 (LTM test)—7 days after probe 1, the escape box 
was removed from the target hole and the mice explored 
the maze for 90 seconds. No training/testing took place on 
days 6–11. primary latency (PL) was defined as the time 
taken to locate the target hole.

Statistical Analysis

Statistical analysis and data visualization were carried out 
using SPSS statistics (IBM, version 27) and R Studio (ver-
sion 4.2.2). T-tests (independent and paired), linear regres-
sion, and ANOVA with post-hoc Tukey tests were used to 
compare group means between continuous variables. 
Significant associations were defined as having a p < 0.05. 
Where appropriate, the Benjamini-Hochberg procedure 
was used to correct for multiple tests. Kaplan–Meier curves 
with log-rank tests were used to visualize survival, and 
deaths not related to irradiation were right censored (de-
tails provided in Supplementary Table 4).

Results and Discussion

Development of a Clinically Relevant, High-
Dose, Targeted Cranial-Irradiation Model of MB 
Treatment

While previous in vivo modeling studies each contain crit-
ical limitations (a summary is provided in Supplementary 
Table 1), ours is the only model to (1) deliver fractioned 
high-dose radiotherapy, (2) use juvenile mice, and (3) per-
form longitudinal and comprehensive long-term follow-up, 
making it optimally positioned for use in future interven-
tional development.

Previous studies typically utilized traditional approaches 
to deliver radiation to the whole head, with lead shielded 

from the body.26,27,39,53,54 Delivery via this modality renders 
non-target regions such as the mouth, ears, and eyes are 
in the radiation field. Consequently, whole-head irradia-
tion comes with high levels of acute toxicity, (eg,. damage 
to the salivary gland, mouth ulceration, eye dryness, and 
weight loss).43,44 Moreover, whole-head irradiation cannot 
deliver targeted radiation to specific brain regions, which 
prevents the delivery of a PFB dose. Thus, irradiation using 
these methodologies cannot fully recapitulate the dose 
and targeting used in MB regimens.

Childhood MB patients with high-risk disease typically 
receive 36 Gy CRT with 54 Gy to the posterior fossa; these 
high doses are associated with the most severe late effects 
and represent the greatest clinical need.15,55 By utilizing a 
pre-clinical radiotherapy platform (SARRP) to deliver com-
puterized tomography image-guided, arc-delivered, frac-
tionated radiotherapy CRT (Supplementary Figure 1), we 
were able to deliver up to an equivalent of 48.75 Gy EQD2 
to the posterior fossa, very close to the high-dose PFB used 
in medulloblastoma regiments.56

Radiotherapeutic insult to the brain results in substan-
tial damage to healthy tissue, including damage to the 
vasculature and demyelination, resulting in impaired neu-
rogenesis.57 As significant brain development occurs in 
early childhood, young children are particularly vulner-
able to the deleterious consequences of CRT in treating a 
brain tumor.58 We delivered CRT to cohorts of young mice 
at ~PND 36, equivalent to the juvenile life stage in humans 
and peak stage of MB diagnosis.15

While previous studies have assessed the effects of cra-
nial irradiation in young mice, often this is for a relatively 
short period.35,38,46 We followed up with our mouse cohort 
for over a year (up to ~PND 394); longitudinal assessments 
of frailty, physical functioning (grip strength and rotarod), 
and neurocognition (Y maze and BM) were performed to 
determine their sensitivity to CRT, additional negative con-
sequences of PFB, and the extent to which our model re-
capitulated MB late-effect severity and durability (Figure 1).

Our Human-Equivalent CRT Regimen was 
Well Tolerated, Acutely, and Mice Thrived 
Post-treatment

High-dose CRT was well tolerated; no animals died due 
to severe acute toxicity either during or immediately fol-
lowing irradiation (Figure 2A). Over the course of the ex-
periment, 5 mice were culled (though not attributable to 
cranial irradiation; Supplementary Table 4). Following irra-
diation, mice thrived and continued to grow at the same 
rate as sham-irradiated controls, independent of receipt of 
PFB (Figure 2B, P-values shown in Supplementary Table 5), 
throughout the life course.

Outcomes for the CRT + PFB group were equivalent to the 
CRT group across the vast majority of measures (n = 163/166) 
of frailty, physical functioning, and neurocognition tested, 
indicating there was no additional impact of the PFB dose 
(Figure 2C and Supplementary Tables 6A–C). Previous studies 
have shown that the dose of cranial irradiation is the major 
driver of poor neuropsychological outcomes in children 
treated for posterior fossa tumours55 and others have re-
ported a selective vulnerability of specific neuro-anatomical 
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substructures to radiation injury, implicating the hippo-
campus and frontal- and temporal lobes in determining 
neurocognitive function, rather than the posterior fossa,59–61 
supporting our findings. Given that PFB is not associated with 
late-effect severity in our model, CRT only and CRT + PFB 
groups were subsequently combined for further analyses 
(henceforth collectively referred to as CRT) for comparison 
against sham-irradiated control mice.

CRT Drives Accelerated Frailty

Survivors of childhood MB experience increased 
frailty.2,14,62 To assess whether CRT induced frailty in our 
model, we used the frailty index (FI), a measure used to 
provide an overall picture of general health and well-being 
in both mice and humans. The FI is also predictive of mor-
tality across species.63,64 The mouse FI exhibits key features 
of the FI used in humans and is therefore useful to quantify 
deficits relevant to human frailty and aging. The FI can be 
influenced by stress; however, in our study, this was min-
imized by acclimatization to handling prior to assessments 
and maintaining low levels of environmental noise. Frailty 
was assessed longitudinally (at ~PND 97, 130, 191, and 233; 
time points F1-4, respectively, Figure 3A) in our mice by 
scoring 30 age-related conditions on a scale of 0 (no frailty) 
to 1 (severe frailty), and calculating an average to produce 
a FI as described (Figure 3B).49,65

As expected, the FI for sham-irradiated mice increased 
along over the life course (r2 = 0.101), representing a 

normal, healthy, aging profile.64 However, CRT-induced 
accelerated frailty manifested early; at F1 (~PND 97; 
human-equivalent of early adulthood) FI was signifi-
cantly higher in the CRT group than the sham-irradiated 
group (P = .001) and this persisted at all time points (F2, 
P = .0001; F3, P = .007 and F4, P = .002, Figure 3C). The 
rate of FI increase was significantly higher following CRT 
(r2 = 0.166, P < .0001; Figure 3C). Vision loss, loss of fur 
color, piloerection, and high breathing rate were the most 
common FI parameters following CRT (Figure 3B; repre-
sentative images are shown in Figure 3D and E). FI scores 
for distinct CRT only and CRT + PFB groups are summar-
ized in supplementary figure 3.

Physical Functioning is Impaired Following 
Cranial-Irradiation

Physical functioning was assessed longitudinally using 
the grip strength test (at ~PND 97, 130, 191, and 233; time 
points G1-4, respectively) and rotarod (~PND 172 and 249; 
time points R1-2, respectively, Figure 4A). The grip strength 
of the CRT group was worse than sham-irradiated mice 
at all time points; this was significant at G2 (~PND 130, 
P = .031) and G4 (~PND 233, P = .006; Figure 4B). Both CRT 
and sham-irradiated groups exhibited a similar reduction 
in grip strength with age (Figure 4B).

To assess endurance, and neurological function related 
to balance and coordination, the mice were subjected to 
the rotarod at ~PND 172 and ~PND 249 (time points R1 and 

0 100 200
Age (postnatal days)

(35-37 PNDs)
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CRT in juvenile C57Bl/6
F1 F2
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G1 G2

CRT only (n = 12)

CRT + PFB (n = 12)

Sham (n = 12)
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BMBarnes maze

Y-maze
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Frailty assessment
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Physical functioning
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37.5 Gy

48.75
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300 394

Figure 1. Schematic overview of the development of a clinically relevant, high-dose, targeted cranial-irradiation model. An overview of the 
study design. Juvenile C57Bl/6J mice (age 35–37 PNDs) received either CRT only (37.5 Gy human equivalent EQD2, n = 12), CRT + PFB (total 
dose of 48.75 Gy EQD2 to the posterior fossa, human-equivalent), or sham-irradiation (n = 12) via the small animal radiation research platform. 
Following irradiation, mice were subjected to longitudinal functional assessments. Assessments of frailty (frailty assessment at 4 timepoints [F1: 
~PND 97, F2: ~PND 130, F3:~PND 191 and F4: ~PND 233]), neurocognition (Y-maze at 2 timepoints [Y1: ~PND 179 and Y2: ~PND 266] and Barnes 
maze [BM: ~PND 369]) and physical functioning (grip strength test at 4 timepoints [G1: ~PND 97, G2: ~PND 130, G3:~PND 191, and G4: ~PND 233] 
and RotaRod at 2 timepoints 1-2 [R1: ~PND 172 and R2: ~PND 249]) were carried out up to ~PND 394.
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Figure 2. Clinically relevant, high-dose, targeted cranial irradiation is well tolerated and mice thrive independent of posterior fossa boost. 
(A) Kaplan–Meier plot of survival by cranial-radiation group. Deaths not related to radiation were right-censored (details are provided in 
Supplementary Table 4) Receipt of cranial irradiation is depicted by the dotted line. (B) Mean body weight (+ SEM) was measured at least weekly 
over the course of the study, pre- and post-irradiation (P-values given in Supplementary Table 5). The receipt of cranial irradiation is depicted by 
the dotted line. (C) Summary of the performance of CRT only versus CRT + PFB groups. Adjusted P-values following independent t-tests between 
CRT only and CRT + PFB for all assessments of frailty, physical functioning (grip strength and Rotarod), and neurocognition (Y-maze and Barnes 
maze). A full comparison of all measures tested is provided in Supplementary Tables 6A–C).
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Figure 3. CRT drives accelerated development of frailty. (A) Timeline of longitudinal frailty assessment (F1: ~PND 97, F2: ~PND 130, F3: ~PND 
191 and F4: ~PND 233). (B) Increased frailty scores following CRT. Heatmap showing frailty scores for all 30 frailty parameters following CRT or 
sham-irradiation. Individual frailty criteria were scored from 0 (no impairment, green) to 1 (severe frailty, red). Gray shading depicts missing data. 
Criterion are ordered from most commonly impaired to least commonly impaired (top to bottom). (C) CRT drives accelerated frailty. Mean frailty 
index (FI) following longitudinal frailty assessment at F1-4. Each point represents individual mice scores for CRT (red) and sham (blue) groups. 
Rate of frailty increase is higher in CRT-treated mice. Goodness of fit is denoted by r2, P-value represents linear regression. Significant P-values 
(P < .05) are in bold text. Examples of commonly impaired features following CRT or sham-irradiation: Are grimace and loss of fur color following 
CRT (D) and piloerection following CRT (E).
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R2, respectively, Figure 4C). The CRT group were able to 
stay on the rotarod for significantly less time at both R1 
(mean time 48.2 vs. 70.7 s, P = .003) and R2 (52.3 vs. 70.2 s, 
P = .026, Figure 4C). There was no age-associated decline 
in rotarod performance either group (Figure 4C). Physical 
functioning for distinct CRT only and CRT + PFB groups are 
summarized in Supplementary Figure 4.

The impaired physical functioning induced by CRT in 
our model mirrors that of childhood brain tumor survivors. 
Many survivors of childhood medulloblastoma experience 
below-average physical functioning, particularly within 
motor functioning, exhibiting difficulties such as ataxia 
and coordination disorders, as well as reduced fine motor 
skills.10,11,66,67 While impaired physical functioning may be 
a result of the tumor itself, younger age at diagnosis and 
combination treatment approaches including surgical re-
section, and the use of chemoradiation have been identi-
fied as risk factors for neurological dysfunction.67

CRT Induces Deficits in Memory and Learning

Neurocognitive impairment is common in childhood MB 
survivors.7,55 Neurocognitive function was assessed by the 
Y-maze (at ~PND 179 and ~PND 266; time points Y1 and Y2, 
respectively) and BM (at ~PND 369; time point BM), and 
brain weight was measured at the study endpoint (~PND 
394; Figure 5A). CRT has been shown to reduce brain 
volume in both humans and mice,68 which has also been 
linked to lower IQ scores in childhood MB survivors.69 In 
our clinically relevant model, CRT significantly reduced 
brain size; brain weight was significantly less in the CRT 
group than in sham-irradiated controls (median weight: 
0.46 and 0.50 g, respectively, P < .001; Figure 5B). CRT has 
been linked with decreased total brain volume, decreased 
white matter, and reduced neurogenesis; however, further 
investigation into the specific substructure vulnerabilities 
is required.68,70
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Figure 4. Physical functioning is impaired following cranial irradiation. (A) Timeline of longitudinal physical functioning assessment via the Grip 
Strength test (G1: ~PND 97, G2: ~PND 130, G3: ~PND 191 and G4: ~PND 233), and the RotaRod (R1: ~PND 172 and R2: ~PND 249). (B) Grip strength 
was poorer following CRT than sham-irradiation. Scatterplot showing longitudinal grip strength (mean of 3 attempts) at G1-4, where each point 
represents individual mice for CRT (red) and sham (blue) groups with linear regression fit lines. Significance was assessed via independent 
t-tests. Grip strength declines over time. Goodness of fit is denoted by r2. (C) Balance, coordination, and endurance are worse following CRT than 
sham-irradiation. Average time on the Rotarod (mean time across 6 trials) at R1 and R2. Each point represents individual mice. Significance was 
assessed via independent t-tests (black [at both R1 and R2]) and paired t-tests (red [R1 vs. R2 in the CRT group] and blue [R1 vs. R2 in the sham-
irradiation group]). Significant P-values (P < .05) are in bold text.
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Figure 5. CRT induces deficits in memory and learning. (A) Timeline of longitudinal neurocognitive assessment using the Y-maze (working 
memory [spontaneous alternation] at Y1: ~PND 179 and Y2: ~PND 266) and the Barnes maze (learning, short- and long-term memory [BM: ~PND 
369]). (B) Brain weight is lower following CRT than sham-irradiation. Brain weight (g) at ~PND 394, where each point represents individual mice. 
Significance was assessed via independent t-test. (C) Working memory is poorer following CRT than sham-irradiation. Spontaneous alternation 
at Y1 and Y2, where each point represents individual mice. Significance was assessed via independent t-test (black [at both Y1 and Y2]) and 
paired t-tests (red [Y1 vs. Y2 in CRT group] and blue [Y1 vs. Y2 in sham-irradiation group]). (D) Mice receiving CRT showed initial learning deficits 
but overcame this by day 3. Mean time is taken to find the target hole (primary latency, s) during spatial acquisition (days 1–4, 4 trials per day). 
Significance was assessed via independent t-tests. (E) Following CRT mice had deficits in long-term memory but not short-term memory. Primary 
latency on day 5 (short-term memory, STM) and day 12 (long-term memory, LTM), where each point represents individual mice. Significance was 
assessed via independent t-tests (black [at both days 5 and 12]) and paired t-tests (red [day 5 vs. 12 in CRT group] and blue [days 5 vs. 12 in sham-
irradiation group]). Significant P-values (P < .05) are in bold text.
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Neurocognitive function was assessed by the Y-maze 
(spontaneous alternation) and BM (PL). To assess working 
memory, mice were subjected to the Y-maze at ~PND 179 
and ~PND 266 (time points Y1 and Y2, respectively, Figure 
5A). CRT-induced working memory deficits (Figure 5C). 
While at Y1, early in the life course, the CRT group per-
formed equivalently to the sham-irradiated group (P = .95), 
at Y2 (~PND 266; human-equivalent of early middle age) 
spontaneous alternation was significantly lower than 
sham-irradiated mice (mean spontaneous alternation: 
0.655 vs. 0.781, P = .009, Figure 5C).

The ability to learn and retain learned behavior was as-
sessed using the BM at ~PND 369 (human-equivalent of 
middle age; Figure 5A). Mice were trained for 4 days to lo-
cate the target hole (spatial acquisition [days 1–4], 4 trials 
per day); search strategy and time to locate the target 
hole improved following training (as shown in the pre- 
and post- training video [online resource 1 and 2]). Mice 
in the CRT group were initially slower to locate the target 
hole, presumably in part attributable to their worse phys-
ical functioning; at days 1 and 2 PL (time to locate target 
hole) was significantly higher in the CRT group than the 
sham-irradiated group (day 1 PL: 58.9 vs. 37.5 s [P = .04] 
and day 2 PL: 44.5 vs. 24.6 s [P = .028]). However, the CRT 
group performed equivalently to the sham-irradiated 
controls by the end of the spatial acquisition period; at 
day 3 and day 4 PL was equivalent in the CRT and sham-
irradiated groups (P = .333 and P = .182, respectively, 
Figure 5D). Neurocognitive function for distinct CRT only 
and CRT + PFB groups are summarized in Supplementary 
Figure 5.

CRT-induced deficits in LTM but not STM (Figure 5E). A 
probe trial to assess STM function was performed one day 
after the spatial acquisition period (day 5). The CRT group 
showed no deficit in STM; PL was equivalent in CRT and 
sham-irradiated groups (P = .392). After 1 week, with no 
further training, a second probe trial was conducted to as-
sess LTM (day 12). Despite having performed equally at 
day 5, mice that received CRT had impaired LTM and took 
significantly longer to locate the target hole; PL was signif-
icantly higher for the CRT group than sham-irradiated con-
trols (day 12 mean PL 27.4 vs. 10.9 s, P = .029, Figure 5E). 
LTM impairment following CRT is analogous to human MB 
survivors, where the majority of survivors report memory 
problems.71

The neurocognitive deficits induced by CRT in our model 
mirror those seen in childhood MB survivors. Reduced atten-
tion, slower processing speeds, and poor working memory 
are characteristic of medulloblastoma patients who have 
received cranial radiotherapy.21,69,72–77 Such domains sup-
port the acquisition of new learning such that childhood 
brain tumor survivors acquire new information at half the 
rate of unaffected peers.16 This cranial radiation-induced 
neurocognitive impairment was mirrored within our in 
vivo model system; following CRT mice displayed reduced 
working memory and LTM function. 70%–90% of child-
hood brain tumor survivors demonstrate significant impair-
ment in global intellectual functioning,20,21 which is in turn 
strongly correlated with decreased quality of life.22,23,25,77

Receipt of CRT, particularly at a young age, results 
in a wide range of deleterious late effects that can dras-
tically reduce the quality of life of childhood cancer 

survivors.11,16,71,78 We conclude that delivery of child-
hood MB-equivalent radiotherapy is tolerated in vivo and 
following longitudinal, multi-parameter assessments, 
invokes an equivalent late-effect profile to the human dis-
ease. Thus, our clinically relevant model provides an es-
sential platform that will both facilitate the elucidation of 
novel/target mechanisms underpinning MB late effects and 
the development of novel neuro-interventional strategies 
to alleviate the burden of surviving childhood MB.
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