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Sustained increases in atmospheric 
oxygen and marine productivity in the 
Neoproterozoic and Palaeozoic eras

A geologically rapid Neoproterozoic oxygenation event is commonly 
linked to the appearance of marine animal groups in the fossil record. 
However, there is still debate about what evidence from the sedimentary 
geochemical record—if any—provides strong support for a persistent shift 
in surface oxygen immediately preceding the rise of animals. We present 
statistical learning analyses of a large dataset of geochemical data and 
associated geological context from the Neoproterozoic and Palaeozoic 
sedimentary record and then use Earth system modelling to link trends 
in redox-sensitive trace metal and organic carbon concentrations to the 
oxygenation of Earth’s oceans and atmosphere. We do not find evidence for 
the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. 
We do, however, reconstruct a moderate long-term increase in atmospheric 
oxygen and marine productivity. These changes to the Earth system would 
have increased dissolved oxygen and food supply in shallow-water habitats 
during the broad interval of geologic time in which the major animal groups 
first radiated. This approach provides some of the most direct evidence for 
potential physiological drivers of the Cambrian radiation, while highlighting 
the importance of later Palaeozoic oxygenation in the evolution of the 
modern Earth system.

Earth’s oceans and atmosphere are traditionally thought to have under-
gone two major episodes of oxygenation1. During the Great Oxida-
tion Event (2.2–2.4 billion years ago), atmospheric oxygen increased 
from trace concentrations to above 0.1% of present atmospheric levels 
(PAL)2,3. A second, the Neoproterozoic Oxygenation Event (NOE), has 
been inferred around the Ediacaran/Cambrian boundary (~538.8 million 
years ago (Ma)), originally interpreted as an increase in atmospheric 
oxygen from Proterozoic to near-modern levels (generally from 1–10% 
to ~100% PAL)1,4. The NOE has received extensive attention due to its 
broad temporal coincidence with the first unambiguous macroscopic 
animal fossils5. Ocean–atmosphere oxygenation has been widely 
invoked as a plausible environmental driver of early animal evolution 
since all extant animal groups rely on environmental oxygen to com-
plete their life cycle, and observations from modern oceans indicate 

that many Cambrian animal body plans and ecologies would not have 
been permitted at very low oxygen levels6.

The inferred trajectory of Neoproterozoic oxygenation has been 
increasingly challenged. Multiple lines of evidence support the general 
persistence of anoxic water masses in the deep ocean (and intermittently 
on the shelves) until the mid-Palaeozoic era7–11, punctuated by a series 
of extreme 1–10 Myr-scale oscillations in the oxygenation of Earth’s 
oceans and atmosphere (oceanic oxygenation events) through much of 
the Neoproterozoic era and into the Cambrian period12–14. These data 
call into question a late Neoproterozoic pO2 increase to near-modern 
levels. They further highlight the importance of spatial and temporal 
scale in framing questions about Neoproterozoic environmental change 
and the evolution of animals. Many geochemical proxies for palaeoredox 
record fluctuations in bottom-water oxygenation along the outer shelf 
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geochemical data and associated geological context assembled by the 
Sedimentary Geochemistry and Paleoenvironments Project22 (SGP),  
a community sedimentary geochemical database, for Tonian–Carbon-
iferous shales (~1,000–300 Ma; Extended Data Fig. 1)22. We investigate 
sedimentary records of the trace metals molybdenum and uranium, 
proxies widely used to investigate global ocean oxygenation because 
of their high burial rates in modern anoxic settings relative to modern 
oxygenated settings14,19–21,23. The magnitude of authigenic trace metal 
enrichments in sedimentary archives (for example, anoxic shales) is 
positively correlated with the dissolved seawater inventory, which in 
turn is negatively correlated with the global spatial extent of reduc-
ing conditions1,18–21. Thus, sediments deposited beneath anoxic water 
columns during times of globally widespread anoxia will record muted 
authigenic enrichments, whereas higher enrichments will occur in 
globally well-oxygenated oceans. We also investigate trends in the local 
redox state of anoxic environments using the iron speciation proxy24 
and in organic carbon burial flux using shale total organic carbon 
(TOC). Reconstructing global-scale biogeochemical processes from 
sedimentary geochemical proxies is complicated by local biogeochemi-
cal and physical factors, as well as uneven geological sampling in space 
and time22,25. Our statistical analyses are designed to address these 
issues, enabling us to reconstruct meaningful biogeochemical trends 
from the aggregated sedimentary geochemical record.

First, we reconstruct temporal trends in the mean distributions 
of sedimentary geochemical data, accounting for sampling biases 
using a weighted bootstrap analysis that incorporates the spatial and 
temporal proximity of samples in the dataset25 (Methods). Improving 
on previous data compilations9,16,19,22,26, this analysis accommodates 
the impact of geographical sampling bias to better generate global 
mean trends in sedimentary concentrations25, as well as benefiting 
from the improved data density in the SGP dataset22. We then conduct 
a statistical learning analysis designed to isolate global long-term 
trends in the biogeochemical processes that justify our use of these 

and slope, whereas the majority of modern marine animals and those 
recorded in the fossil record live in shallow shelf environments. It is 
therefore the oxygenation of these shallow environments that would 
control the degree of hypoxic stress experienced by marine animals. 
While Earth system boundary conditions such as continental configura-
tion can play a major role in global deep-ocean oxygenation at 10 Myr 
timescales via impacts on ocean circulation15, dissolved [O2] in shallow 
marine habitats is expected to be controlled primarily by ocean–atmos-
phere gas exchange. Furthermore, geochemical proxies commonly 
record fluctuations on 10 kyr to 1 Myr timescales, whereas Neoprotero-
zoic–Palaeozoic animal radiations were evolutionary singularities, with 
new body plans and ecologies remaining viable on 100 Myr timescales. 
To test permissive environment hypotheses relating to environmental 
oxygen and the diversification of early animals, we must therefore spe-
cifically investigate the long-term oxygenation of Earth’s continental 
shelf environments.

Dramatic changes in organic carbon burial have also been inferred 
across the Neoproterozoic–Palaeozoic transition. On short-term, phys-
iological timescales, an enhanced benthic carbon flux is expected to 
increase food supply to benthic marine ecosystems, potentially acting 
as an alternative or synergistic physiological driver of ecological and 
evolutionary change16. If sustained over geologic timescales, increased 
organic carbon burial would also have driven increased oxygen flux to 
the atmosphere17, in turn increasing the oxygenation of shallow-water 
habitats where dissolved [O2] is dominated by air–sea gas exchange. 
Organic carbon flux also impacts the sequestration of trace metals such 
as uranium (U) and molybdenum (Mo) in sediments18, complicating 
inferences based on some of the most commonly used geochemical 
proxies for late Neoproterozoic ocean oxygenation9,14,19–21.

In this Article, we combine approaches from statistical learning, 
biogeochemical modelling and ecophysiology to better constrain 
changes in global ocean biogeochemistry and marine animal habi-
tats through the Neoproterozoic and Palaeozoic eras. We analyse 
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Fig. 1 | Spatial–temporal weighted bootstrapped means of key geochemical 
proxies from sampled shales. a, Molybdenum concentrations in euxinic shales. 
b, Uranium concentrations in anoxic shales. c, Mo/TOC ratios in euxinic shales.  
d, U/TOC ratios in anoxic shales. e, Proportion of anoxic shales that are euxinic 
on the basis of iron speciation. f, TOC in all shales. Box and whisker plots illustrate 
the distribution of 1,000 weighted bootstrapped means per 25 Myr time bin. 
Central box lines correspond to the median of the distribution for each time 
bin; lower/upper box boundaries correspond to the 25th and 75th percentiles, 
respectively; lower/upper whiskers correspond to the smallest/largest value 

no further than 1.5 times the interquartile range from the lower/upper box 
boundary, respectively; points indicate outliers from the whisker range. The 
weighting algorithm inverse weights samples on the basis of their spatial and 
temporal proximity to other samples in the time bin25. Histograms show the 
number of lithostratigraphic units used in the bootstrap analyses for each time 
bin. Data treatments for each panel are described in Extended Data Table 1. 
Geological time periods: T, Tonian; Cr, Cryogenian; E, Ediacaran; Cm, Cambrian; 
O, Ordovician; S, Silurian; D, Devonian; C, Carboniferous.
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proxies, separated from the complex caveats and interactions that 
affect interpretations of raw sedimentary data. We use a Monte Carlo 
random forest framework (with proxy-specific hyperparameter tun-
ing; Methods) to generate partial dependence analyses that isolate the 
marginal effect of geologic time on the mean value of each geochemi-
cal proxy with all identified confounding geochemical and geologic 
context variables held constant. Although the absolute magnitudes of 
these results reflect the sampled sedimentary record, the directional 
trends produced in these statistical learning analyses enable us to 
reconstruct changes in global biogeochemical cycles. Our partial 
dependence analyses therefore track seawater metal inventories for Mo 
and U, sulfide levels in sampled shelf–slope settings for iron speciation 
and organic carbon fluxes to sampled shelf–slope settings for TOC.

Finally, we combine our statistical reconstructions with Earth 
system modelling to investigate trends in atmospheric pO2, nutrient 
levels, bottom-water redox and the oxygenation of shallow marine 
habitats over the Neoproterozoic and Palaeozoic eras. We conduct an 
ensemble biogeochemical modelling experiment, integrating 
three-dimensional ocean simulations from the cGENIE Earth system 
model of intermediate complexity27 with a Mo–U mass balance model28 
and the CANOPS biogeochemical model29,30. We use this to investigate 
the impacts of different stable atmospheric oxygen and marine pro-
ductivity scenarios30 on the three-dimensional distribution of global 
marine dissolved [O2], seawater Mo and U concentrations and organic 
carbon burial rates. We combine our statistical reconstructions of 
trends in seawater trace metal inventories and organic carbon burial 
with the results of these model simulations to provide new long-term 
(~10 Myr timescale) estimates of atmospheric oxygen, marine produc-
tivity, seafloor redox and shallow shelf dissolved [O2] through the 
Neoproterozoic and Palaeozoic eras.

Geochemical proxy records
Trace metal concentrations in anoxic black shales do increase in the 
late Neoproterozoic in our temporal–spatial weighted analyses of 

bootstrapped means, but they subsequently decrease in the early 
Palaeozoic before increasing again in the Devonian (Fig. 1a,b). Distri-
butions of both Mo in euxinic shale and U in anoxic shale show similar 
trends when temporal and spatial sampling biases are accounted for. 
When trace metals are standardized to TOC, there is considerable noise 
in bootstrap means and no clear trend through the Neoproterozoic and 
early Palaeozoic, although both Mo/TOC and U/TOC increase in the 
later Devonian (Fig. 1c,d; note low number of units sampled for Mo/TOC 
in the Carboniferous). These analyses alone, therefore, suggest that 
there was no major sustained increase in marine Mo or U concentrations 
until the Devonian, contrasting sharply with previous interpretations 
of trace metal data.

A major (~130%) Ediacaran–Cambrian increase in TOC is also cap-
tured in our spatial–temporal bootstrap analyses, followed by further 
increases in the mid-Palaeozoic (Fig. 1f). There is a low proportion of 
euxinic (anoxic, sulfidic) samples for most of the Tonian–Carbonifer-
ous according to iron speciation data, indicating that most anoxic 
samples in the Neoproterozoic and Palaeozoic were deposited under 
ferruginous (anoxic, non-sulfidic) bottom-water conditions (Fig. 1e; 
see further discussion of the iron speciation proxy in Methods). The 
late Ediacaran and Devonian are notable exceptions, with relatively 
high proportions of anoxic shale samples classified as euxinic. Some 
transient trends, such as high late Tonian (~800 Ma) Mo and TOC values 
are difficult to interpret due to the limited number of euxinic shale 
units sampled through those intervals (Fig. 1), although the late Tonian 
merits further investigation given correlated shifts in other proxy 
records5. Distributions of raw data without temporal–spatial bootstrap 
analyses show similar long-term trends in central tendency for all prox-
ies (Extended Data Fig. 2).

Deconvolved biogeochemical trends
Temporal reconstructions of mean global Mo and U, isolated from 
the impacts of local redox, organic carbon, detrital input and deposi-
tional and post-depositional processes (Methods) show minor, partially 
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Fig. 2 | Statistical reconstructions of deconvolved marine biogeochemical 
signals for key geochemical proxies in sampled shales. a–d, Partial 
dependence plots illustrate the marginal effect of geologic time on Mo  
(a), U (b), proportion of euxinic depositional environments (c) and TOC (d) 
when all other variables expected to influence the incorporation of these proxies 
into fine-grained sedimentary archives are held constant. Dark grey envelopes 

represent the 25th to 75th percentiles of the distribution of interpolated partial 
dependence plot values from 100 Monte Carlo random forest analyses (each with 
tuned random forest hyperparameters) for each time step; light grey envelopes 
represent the 5th to 95th percentiles of the same distributions. See Extended 
Data Table 1 for full model predictor variables. Shaded blue regions illustrate 
three distinct inferred states of the ocean–atmosphere system.
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transient increases in trace metal concentrations in the late Neoprote-
rozoic followed by major increases in the mid-Palaeozoic (Fig. 2a,b). 
This remains the case when iron speciation data are used as predic-
tor data rather than thresholds (Extended Data Fig. 3), indicating the 
robustness of these trends to specific proxy interpretations (compare 
ref. 31). The trajectories of the Mo and U differ slightly in the timings 
and rates of change, although linking subtle temporal contrasts to 
proxy-specific redox sensitivities would require careful consideration 
of proxy sample distributions. Notably, these analyses are designed 
to investigate changes on relatively long geologic timescales and are 
therefore not expected to capture <~10 Myr redox instabilities, such 
as those observed in the Ediacaran–Cambrian U cycle13 and produced 
by biogeochemical models at similar timescales12. Variable importance 
plots (Extended Data Fig. 4) illustrate that TOC (followed by geologic 
age and [Al]) is the most important predictor of Mo and U concentra-
tions in our random forest models. Model fit plots indicate that on 
average our hyperparameter-tuned random forest analyses account 
for >65% of observed variance in these datasets (Extended Data Fig. 5).

In contrast to our trace metal reconstructions, deconvolved TOC 
reconstructions exhibit a major sustained increase in the late Neoprote-
rozoic and early Cambrian (Fig. 2d). This ~70% increase in deconvolved 
mean values broadly agrees with compilations of raw data16 but is 
of lower magnitude than previously estimated after accounting for 
confounding variables and sampling biases. This Ediacaran–Cam-
brian TOC increase is followed by a steady increase from the Middle 
Ordovician onwards in analyses including all shale samples. Alternative 
TOC treatments (restricted to anoxic shales to isolate deconvolved 
trends in organic carbon burial in anoxic settings, or with FePy/FeHR as 
a predictor variable to isolate deconvolved trends in organic carbon 

burial in anoxic settings independent of temporal changes in the Fe–S 
biogeochemistry; Extended Data Table 1) also show a major stepwise 
Ediacaran–Cambrian increase (Extended Data Fig. 6). Analyses of vari-
able importance (Extended Data Fig. 4) indicate that Al concentrations, 
lithology and geographic coordinates (latitude and longitude) are the 
most important predictors of TOC in our primary analyses. The pro-
portion of euxinic samples moderately increases in the late Ediacaran 
before decreasing in the early Palaeozoic, then increases dramatically in 
the Silurian–Devonian in agreement with previous statistical analyses8.

Implications for oxygen and productivity
In our ensemble Earth system modelling experiment, we estimate the 
impact of atmospheric oxygen concentrations and marine productiv-
ity on the biogeochemical processes that we aim to isolate in our sta-
tistical learning analyses and the oxygenation of both the global ocean 
and shallow marine habitats. Our cGENIE simulations of 
three-dimensional ocean biogeochemistry show that the oxygenation 
of shallow shelf and global bottom-water environments respond dif-
ferently to changes in atmospheric pO2 and marine PO4 (as a key mod-
ulator of marine productivity) combinations predicted to be stable on 
geologic timescales30 (Figs. 3 and 4 and Methods). Most of the global 
seafloor is overlain by reducing bottom waters at relatively low atmos-
pheric O2 levels (below ~25–100% PAL depending on marine PO4), with 
the proportions of anoxic and suboxic seafloor varying as a function 
of atmospheric oxygen and marine productivity (Fig. 3a,b and Extended 
Data Fig. 7). At relatively high atmospheric oxygen levels (~25–100% 
PAL, again depending on marine PO4), the majority of the global sea-
floor—including the deep ocean—is overlain by oxygenated bottom 
waters (Fig. 4). By contrast, dissolved [O2] in shallow shelf environments 
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Fig. 3 | Heat maps of key biogeochemical variables from combined modelling 
approach for each logarithmically scaled atmospheric pO2 and marine PO4 
scenario. a, The fractional extent of anoxic bottom waters (fanox) in cGENIE global 
ocean models. b, The fractional extent of suboxic bottom waters (fsubox) in cGENIE 
global ocean models. c, Global seawater Mo concentrations. d, Global seawater U 
concentrations. e, Global marine organic carbon burial rates as a function of 

present oceanic levels (POL). f, Mean shelf dissolved [O2]. Mean shelf [O2] is 
calculated as the mean dissolved [O2] of all ocean cells adjacent to land in the top 
three layers of the cGENIE ocean (<283.8 m water depth) (refs. 38,39). Only 
atmospheric pO2 and marine PO4 scenarios that are expected to be stable on 
geologic timescales on the basis of ref. 30 are included.
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scales essentially linearly with atmospheric oxygenation (Figs. 3f and 
4), with only minor decreases in shelf oxygenation with increasing 
productivity. Changing the continental configuration, global climate 
state or biological pump strength in cGENIE does not substantially 
impact these results (Extended Data Fig. 8). Although continental con-
figuration may have played a role in structuring deep-ocean ventilation 
during the Palaeozoic15, this does not challenge our key observation 
that shallow shelf oxygenation scales essentially linearly with atmos-
pheric oxygen while deep-ocean oxygenation exhibits a contrastingly 
nonlinear relationship with atmospheric oxygen (Fig. 4).

We link these oceanographic trends to the biogeochemical dynam-
ics isolated in our statistical learning analyses by coupling cGENIE 
outputs to biogeochemical models of molybdenum, uranium and 
organic carbon. The predominance of reducing seafloor conditions at 
low atmospheric pO2 levels results in a limited sensitivity of seawater 

Mo and U concentrations to changing atmospheric oxygen below ~25% 
PAL atmospheric pO2 (Fig. 3c-d). Our simulations demonstrate that 
both anoxic and suboxic conditions can act as major controls on the 
trace metal inventory of seawater, with the same marine Mo and U 
concentrations simulated by a range of biogeochemical landscapes 
defined by the balance of the two reducing sinks28 (Extended Data 
Fig. 9). Seawater trace metal concentrations therefore broadly track 
the extent of oxic seafloor (or, equivalently, fanox+subox, the combined 
extent of reducing seafloor), and the seawater inventories of Mo and 
U are much more sensitive to both atmospheric oxygen concentrations 
and marine productivity above ~25% PAL pO2. In contrast to modelled 
trace metal concentrations, organic carbon burial rates are sensitive 
to changing atmospheric oxygen and marine productivity across the 
whole logarithmic range of pO2-productivity scenarios investigated 
here (Fig. 3e). Global average organic carbon burial rates (and therefore 
average TOC in shales, unless separately impacted by other factors) 
are predicted to increase relatively continuously with increases in 
atmospheric oxygen and marine productivity, similar to shallow shelf 
dissolved oxygen concentrations (Figs. 3f and 4 and Extended Data 
Figs. 7–9).

Discussion
By integrating statistically deconvolved proxy records with a com-
bined biogeochemical modelling approach, we provide new long-term 
reconstructions of Neoproterozoic–Palaeozoic ocean–atmosphere 
oxygenation and marine productivity. Coupling increased sampling 
with improved statistical treatment of confounding geologic context 
and geochemical variables enables us to both re-evaluate previous 
trace metal evidence for a stepwise Neoproterozoic oxygenation and 
to realize the potential of global TOC proxy records. Although previous 
studies have inferred a Palaeozoic shift in marine redox8–11, our com-
bined trace metal and organic carbon analyses enable us to reconcile 
classical evidence for a Neoproterozoic oxygenation event19,20 with 
mid-Palaeozoic ocean–atmosphere oxygenation. Our analyses further 
establish the existence of sustained changes in ocean–atmosphere 
oxygenation and productivity at longer timescales than Ediacaran–
Cambrian oscillations in ocean–atmosphere oxygenation12–14,21.

The contrasting sensitivities of modelled seawater trace metal 
concentrations and organic carbon burial rates to atmospheric oxy-
genation and marine productivity reveal a plausible environmental 
mechanism for the two major transitions observed in our deconvolved 
reconstructions of Mo, U and TOC (Fig. 2). In the late Neoproterozoic, we 
reconstruct a minor increase in marine trace metal concentrations but 
a major stepwise increase in organic carbon burial. These contrasting 
responses probably indicate a late Neoproterozoic increase in atmos-
pheric oxygen, marine productivity and organic carbon burial with-
out a major change in global deep-ocean oxygenation (Figs. 4 and 5).  
Relatively low seawater trace metal concentrations were maintained 
because most bottom waters remained reducing, although raw shale 
metal concentrations may have increased on average19,20 due to the 
impact of increased organic carbon loading and accompanying metal 
sequestration. In the mid-Palaeozoic, we reconstruct major increases in 
both marine trace metal concentrations and organic carbon burial, indi-
cating that atmospheric oxygen and marine productivity increased to 
levels at which both proxies are expected to be sensitive. Deconvolved 
TOC and Mo–U records can therefore be reconciled if the Ediacaran–
Cambrian increase in atmospheric oxygen and marine productivity 
was insufficient to oxygenate deep-ocean water masses and the global 
ocean did not become persistently oxygenated to near-modern levels 
until the Silurian–Devonian (Fig. 5).

Although trace metal proxies are commonly used to study 
ocean oxygenation through Earth history, our results highlight the 
indirect view that trace metals provide of shallow marine animal 
habitats (Fig. 4). While we refute suggestions that most of the global 
ocean became fully oxygenated in the late Neoproterozoic1, we do 
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reconstruct a late Neoproterozoic increase in dissolved [O2] in shal-
low shelf environments. We therefore argue that whether there was 
an NOE depends on spatial and temporal perspective. From a global 
oceanographic viewpoint encompassing the deep ocean, there was 
essentially no NOE. From an ecophysiological perspective, consider-
ing the shallow shelf environments where most animals live and most 

of our fossil record is preserved, there was an NOE (Figs. 4 and 5). 
Specifically, our analyses indicate that shallow marine habitats were 
probably suboxic or severely hypoxic (0–22 µmol kg–1 O2) on average 
for most of the Neoproterozoic, hypoxic (22–63 µmol kg–1) in the 
early Palaeozoic and generally would not be considered oxic from a 
modern ecophysiological perspective (≥63 µmol kg–1) (ref. 6) until 
the Devonian (Fig. 5e). Across spatial oxygen gradients in the modern 
ocean, the differences in shallow marine oxygen concentrations that 
we reconstruct between the Neoproterozoic and Palaeozoic eras cor-
respond to substantial differences in the functional and taxonomic 
diversity of marine animal communities6.

Establishing drivers of the sustained Ediacaran–Cambrian and 
Silurian–Devonian shifts in oxygenation and productivity is beyond the 
scope of this study, although we suggest that biogeochemical feedbacks 
related to volcanic reductant flux32 and the ecological expansion of 
land plants9,11 warrant particular research attention. Changes in proxy 
records may also have been modulated by changes in temperature and 
continental configuration15; however, these are unlikely to explain the 
scale of changes reconstructed in our statistical analyses (Extended 
Data Fig. 8). Moreover, changes in continental configuration impact 
primarily deep-water oxygenation15. Our multiproxy trace metal and 
organic carbon approach emphasizes a key role for atmospheric oxygen 
in controlling the oxygenation of shallow-water marine animal habitats.

The increase in marine productivity that we reconstruct in the late 
Neoproterozoic also has physiological implications for early animals, 
supporting hypotheses linking food supply to the Cambrian radia-
tion16,33,34. The second major increase in atmospheric pO2, marine pri-
mary production, and shallow marine dissolved [O2] that we reconstruct 
for the Silurian–Devonian has similar implications for the potential 
roles of oxygen and food supply in the Devonian radiation of fishes35. 
We expect mechanistic ecophysiological modelling approaches—simi-
lar to those designed to investigate the capability of other inferred 
environmental changes to drive specific reconstructed biodiversity 
dynamics (for example, refs. 36,37)—to be critical in establishing the 
specific roles that oxygen and food supply may have played as drivers 
of early animal evolution. Nonetheless, these analyses establish sus-
tained directional changes in both dissolved oxygen and export-driven 
food supply in late Neoproterozoic shallow marine habitats, with simi-
lar magnitudes to environmental gradients that play key roles in struc-
turing the biodiversity and composition of modern marine 
ecosystems6. We thus demonstrate persistent reductions in key eco-
physiological stressors at an appropriate time to have been bottom-up 
drivers of the polyphyletic radiation of marine animal groups during 
the Ediacaran–Cambrian transition.
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Methods
Data processing
The complete Phase 1 dataset was downloaded from the SGP  
website (sgp-search.io; data API—{“type”:“nhhxrf ”,“filters”:{}, 
“show”:[“fe”,“fehr_fe_t”,“fe_py_fe_hr”,“toc”,“alu”,“mo”,“u”,“fe_t_al”, 
“coord_lat”,“coord_long”,“basin_type”,“meta_bin”,“environment_
bin”,“lithology_name”,“max_age”,“min_age”,“interpreted_age”, 
“site_type”,“strat_name”,“strat_name_long”]}). This dataset was filtered 
to include only sedimentary samples with interpreted geological ages 
between 300 and 1,000 Ma (approximately Tonian–Carboniferous). 
The dataset was then further filtered to include only samples described 
as having shale-like or fine-grained lithologies (argillite, clay, claystone, 
dolomudstone, lime mudstone, meta-argillite, metapelite, metasilt-
stone, mud, mudstone, oil shale, pelite, phosphorite, shale, silt, siltite, 
siltstone and slate, plus samples assigned no lithology) and samples 
assigned marine depositional environments (basinal, outer shelf and 
inner shelf, plus samples assigned no depositional environment). We 
further removed samples with exceptionally high Mo or U concentra-
tions that would be considered ore-grade metalliferous rocks (using 
a cut-off of 1,000 ppm). The distribution of categorical geological 
context variables in this primary dataset through geologic time is 
shown in Extended Data Fig. 1. The full filtering process and number of 
samples in the dataset after each filtering step as shown in our associ-
ated R Markdown files (Code availability).

Spatial–temporal weighted bootstrap analysis
For our spatial–temporal weighted analyses of bootstrapped means, we 
removed samples without geographic coordinate data and subsetted 
the primary SGP dataset using proxy-specific filters (Extended Data 
Table 1). Next, we binned the shale samples for each proxy into 25 Myr 
time bins. In each 25 Myr time bin, we assigned samples weights based 
on their temporal and spatial proximity to other samples in the bin 
using the inverse weighting algorithm of ref. 25. We then used these 
weights to generate distributions of 1,000 weighted bootstrapped 
means for each time bin and plotted those distributions as box and 
whisker plots. We present histograms illustrating the number of 
lithostratigraphic units sampled per time bin for each weighted boot-
strap analysis. We also present box and whisker plots of the raw data 
used in these analyses (Extended Data Fig. 2). Full spatial–temporal 
weighted bootstrap methods are shown in our associated R Markdown 
files (Code availability).

Random forest analyses
We conducted Monte Carlo random forest analyses to generate statis-
tical reconstructions of changes in four key marine biogeochemical 
variables from the Tonian to Carboniferous: seawater [Mo], seawa-
ter [U], proportion of sampled anoxic depositional environments 
that were euxinic and organic carbon burial. Each of these variables 
is semi-quantitatively reconstructed as a statistical model of changes 
in the mean value of a sedimentary geochemical proxy (shale [Mo], 
shale [U], proportion euxinic based on iron speciation, TOC) with 
geological time when all geologic context and geochemical variables 
known to impact the incorporation and preservation of the desired 
biogeochemical signal in sedimentary rocks are held constant. For 
each biogeochemical variable, a different combination of predictor 
variables is used, and additional filtering steps may be applied on the 
basis of the geological and biogeochemical processes associated with 
the specific proxy (Extended Data Table 1).

For Mo and U, these analyses are designed to identify trends in the 
seawater inventories of these metals, thus tracking the oxygenation 
of global bottom waters. Because authigenic trace metal enrichment 
will be strongly controlled by local redox state (which determines the 
reduction of a given metal) and organic carbon (which often acts as 
the sedimentary host18), these analyses include geochemical prox-
ies (iron speciation and TOC) capable of tracking these processes. 

For iron speciation, these analyses are designed to reconstruct how 
sulfide levels have varied in sampled low-oxygen shelf–slope settings 
independent of other oceanographic factors. For TOC, these analyses 
are designed to reconstruct trends in organic carbon flux to sampled 
environments independent of other oceanographic factors, with sup-
plementary analyses further indicating how organic carbon delivery to 
anoxic settings changed through this time interval. These analyses are 
targeted at directional trends rather than absolute values because the 
magnitude of deposition in shelf–slope environments is often higher 
than global averages. For example, mean organic carbon concentra-
tions (Fig. 2) are higher than expected global averages because of the 
high concentrations found in shelf–slope settings where most of our 
sedimentary record comes from.

To avoid overfitting and to maximize model performance, we 
conduct hyperparameter tuning for each of the 100 random forest runs 
conducted for each biogeochemical variable. In this hyperparameter 
tuning process, we randomly subdivide our subsetted geochemical 
dataset into a training dataset (two-thirds of the data) and test dataset 
(one-third of the data) and then test model performance for a range 
of model parameters. The number of trees is varied (1, 4, 8, 16, 32, 64, 
128 and 256 trees), the number of variables randomly sampled at each 
tree split is varied (mtry values of 2, 4, 6, 8 and 10) and the maximum 
node size is varied in logarithmic steps between 2 and the number of 
samples divided by 4. These three parameters are varied such that all 
combinations are explored and the variance and mean squared error 
are recorded for each random forest model. Of these models, the model 
with the lowest mean squared error is selected as the best model for 
that iteration (that is, that randomly assigned training dataset and 
associated assignments of geologic age and partial data; details fol-
low). Extended Data Fig. 5 illustrates the mean squared errors and 
hyperparameters associated with each best-fit model. Extended Data 
Fig. 5 also shows the variance accounted for by each of these best-fit 
models: 60-70% of the data variance is accounted for by the Mo, U and 
TOC models, while 50–60% of the data variance is accounted for by 
the iron speciation model.

Some of the filtering steps used in data subsetting for our analy-
ses (also in the preceding bootstrap analyses) involve iron speciation 
parameters that are interpreted according to standard thresholds24,42. 
These thresholds have recently been questioned31, although that com-
pilation involved a large number of samples that would be deemed 
inappropriate for iron speciation according to criteria in ref. 42, and 
thus continued re-analyses of these thresholds are necessary. To test 
whether these iron speciation thresholds were influencing our results, 
we ran our molybdenum analyses (the analyses most dependent on 
iron speciation) with iron speciation values both as explicit filters on 
the dataset to isolate anoxic samples (Fig. 2) and as predictor variables 
in the analysis (Extended Data Fig. 3). The results are qualitatively very 
similar, indicating that ongoing debate about the use of specific iron 
speciation thresholds does not impact our results.

To maximize the number of samples that can be used in these 
models, samples that have data entered for the variable of interest, 
estimated age and any other necessary geochemical data for redox 
classification (FeHR/FeT and FePy/FeHR for Mo; FeHR/FeT or FeT/Al for U) but 
are missing other variables incorporated in the random forest analyses 
are included. For samples with partial data, missing data for categorical 
geologic context (lithology, site type, basin type, environmental bin, 
metamorphic bin) and geographic coordinates are randomly assigned 
in each Monte Carlo simulation from the full range of feasible values 
for each variable (as random forest analyses require a complete data 
matrix). For samples missing [Al] (in analyses that include [Al]), we 
impute [Al] by generating a random value between the 25th and 75th 
percentiles of [Al] values within the sample’s assigned lithology (on 
the basis of the entire primary dataset described in the preceding). For 
samples without an assigned lithology that are missing [Al], a random 
[Al] value between the 25th and 75th percentiles of [Al] values for all 
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lithologies is imputed, and then lithology is randomly assigned. In our 
Monte Carlo approach, these random value assignments are conducted 
100 times for each analysis, corresponding to 100 separate random 
forest models per proxy/biogeochemical process. The results of these 
100 random forest models are then summarized as partial dependence 
plots and box plots to visualize the uncertainty associated with geo-
logic age models (description follows) and samples with partial data.

All samples in our Monte Carlo random forest analyses are 
assigned ages using section-based age models and assigned geologi-
cal age uncertainties. Samples that were not assigned maximum and 
minimum ages by SGP contributors are assigned age uncertainties of 
25 Myr (±12.5 Myr relative to assigned interpreted age) for Neoprotero-
zoic samples and 10 Myr (±5 Myr relative to assigned interpreted age) 
for Palaeozoic samples. In each Monte Carlo random forest analysis, 
we randomly assign each sample a geologic age based on its estimated 
maximum and minimum ages and its relationship with other samples 
in the sampled section to accommodate both uncertainties in geologic 
age models and the principle of stratigraphic superposition. These 
ages are assigned separately for each of 100 random forest models 
independently to incorporate uncertainty in assigned geologic ages. 
Age models are assigned by categorizing sections into eight categories 
under three broad classifications:

	1.	 Sections with height/depth data
	a.	 Samples are assigned continuously ascending interpreted 

age estimates.
	b.	 Samples are all assigned the same interpreted age estimate.
	c.	 Samples are assigned interpreted age estimates in clusters or 

steps.
	2.	 Sections without height/depth data

	a.	 Samples are assigned continuously ascending interpreted 
age estimates.

	b.	 Samples are all assigned the same interpreted age estimate.
	c.	 Samples are assigned interpreted age estimates in clusters or 

steps.
	3.	 Sections with only one sample

	a.	 Sample has stratigraphic height/depth.
	b.	 Sample does not have stratigraphic height/depth.

In each scenario, ages are randomly assigned within younging 
upward sequences to incorporate both age uncertainty and the indi-
vidual sample’s stratigraphic relationship to other samples in the 
section. Full age-model methods are available in the R Markdown code 
associated with this study (Code availability).

We present the results of our Monte Carlo random forest analyses 
as partial dependence plots. Partial dependence plots show the isolated 
marginal effect of a variable of interest (geologic time in the analyses 
presented in Fig. 2) on the predicted outcome of the random forest 
model43. We use partial dependence plots rather than other feature 
effect methods (for example, accumulated local effects plots) for 
both statistical and biogeochemical reasons. (1) Correlations between 
geologic time and model variables are consistently low in all model 
treatments. (2) While the mean tendency of proxy variables may shift 
through geologic time, observations that are less likely in a certain 
geological time interval (for example, rift basins or low TOC shale 
in the late Palaeozoic) are still represented in our dataset (Extended 
Data Fig. 1). This means that we never ask our models to make predic-
tions in unrealistic feature space where the random forest model has 
not been trained. (3) Most important, we use global feature effects 
models because they exclude the impacts of other confounding vari-
ables linked to authigenic enrichments in sedimentary rocks. Partial 
dependence plots allow us (at least to a first approximation) to isolate 
changes in marine biogeochemistry by asking questions such as how do 
molybdenum concentrations in fine-grained siliciclastic rocks change 
independent of other secular changes in sampled sedimentary envi-
ronments, including changes in average organic carbon loading, local 

redox and depositional environment? Accumulated local effects plots 
and other local feature effects models, however, would be expected 
to better represent average sedimentary enrichments for each geo-
logic time interval (without, for example, standardizing for long-term 
variations in average local redox) because they do factor in changes in 
other predictor variables (in our case, characteristics of sedimentary 
rocks). Consequently, they are less likely to independently track the 
oceanographic and Earth system changes that we are most interested 
in investigating. We further choose to present partial dependence 
plots rather than individual conditional expectation plots because 
the research questions we address in this study are global in nature 
and benefit from the changes in global averages we can reconstruct 
from partial dependence analyses, although individual conditional 
expectation analyses have exciting potential to provide new insights 
into local-to-regional datasets. We present partial dependence plots as 
envelopes, summarizing the 100 random forest models in each Monte 
Carlo analysis (Fig. 2). The plotted envelopes are generated by linear 
interpolation of the 100 individual partial dependence plots generated 
per analysis at 0.1 Myr time intervals and computing the 5th, 25th, 75th 
and 95th percentiles of the interpolated partial dependence plot popu-
lations at each time step. Full Monte Carlo random forest methods are 
shown in our associated R Markdown files (Code availability).

Earth system modelling
We generated three-dimensional realizations of feasible ancient ocean 
biogeochemistry using the cGENIE Earth system model of intermediate 
complexity27. We conducted an ensemble modelling experiment, vary-
ing atmospheric pO2  and marine PO4 in 11 logarithmic increments 
between 1% and 100% of present atmospheric/oceanic levels (1.0%, 
1.6%, 2.5%, 4.0%, 6.3%, 10.0%, 16.0%, 24.0%, 40.0%, 63.0%, 100.0%). Our 
main text results (ensemble #1) use a Cryogenian–Ediacaran (635 Ma) 
continental configuration, a shallow (50% of modern, 294.9745 m) 
e-folding depth to parameterize organic remineralization, 3,336 ppm 
(12 PAL) atmospheric pCO2  and appropriate Cryogenian–Ediacaran 
estimate of the solar constant (1,295.9701 W m–2, a 5.2653% reduction 
from modern), following ref. 44. All ensembles use a single limiting 
nutrient (PO4) scheme to parameterize biological export, following 
ref. 45. We conduct additional ensemble experiments as sensitivity 
analyses to investigate the impacts of the marine biological carbon 
pump (#2), continental configuration (#3), global climate (#4, #5) and 
combined continental configuration and global climate (#6). Ensemble 
#2 uses a modern e-folding depth (589.9451 m) and is otherwise identi-
cal to ensemble #1. Ensemble #3 uses an Ordovician continental con-
figuration and solar constant39 and is otherwise identical to ensemble 
#1. Ensemble #4 and ensemble #5 use atmospheric pCO2 concentrations 
of 834 ppm (3 PAL) and 5,560 ppm (20 PAL), respectively, and are oth-
erwise identical to ensemble #1. Ensemble #6 uses an Ordovician con-
tinental configuration and solar constant39, an atmospheric pCO2  
concentration of 834 ppm (3 PAL) and is otherwise identical to ensem-
ble #1. All cGENIE simulations are run for 10,000 years, at which point 
benthic oxygen concentrations have reached steady state.

For each experiment, we extract the mean annual dissolved oxy-
gen concentrations for the final model year. We then categorize the 
bottom-water cells of each ocean realization into three categories 
on the basis of dissolved oxygen concentrations: anoxic (dissolved 
[O2] ≤ 0 μmol kg–1), suboxic (dissolved [O2] > 0 μmol kg–1; dissolved 
[O2] ≤ 4.8 μmol kg–1) and oxic (dissolved [O2] ≥ 4.8 μmol kg–1) (ref. 6). 
As all cGENIE configurations in this study use equal-area grid cells, the 
proportional extents of anoxic, suboxic and oxic seafloor are then com-
puted as a direct proportion of all (non-land) model grid cells. For each 
experiment, we also calculate mean shelf [O2] by computing the mean 
dissolved [O2] of all ocean cells adjacent to land in the top three layers 
of the cGENIE ocean (<283.8 m water depth)38,39. All cGENIE experi-
ments conducted for this study employ a 36 × 36 longitude–latitude 
grid with 16 depth layers. The spatial resolution of cGENIE results in a 
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relatively coarse bathymetric grid that is not well suited for explicitly 
resolving bottom-water environments across steeply sloping shallow 
shelves because of the spatial coarsening applied to higher-resolution 
palaeogeographic reconstructions. We therefore employ an approxi-
mation of marine shelf environments (ocean cells adjacent to land in 
the top three layers of the cGENIE ocean, following refs. 38,39), that 
is, not dependent on a coarsened bathymetric grid and therefore not 
vulnerable to these spatial limitations. Our application of cGENIE 
thus enables us to capture well-defined oxygen minimum zones and 
decoupling of shallow- and deep-water oxygenation for a range of Earth 
system boundary conditions (Figs. 3 and 4 and Extended Data Fig. 7). 
These results are not impacted by the coarsened shelf–slope bathym-
etry inherent to intermediate complexity models. As the bathymetric 
gradients of deep-water environments are much shallower than on 
continental shelves, spatial coarsening does not dramatically impact 
our global estimates of seafloor anoxia, suboxia and oxic conditions. 
This approximation technique is therefore employed only for model-
ling shelf environments.

Stable atmospheric pO2 and marine productivity states
The comparatively coarse spatial resolution and associated computa-
tional efficiency of CANOPS means that it is viable to run large model 
ensembles with an open oxygen cycle on geologic timescales, whereas 
computational constraints mean that it would be unrealistic to run 
large-ensemble cGENIE experiments at the scale conducted here for 
the timescales required for an open oxygen cycle to reach equilibrium. 
We therefore use results from an ensemble of model experiments using 
the CANOPS Earth system model30 to establish a subset of our cGENIE 
Earth system model experiments that are expected to be stable on 
geologic timescales.

Trace metal mass balance
We use a three-sink Mo–U mass balance model28 to simulate seawa-
ter [Mo] and [U] for each cGENIE Earth system simulation. We use 
the extents of anoxic, suboxic and oxic seafloor calculated from our 
cGENIE ocean realizations (Extended Data Fig. 7) as forcings for the 
extents of redox-sensitive sinks in the mass balance model. The naming 
conventions fanox (fractional extent of anoxic seafloor), fsubox (fractional 
extent of suboxic seafloor) and foxic (fractional extent of oxic seafloor) 
are used equivalently to feux, fred and foxic in ref. 28 to directly match the 
parameters extracted from our cGENIE ocean simulations. The modern 
biogeochemical data underlying the parameterization of these sinks 
and associated fluxes remain the same. All other flux subscripts are 
correspondingly updated such that:

dNsw
dt

= Friv − Foxic − Fsubox − Fanox

Thus, the change in the seawater inventory of Mo or U (Nsw) with 
respect to time is a function of the metal flux into the global ocean via 
rivers (Friv), minus the metal fluxes into redox-sensitive depositional 
environments (Foxic, Fsubox, Fanox). The pseudospatial scaling algorithm of 
ref. 28 (based on ref. 46) is also used here to incorporate the estimated 
attenuation of trace metal burial rates with water depth for scenarios 
with expansive reducing conditions in deep marine environments. For 
all parameters in the model analyses presented in this study, we use 
the mean value (midpoint) of the uniform distributions used to define 
model parameters such as riverine input and fluxes into redox-sensitive 
sinks in ref. 28. Our integrated cGENIE and mass balance approach 
reproduces modern seawater Mo and U concentrations at modern 
(for example, 100% PAL) levels of oxygen and phosphate (Fig. 3c,d).

We further present a global sensitivity analysis of this Mo–U 
mass balance model, illustrating contours of equal seawater [Mo] or 
[U] for varying balances of fanox and fsubox (Extended Data Fig. 9). This 
analysis uses the same parameters as the model applied to the cGENIE 

simulations, but fanox and fsubox are varied in 31 logarithmic steps between 
0.1% and 100.0%.

Organic carbon burial
We use results from the ensemble CANOPS Earth system model experi-
ment used to establish stable Earth system states30 to estimate organic 
carbon burial rates for each atmospheric pO2 and marine productivity 
scenario. Global marine organic carbon burial rates (as a function of 
present oceanic levels) are binned into the logarithmically spaced 
atmospheric pO2  and marine productivity scenarios, and the mean 
simulated organic carbon burial flux is calculated for each scenario. 
We refer the reader to ref. 30 for full details of model parameters and 
stability calculations.

Data availability
The Sedimentary Geochemistry and Paleoenvironments Project data-
set used in this study is publicly available from sgp-search.io. The full 
API details for the Phase 1 dataset used in this study are described in 
Methods.

Code availability
The R code used to run the statistical analyses is available in R Mark-
down format and rendered as HTML and PDF files at https://github.
com/richardstockey/sgp.trace.metals. This R Markdown code is 
available via Zenodo (https://doi.org/10.5281/zenodo.11426206)47. 
The code for the version of the ‘muffin’ release of the cGENIE Earth 
system model used in this paper is tagged as v.0.9.46 and is available 
via Zenodo (https://doi.org/10.5281/zenodo.10041805)48. Configura-
tion files for the specific experiments presented in the paper can be 
found in the directory genie-userconfigs/PUBS/submitted/Stockey_
et_al.NatGeo.2023. Details of the experiments, plus the command 
line needed to run each one, are given in the readme.txt file in that 
directory. All other configuration files and boundary conditions are 
provided as part of the code release. A manual detailing code instal-
lation, basic model configuration, tutorials covering various aspects 
of model configuration, experimental design and output, plus the 
processing of results, is available via Zenodo (https://doi.org/10.5281/
zenodo.7545814 (v.0.9.35))49.
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Extended Data Fig. 1 | Histograms showing the distribution of geologic 
context variables for the primary SGP dataset used in this study. A) Lithology, 
B) Site Type, C) Basin Type, D) Environmental Bin, E) Metamorphic Bin. Details 

regarding these geological and geographic context variables can be found 
on the SGP wiki (https://github.com/ufarrell/sgp_phase1/wiki/Database-
description#geological-context).
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Extended Data Fig. 2 | Distributions of raw geochemical data in sub-datasets 
used in spatial-temporal weighted bootstrap analyses (Fig. 1 of main text). 
A) molybdenum concentrations in euxinic shales, B) uranium concentrations 
in anoxic shales, C) proportion of anoxic shales that are euxinic based on iron 
speciation, D) total organic carbon (TOC) in all shales. Box and whisker plots 
illustrate the distribution of all data. Central box lines correspond to the median 
of the distribution for each time bin; lower/upper box boundaries correspond to 

the 25th and 75th percentiles; lower/upper whiskers correspond to the smallest/
largest value no further than 1.5 times the interquartile range from the lower/
upper box boundary; points indicate outliers from the whisker range. As box 
and whisker plots of proportion euxinic data are not very informative about the 
structure of the data, we overlay red data points illustrating the mean of the data 
for each time bin for panel C. Histograms show the number of lithostratigraphic 
units used in the bootstrap analyses for each time bin.
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Extended Data Fig. 3 | Impact of using iron speciation values as predictors rather than filters in molybdenum random forest analyses. These analyses eliminate 
any assumptions linked to specific iron speciation thresholds used in main text analyses (Extended Data Table 1).
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Extended Data Fig. 4 | Random forest variable importance plots. Panels A, 
C, E, and G show increased mean squared error estimates for molybdenum, 
uranium, proportion euxinic, and total organic carbon analyses, respectively. 
Panels B, D, F, and H show increased node purity estimates for molybdenum, 
uranium, proportion euxinic, and total organic carbon analyses, respectively. 
Box and whisker plots summarize the results from the 100 Monte Carlo random 
forest analyses presented in the main text for each proxy. Central box lines 

correspond to the median of the distribution for each time bin; lower/upper 
box boundaries correspond to the 25th and 75th percentiles; lower/upper 
whiskers correspond to the smallest/largest value no further than 1.5 times the 
interquartile range from the lower/upper box boundary; points indicate outliers 
from the whisker range. For both variable importance metrics, higher values 
indicate that a variable is more important in determining the predictions of the 
model.
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Extended Data Fig. 5 | Summaries of model fit, parameters and performance 
for random forest analyses, illustrating the distribution for the best fit model 
across 100 Monte Carlo random forest iterations. Panels A-C show mean 
squared error for best fit model for A) molybdenum (ppm) and uranium (ppm), 
B) TOC (wt %), C) iron speciation proportion euxinic, denoted by Fepy (range of 
0-1). Mean squared error is plotted across three panels due to the different units 
of different proxies. Panel D shows the percentage variance described by the best 
fit model for each proxy. Panel E shows the number of trees used in the best fit 

model for each proxy. Panel F shows the mtry value for the best fit model for each 
proxy. Panel G shows the node size for the best fit model for each proxy. Central 
box lines correspond to the median of the distribution for each time bin; lower/
upper box boundaries correspond to the 25th and 75th percentiles; lower/upper 
whiskers correspond to the smallest/largest value no further than 1.5 times the 
interquartile range from the lower/upper box boundary; points indicate outliers 
from the whisker range.
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Extended Data Fig. 6 | Impact of alternative redox treatments on random 
forest analyses. Partial dependence plots illustrate the marginal effect of 
geologic time on A) molybdenum, B) uranium, C) proportion of euxinic 
depositional environments, D) total organic carbon. All analyses included here 
include the full suite of geologic context variables used in all random forest 

analyses. Redox filters are color-coded for each proxy. Envelopes represent the 
25th to 75th percentiles of the distribution of interpolated partial dependence 
plot values from 100 Monte Carlo random forest analyses for each timestep. See 
Extended Data Table 1 for full model predictor variables.
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Extended Data Fig. 7 | Spatial illustrations of cGENIE models arrays. A) Maps 
of redox classifications for cGENIE bottom waters. Maps illustrate bottom water 
dissolved oxygen concentrations binned into oxic (dissolved [O2] ≥ 4.8 μmol/kg), 
suboxic (dissolved [O2] > 0 μmol/kg; dissolved [O2] ≤ 4.8 μmol/kg) and anoxic 
(dissolved [O2] ≤ 0 μmol/kg) categories for the cGENIE ensemble experiment 
presented in Fig. 3. B) Hypoxia classification of cGENIE equatorial transects. 

Ocean transects show equatorial cross sections of the three-dimensional 
ocean models presented in Fig. 3 binned into anoxic, suboxic, severe hypoxia, 
hypoxia and oxic categories (following Sperling et al.6) to illustrate the impact 
of oxygen-productivity scenarios on broad physiological thresholds for marine 
animals. In panel B only the stable oxygen-productivity scenarios depicted in 
Fig. 3 are shown.
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Extended Data Fig. 8 | cGENIE configuration sensitivity. In this sensitivity 
analysis, we replicate Fig. 3 for A) Cryogenian-Ediacaran continental 
configuration at 12 PAL CO2 with shallow remineralization depth (Fig. 3), B) 
Ordovician continental configuration at 12 PAL CO2 with shallow remineralization 
depth, C) Cryogenian-Ediacaran continental configuration at 12 PAL CO2 

with modern remineralization depth, D) Cryogenian-Ediacaran continental 
configuration at 3 PAL CO2 with shallow remineralization depth, E) Cryogenian-
Ediacaran continental configuration at 20 PAL CO2 with shallow remineralization 
depth, F) Ordovician continental configuration at 3 PAL CO2 with shallow 
remineralization depth.
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Extended Data Fig. 9 | Mo-U mass balance global sensitivity analysis. Impact of fanox and fsubox on the estimated concentrations of molybdenum and uranium in 
seawater using the Mo-U mass balance model of ref. 28.
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Extended Data Table 1 | Data filtering, biogeochemical justifications, and predictor variables (where appropriate) for 
statistical analyses

Proxy Analysis Required 
geochemical data Filters Predictor variables Description Figure

Mo Spatial-temporal 
weighted bootstrap 

Mo, FeHR/FeT, 
FePy/FeHR

FeHR/FeT ≥ 0.38 
AND FePy/FeHR ≥ 
0.7

N/A Mo in euxinic shale only 1A

U Spatial-temporal 
weighted bootstrap 

U, [FeHR/FeT OR 
Fe/Al]

FeHR/FeT ≥ 0.38 OR 
Fe/Al ≥ 0.53 N/A U in anoxic shale only 1B

Mo/TOC Spatial-temporal 
weighted bootstrap 

Mo, FeHR/FeT, 
FePy/FeHR, TOC

FeHR/FeT ≥ 0.38 
AND  FePy/FeHR ≥ 
0.7 AND TOC  ≥ 0.3 
(wt %)

N/A Mo/TOC in euxinic shale only 1C

U/TOC Spatial-temporal 
weighted bootstrap 

U, [FeHR/FeT OR 
Fe/Al], TOC

[FeHR/FeT ≥ 0.38 
OR Fe/Al ≥ 0.53] 
AND TOC  ≥ 0.3 (wt 
%)

N/A U/TOC in anoxic shale only 1D

Proportion 
euxinic 

Spatial-temporal 
weighted bootstrap 

FeHR/FeT, 
FePy/FeHR FeHR/FeT ≥ 0.38 N/A Proportion euxinic in anoxic shale only. (binary coding based on 

FePy/FeHR) 1E

TOC Spatial-temporal 
weighted bootstrap TOC None N/A TOC in all shales 1F

Mo Random Forest Mo, FeHR/FeT, 
FePy/FeHR, TOC FeHR/FeT ≥ 0.38 

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, TOC, 
FePy/FeHR, Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration, organic carbon loading, 
detrital input and sulfide levels. 

2A

U Random Forest U, [FeHR/FeT OR 
Fe/Al], TOC

FeHR/FeT ≥ 0.38 OR 
Fe/Al ≥ 0.53

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, TOC, 
Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration, organic carbon loading and 
detrital input.

2B

Proportion 
euxinic Random Forest FeHR/FeT, 

FePy/FeHR FeHR/FeT ≥ 0.38
Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration and detrital input. (binary 
coding based on FePy/FeHR)

2C

TOC Random Forest TOC None
Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, Al

Control for depositional environment, post-depositional alteration and 
detrital input. 2D

Mo Random Forest Mo, FeHR/FeT, 
FePy/FeHR, TOC None

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, TOC, 
FeHR/FeT, FePy/FeHR, Al

Control for depositional environment, post-depositional alteration, 
organic carbon loading, detrital input, highly reactive iron levels and 
sulfide levels. (testing impact of using iron speciation values rather 
than thresholds in analyses)

Extended 3

Mo Random Forest Mo, [FeHR/FeT 
OR Fe/Al], TOC

FeHR/FeT ≥ 0.38 OR 
Fe/Al ≥ 0.53

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, TOC, 
Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration, organic carbon loading and 
detrital input. 

Extended 6A

U Random Forest U, FeHR/FeT, 
FePy/FeHR, TOC FeHR/FeT ≥ 0.38 

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, TOC, 
FePy/FeHR, Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration, organic carbon loading, 
detrital input and sulfide levels. 

Extended 6B

Proportion 
euxinic Random Forest FeHR/FeT, 

FePy/FeHR, TOC FeHR/FeT ≥ 0.38

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, TOC, 
Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration, organic carbon loading and 
detrital input. (binary coding based on FePy/FeHR)

Extended 6C

TOC Random Forest TOC, [FeHR/FeT 
OR Fe/Al]

FeHR/FeT ≥ 0.38 OR 
Fe/Al ≥ 0.53

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration and detrital input. Extended 6D

TOC Random Forest TOC, FeHR/FeT, 
FePy/FeHR FeHR/FeT ≥ 0.38

Age model, site type, metamorphic bin, 
basin type, site latitude, site longitude, 
lithology name, environmental bin, 
FePy/FeHR, Al

Samples from anoxic environments only. Control for depositional 
environment, post-depositional alteration, detrital input and sulfide 
levels.

Extended 6D

For random forest analyses, the identified geochemical proxy in each row is the response variable of the random forest analysis.
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