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The recent increased interest in structural health monitoring (SHM) 

related to material performance has necessitated the application 

of advanced data analysis techniques for interpreting the real-

time data in decision-making. Currently, an accurate and efficient 
approach for the timely analyses of large volumes of uncertain 

sensor data is not well-established. This paper proposes an auto-

mated clustering-based piecewise linear regression (ACPLR)-SHM 

methodology for handling, smoothing, and processing large data 

sets. It comprises two main stages, where the gaussian weighted 

moving average (GWMA) filter is used to smooth noisy data 
obtained from electrical resistance sensors, and piecewise linear 

regression (PLR) predicts material properties for assessing the 

performance of concrete in service. The obtained values of stabi-

lized resistance and derived values of diffusion coefficients using 
this methodology have clearly demonstrated the benefit of applying 
ACPLR to the sensor data, thereby classifying the performance of 

different types of concrete in service environments.

Keywords: artificial intelligence (AI); automated clustering-based piece-
wise linear regression (ACPLR); diffusion coefficient; electrical resistance; 
in-service performance; structural health monitoring (SHM).

INTRODUCTION

The extensive demand for a reliable estimation of the 
material performance during the service life of structures, 
along with the prediction of their current and future condi-
tions in the service environment, has expedited innovations 
in structural health monitoring (SHM) systems (McCarter 
et al. 2012; Frangopol and Kim 2014). They use the data 
obtained from the specifically designed sensors and sensing 
technologies installed in a structure to continuously monitor 
either the changes in materials or structural characteristics 
of members, thereby assessing the structure’s performance 
in service. They notify any defects in the structure so that 
necessary remedial and timely repairs can be carried out 
and perform real-time maintenance, with the ultimate objec-
tive of ensuring the structure’s safety and serviceability 
(Farrar and Worden 2012).

SHM is generally used for two purposes. First, SHM can 
be used to monitor the changes in structural behavior or 
conditions of the structure such as acceleration, displace-
ment, or rotation that would indicate the integrity and struc-
tural damage and assess the performance of the structure 
during its service life (Brownjohn et al. 2011; Dong and 
Catbas 2021). Second, SHM can be used to identify physical 
and/or chemical changes in material properties caused by 
the interaction between the material in structural members 
and the exposure environment, including corrosion of the 
embedded steel in reinforced concrete members, delami-
nation or cracking, and void formation, all of which affect 

the performance of the whole structure (Bungey et al. 2006; 
ACI Committee 444 2021). Thus, an accurate diagnosis of 
the structural behavior or material properties from the SHM 
data can be used for decision-making processes, including 
cost-effective repair and maintenance strategies.

With recent developments in both types of monitoring 
strategies, the installation of multiple sensors for long-term 
monitoring of structures normally generates a huge amount 
of complex, uncertain sensor data (Smarsly et al. 2016). 
Hence, data handling, smoothing, and analyzing large 
amounts of sensor data from structures to properly decide 
on structural repair and maintenance is currently a chal-
lenge (Nanukuttan et al. 2017a; Yavuz and Safak 2019). In 
addition, a wrong diagnosis due to inaccurate data analysis 
may trigger untimely maintenance or repair, resulting in an 
increased cost of maintenance (Chandrasekaran 2019) or 
premature failure. These concerns have led to the implemen-
tation of advanced computational techniques, such as arti-
ficial intelligence (AI) algorithms, for analyzing the SHM 
data, thereby resolving any issues related to data processing 
and decision-making.

The rising trend of the application of AI algorithms in 
SHM has the potential to revolutionize the concrete industry 
(Ahmed et al. 2019). AI uses machine learning (ML) algo-
rithms such as those based on statistics, probability, and 
neural networks to train models and provides a way to access 
massive amounts of information, process it, analyze it, and 
implement solutions to various problems (Pan and Zhang 
2021; Flah et al. 2021).

RESEARCH SIGNIFICANCE

A review of the literature highlighted that considerable 
research has been undertaken in the field of analyzing SHM 
data using ML algorithms to capture changes in natural vibra-
tion frequencies, mode shape, modal strain energy, dynamic 
flexibility, and strain measurements (Yu et al. 2011; Karbassi 
et al. 2014; Aydin and Kisi 2015; Diez et al. 2016). However, 
an accurate and efficient approach for the timely analysis 
of large volumes of noisy and uncertain data to capture 
material properties is not well established. Therefore, this 
paper explicitly focuses on SHM undertaken for assessing 
changes in material performance and thus proposes an auto-
mated AI-based SHM methodology to effectively extract 
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and interpret knowledge on changes in material properties 
obtained from SHM data for predicting the in-service perfor-
mance of concrete structures.

SENSING METHODOLOGIES FOR ASSESSING 

CONCRETE PERFORMANCE IN SERVICE

SHM is used to assess the material characteristics of 
structures and thereby determine their current condition and 
predict the in-service performance of the structure (Dong 
and Catbas 2021). Degradation mechanisms such as chlo-
ride ion ingress, carbonation, corrosion of steel reinforce-
ment, freezing-and-thawing damage, and alkali-aggregate 
reaction are some of the principal causes affecting the 
performance of materials in structures (Bungey et al. 2006; 
ACI Committee 201 2016). Researchers and practitioners 
have developed and used many sensors and sensing technol-
ogies to identify and measure changes in materials that may 
have an adverse effect on the future performance of struc-
tures. A list of various sensors or sensing techniques used to 
assess changes in material properties is provided in Table 1. 
These sensors measure the physical changes in the concrete 
due to environmental and loading conditions, as well as 
monitor the ambient environmental conditions where the 
material is exposed. Among the sensors listed in Table 1, the 
electrical resistance sensor is one of the most reliable types 
of sensors for use in concrete structures.

Electrical resistance monitoring

It is known that electrical resistance is a property that can 
be used to analyze early-age variations in cement hydration, 
the effect of temperature and moisture content, ingress of 
chloride ions that could induce corrosion of the embedded 
reinforcing steel, carbonation, and performance of material 
with time (Basheer et al. 2002; Nokken and Hooton 2007; 
Nanukuttan et al. 2017b). As diffusion and permeability 
are the primary mechanisms of transporting chloride ions 
or carbon dioxide in the concrete, these parameters cannot 
be monitored regularly but can be measured intermittently 
(Garboczi and Bentz 1992; Nanukuttan et al. 2015). On the 
other hand, the rate of corrosion can be monitored. Still, 
as this data is obtained after the initiation of corrosion, it 
is ineffective for carrying out preventative maintenance. 
However, these parameters are related to electrical resis-
tance; thus, they can be determined from the steady-state 
resistance values for predicting the performance of concrete. 
However, electrical resistance is also affected by ambient 
environmental conditions and changes in the hydration of 
cement, and, as a result, interpretation becomes difficult due 
to these variations in most of the measurements.

Therefore, the focus of this paper is to demonstrate the 
methodology to smooth noisy and uncertain electrical 
resistance sensor data and analyze it using an automated  
clustering-based automated piecewise linear regression 
(ACPLR). The steady-state resistance values obtained 
are used to determine the diffusion coefficient values for 
assessing the performance of concrete for prognosis.

EXPERIMENTAL PROCEDURE

Materials, concrete mixtures, and site conditions

The study used three high-performance concrete mixtures 
manufactured with portland cement (PC), pulverized fuel 
ash (PFA), and microsilica (MS), as reported in Table 2. 
The experiment used CEM-I cement, 10 and 20 mm size 
crushed basalt as the coarse aggregate (CA), and medium- 
graded natural sand as the fine aggregate (FA). A poly-
carboxylic acid-based polymer was used as a high-range 
water-reducing admixture (HRWRA) that was added to the 
mixtures to ensure the consistency of the mixture was satis-
factory while the water-binder ratio (w/b) remained at 0.3 
(Yang et al. 2014).

Two concrete blocks of dimensions 410 x 100 x 
250 mm were cast for each mixture and were cured in a 
constant-temperature water tank (20 ± 2°C) for 3 days. 
These blocks were kept at a constant room temperature 
(20 ± 1°C) for 90 days before relocating them to an open 
area 1 m from a three-story building (Latitude 54° 39’ N,  
Longitude 6° 12’ W). The two 410 x 250 mm sides were 
exposed, and the remaining sides were sealed with two coats 
of epoxy-based paint to ensure a uniaxial moisture move-
ment. The exposed side of the specimen was placed verti-
cally to let rain flow freely on the surface (Yang et al. 2014). 
Further details on materials, preparation of specimens and 
testing were detailed by Yang et al. (2014).

Sensors and monitoring

The concrete blocks were embedded with a multielectrode 
array within the cover zone of specimens for acquiring elec-
trical resistance and temperature. A resistance meter was 
used to measure the electrical resistance between the elec-
trode pairs (stainless steel pins, Fig. 1(a)) at three depths: 
15, 25, and 45 mm from the surface of the blocks. Three 
thermistors were also embedded at 15, 25, and 45 mm 
depths to measure changes in temperature in the concrete 
cover zone. The monitoring started after 3 days of curing, 
and the data were recorded using a portable data logging 
system (Fig. 1(b)) for 6 months. The data were captured at 
a 10-minute frequency for a period of 172 days, and over 
24,000 sets of data were reported in the study.

As-measured resistance measurements inside 

concrete specimens

The average as-measured resistance data for the two 
concrete blocks at 15 mm depth from the concrete surface 
for the three concrete mixtures are shown in Fig. 2. It can be 
seen that, overall, the resistance increased over the period 
for the three concrete mixtures. In comparison, the rate of 
increase in resistance in MS was the fastest, rising from 10 
to 190 kΩ, followed by PC and PFA, rising from 5 to 30 kΩ 
in 6 months. It can be observed that concrete blocks were 
sensitive to the natural environment. After exposing them to 
the natural condition (day 90), there were substantial diurnal 
variations in the data set, especially for the MS blocks. 
No major difference can be seen between PFA and PC. 
However, it can be observed that the resistance of PFA rose 
steadily, while PC can be seen as stable after 100 days. The 
6-month data shown in Fig. 2 depicts that the presence of a 
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large amount of uncertain data meant there are challenges 
that require handling, smoothing, and processing SHM data 
to identify the standard steady-state resistance values of the 
three mixtures for decision-making. Thus, the authors aim to 
use all the available data sets and present an AI-based SHM 
methodology to handle, smoothen, and analyze the electrical 
resistance data.

METHODOLOGY USED FOR AI-BASED SHM 

DATA ANALYSIS

In this section, an AI-based SHM methodology is 
presented to smooth noisy data obtained from the elec-
trical resistance sensors and analyze it to predict the perfor-
mance of the concretes. The workflow of the AI-based SHM 
methodology is illustrated in Fig. 3, followed by a detailed 
analysis in later sections.

Table 1—Types of sensors used for assessing material performance

Sensors Measurands Purpose Limitations

Corrosion sensors, electrical  
resistance probes, half-cell potential

Corrosion
(Perveen et al. 2014)

Used to monitor corrosion rate in struc-
ture due to changes in concrete chemical 

environment.

These are not recommended to monitor corrosion 
with epoxy-coated reinforcing bars, as this 

creates barrier between metals and alters results.

Electrical resistance sensors,  
chloride ion sensors

Chloride content
(Montemor et al. 

2006)

Used to detect presence of chemicals 
such as chloride ions in reinforced 
concrete (RC) structures to prevent 

premature corrosion.

They are only used for local measurement; 
hence, prior knowledge of likely locations where 

chloride values could increase is needed for 
positioning sensors.

Humidity sensor, weather station, 
fiber Bragg grating (FBG) sensors

Humidity
(Tanner 1990;  

Zhang et al. 2010)

Used to measure relative humidity (RH) 
in concrete and determine moisture 
content in and around the concrete.

They are sensitive to thermal and environ-
mental conditions and may result in wrong 

measurements.

Load cell, weigh-in-motion sensors
Load

(Hernandez 2006;  
Ballo et al. 2014)

Used to measure deformations caused 
due to external force applied to structure.

They are bulky and require expensive electronic 
devices along with them.

pH sensors, fiber-optic sensor (FOS) pH
(Basheer et al. 2004)

Used to measure pH values of the 
concrete, which determines level of 

acidic or basic nature.

FOS are currently not suitable for long-term 
monitoring of pH and require careful handling.

Piezometers Pressure
(Kalkani 1992)

Used to measure changes in water table 
or pore water pressure.

They are sensitive to temperature and moisture 
conditions.

Temperature sensors, thermistors, 
FOS, thermocouples

Temperature
(Rai 2007)

Used to monitor temperature changes in 
concrete structure due to hydration and 

pore structure changes.

Self-heating in sensor may cause errors in 
measurement. No linear relationship between the 

two variables.

Weather station, rain gauges Precipitation
(Fabo et al. 2020) Used to measure precipitation. They are only used to measure ambient environ-

mental conditions.

Table 2—Mixture proportions and compressive strength of concretes

Types of 
concrete

Proportions of binder 
material, % by mass

Material quantities, kg/m3

w/b HRWRA

Compressive strength, N/mm2

PC PFA MS Water FA CA 28 days 56 days

PC 100% PC 485 0 0 145 689 1150 0.3 1.3 81.8 87.3

PFA 80:20
PC:PFA 388 97 0 145 689 1150 0.3 1.4 81.3 90.7

MS 73:7:20
PC:MS:PFA 352 97 36 145 689 1150 0.3 1.5 84.2 94.6

Fig. 1—(a) Sensor block used for embedding in specimen; and (b) monitoring system.
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Data preprocessing

The measurements from the thermistors were converted to 
temperature (°C) using the Steinhart-Hart equation (Stein-
hart and Hart 1968)

 T = 1/[A + B ln R + C (ln R)3] − 273.1 (1)

where T is the temperature in °C; R is the measured resis-
tance in ohms (Ω); ln is the natural logarithm; and A, B, and 
C are coefficients, 1.28 × 10–3 K–1, 2.36 × 10–4 K–1, and 9.31 × 
10–8 K–1, respectively, based on the type of thermistor used.

The data set thus obtained was re-examined, and it was 
observed that there were missing values, duplication of data, 
and invalid data, presumably due to sensor connection issues 
while moving the specimens from one place to another 
after 90 days. These points were identified and eliminated 
from the data to reduce their influence on the analysis and 
to improve the signal-to-noise ratio. Further, the tempera-
ture variations were very high for the data captured every 
10 minutes, and hence, daily average diurnal variations were 
considered for further data analysis.

Fig. 3—Methodology used to clean, analyze, and process SHM data.

Fig. 2—Average as-measured resistance data at 15 mm depth for three mixtures.
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Correction of resistance data for temperature 

variations

The measured electrical resistance is affected by the 
changes in temperature and moisture content of the concrete 
(McCarter et al. 2005; Nanukuttan et al. 2017a; Demircil-
ioğlu et al. 2019). The effect of variations in temperature 
on the measured electrical resistance could be removed by 
expressing the resistance at a reference temperature—say, 
25°C. For this, an Arrhenius relationship (Eq. (2)) was used 
(McCarter et al. 2012)

 ρx = ρyeEa/Rg[1/Tk,x − 1/Tk,y] (2)

where ρy is the resistance (kΩ) recorded at the temperature at 
Tk,x (K) is used to obtain equivalent resistance ρx at reference 
temperature (Tk,y); Rg is the universal gas constant (8.3141 × 
10–3 kJ/mole/K); and Ea is the activation energy (kJ/mol). As 
both ρx and ρy have the same geometrical factors, resistivity 
was replaced by resistance for the analysis (Nanukuttan 
et al. 2017a).

The activation energy was determined by following the 
procedure suggested by McCarter et al. (2012), as described 
herein. The values of Ea/Rg for all concrete mixtures can be 
determined from Eq. (3). The equation linearizes the data by 
plotting the natural log of resistance (ρ) against 1000/T, and 
the slope thus obtained is Ea/Rg with ρ0 as pre-exponential  
constant (kΩ). Ea at each electrode pair for concrete can 
then be calculated by multiplying the slope with the value 
of Rg, which, when substituted in Eq. (3), would remove the 
temperature effects from the field measurements (McCarter 
et al. 2012)

 ln ρ = ln ρ0 +    
 E  a  

 
_

 
 R  g   T

    (3)

McCarter et al. (2012) depicted a linear relationship from 
the equation by plotting every 15th set of data points from 
1 to 150 days. Nanukuttan et al. (2017a) plotted all data 
obtained from the measurement period and observed that 
there were multiple parallel lines and for each line, the value 
R2 was similar. Thus, it was suggested that one of these lines 
could be used to determine the activation energy. However, 
for the data reported in this paper, when all the available data 
were plotted, a significant scatter of data during the initial 
45 days was observed for both PFA and MS concretes, indi-
cating no clear relationship, which was not observed for the 
PC concrete (Fig. 4). The slope values obtained using all 
the data for PFA and MS were three times higher than that 
determined by McCarter et al. (2012) and Nanukuttan et al. 
(2017a). However, after 45 days, a linear relationship was 
obtained for both these concretes, giving similar results to 
those reported by McCarter et al. (2012). This is potentially 
the case because the total cementitious material content and 
the reactivity of SiO2, CaO, Al2O3, and Fe2O3 might have 
influenced the rate of hydration and, hence, the total heat 
generated at an early age (Nehdi and Soliman 2011; Jansen 
et al. 2012; Schöler et al. 2017).

Up to approximately 50% hydration of PC is completed 
within 1 day of adding water to the cement, 80% within 
28 days, and the remaining hydration gradually occurs 
within the next 3 to 4 months. At this stage, the hydrated 
portland cement paste is considered to have reached a stable 
state (Scrivener and Nonat 2011). On adding supplemen-
tary cementitious materials (SCMs), the pozzolanic reac-
tion normally starts after 3 days of the hydration of portland 
cement and continues beyond 28 days, depending on the 
type of SCM, curing condition, and proportion of the binder 
materials (Zelić et al. 2000). Therefore, for further analysis, 
the matured concrete data after 45 days were considered for 

Fig. 4—Removal of noise from 25 mm depth data for establishing Arrhenius equation for PC, PFA, and MS. (Note: Noisy data 

presented herein for PFA and MS are from first 45 days of reaction; thereafter, trend becomes linear, whereas noise is absent 
for PC.)
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estimating the activation energy and reducing the effect of 
cement hydration and pozzolanic reactions on the calculated 
activation energy.

When the activation energy was estimated using the afore-
mentioned procedure, it is interesting to note that the graph 
now depicts a linear correlation, as shown in Fig. 4. The esti-
mated activation energy, Ea, for each electrode pair for all 
concrete mixtures of each sample from Eq. (3) is reported in 
Table 3. It shows that not much variation is seen in PC and 
PFA and lies within the range of 35 to 47, while MS lies in the 
50 to 57 kJ/M range. The results of PC and PFA are within 
the same range as reported by McCarter et al. (2012) and 
Nanukuttan et al. (2017a). It highlights that the presence of 
microsilica in MS concrete altered the pore structure (McCa-
rter et al. 2012). Further, not much variation is observed in 

the two samples for each mixture, nor at each depth of the 
three concrete mixtures, as was reported by McCarter et al. 
(2012). Therefore, the calculated values for Ea/Rg for each 
mixture can be used to correct the resistance data to a refer-
ence temperature of 25°C using Eq. (2). The standardized 
resistance (SR) values for each concrete mixture were then 
averaged for the two concrete blocks and presented in Fig. 5.

It can be seen from the SRs in Fig. 5(a) to (c) that the huge 
fluctuations of the as-measured resistance in Fig. 2 are now 
slightly reduced, which indicates the removal of temperature 
effects from the measurement, as established by McCarter 
et al. (2012). However, from Fig. 5(c), it can be observed 
that there are still diurnal variations occurring after 80 days. 
Electrical resistance is also affected by other environmental 
interactions, such as ambient temperature, rainfall, and 

Table 3—Ea/Rg determined from Eq. (3) and activation energy, Ea

Depth

Mixtures

PC1 PC2 PFA1 PFA2 MS1 MS2

Ea/Rg, K Ea, kJ/M Ea/Rg, K Ea, kJ/M Ea/Rg, K Ea, kJ/M Ea/Rg, K Ea, kJ/M Ea/Rg, K Ea, kJ/M Ea/Rg, K Ea, kJ/M

15 mm 3.92 32.61 4.87 40.48 5.70 47.42 4.51 37.53 6.42 53.41 6.02 50.04

25 mm 4.50 37.38 5.43 45.15 5.44 45.24 5.24 43.57 6.87 57.10 6.67 55.48

45 mm 5.40 44.86 5.40 44.90 5.69 47.31 5.33 44.33 6.29 52.26 6.42 53.38

Average 4.60 38.28 5.23 43.51 5.61 46.66 5.03 41.81 6.53 54.26 6.37 52.97

Fig. 5—Standardized resistance (kΩ) to reference temperature of 25ºC for: (a) PC concrete mixture; (b) PFA concrete mixture; 
(c) MS concrete mixture; (d) rainfall, RH, and ambient temperature data during studied period as per UK met office.
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relative humidity (RH) (Azarsa and Gupta 2017). Figure 5(d) 
shows the rainfall and ambient temperature data from the 
UK Met Office (metoffice.gov.uk). When comparing these 
data with the MS data in Fig. 5(c), it is clear that the resis-
tance decrease can be attributed to the increase in rainfall 
and the associated possible increase in the moisture uptake. 
However, with no RH sensors installed in the concrete spec-
imen, the effect of moisture variation on electrical resistance 
could not be fully quantified.

Determination of diffusion coefficient De

As discussed in the previous section, the performance 
of concrete can be assessed based on electrical resistance, 
chloride diffusion, and permeability. However, the electrical 
resistance of the saturated concrete can be used to determine 
the diffusivity (Hossain and Lachemi 2004; McCarter et al. 
2012; Basnayake et al. 2020). Garboczi and Bentz (1992) 
presented an inverse relationship between the diffusion coef-
ficient of a porous material and the bulk resistivity of the 
saturated material

    
De 
_

 
 D  0  

   =   
ρ
 

_
  ρ  bulk      (4)

where D0 is the diffusion coefficient of the desired ion in 
pure water (for chloride, D0 = 2.032 × 10–9 m2/s); ρ is the 
resistivity of pore fluid (estimated using the NIST model); 
and ρbulk is the bulk resistivity of the saturated material. ρbulk 

can be obtained from the steady-state condition of the SR for 
the three concretes. Therefore, it is necessary to determine 
the steady-state electrical resistance values for the three 
concretes from a large number of data sets.

Automated piecewise linear regression for 

SHM data

It can be observed from Fig. 5 that the resistance increases 
with time for the three concrete types. It can also be observed 
that there is a change in the slope of resistance with time. 
For example, in the case of PC at 15 mm depth from the 
exposed surface, the resistance increases from 8 to 10 kΩ in 
the first 15 days, and then there is a drop in resistance. Again, 
the resistance starts to increase at a faster rate, rising from 
8 to 12 kΩ during the initial 110 days, and subsequently, it 
nearly stabilizes. In the case of PFA at 15 mm depth, there is 
a drop in resistance after day 12, and then it starts to increase 
at a faster rate, rising from 5 to 8 kΩ in 110 days, and it 
nearly stabilizes in the remaining days. Similarly, it can be 
observed for MS at 15 mm depth that the resistance drops 
at approximately 14 days and then starts increasing signifi-
cantly. The resistance increases from 10 to 35 kΩ in 80 days, 
and later, it increases at a slower rate. A similar trend can be 
seen for all the depths plotted in Fig. 5 for PC, PFA, and MS. 
During the cement hydration process, there are significant 
changes in the concrete microstructure as the liquid state of 
cement is changed to a hardened state. As a result, there are 
changes in mechanical properties and behavioral patterns in 
the early age of concrete (Glišić and Simon 2000). In addi-
tion, the increase in resistance with time is also a result of 
the microstructural changes due to the hydration of PC and 
the pozzolanic reactions of PFA and MS. The resistance 

increases initially with these reactions and either increases 
at a slower rate or stabilizes when these reactions either slow 
down or stop (McCarter et al. 2012). After this stage, the 
resistance decreases only when the concrete starts to dete-
riorate (Neville 2011; Cosoli et al. 2020). Therefore, in the 
current study, the SR graphs for each mixture are studied to 
determine the rate of change in resistance, the time taken to 
stabilize the resistance, and the stabilized resistance value. It 
is also necessary to understand and identify the changes in 
the early age of concrete from the data and its influence on 
the long-term service life performance.

It is interesting to note that the resistance data is subdi-
vided into smaller disjointed regions, showing the change in 
the behavior of the resistance data. One of the solutions for 
addressing this situation was to divide the data into k-many 
clusters and fit a continuous linear regression to different 
clusters and, thus, perform a PLR (Ferrari-Trecate and 
Muselli 2002). PLR is used to partition the independent vari-
ables into smaller regions and fit a separate segment for each 
region to define the change in the behavior of the variables 
(Muhammad et al. 2014). The breakpoint of these regions 
could determine the change in the gradient of the resistance 
and the time taken to stabilize the resistance. Therefore, to 
proceed with the analysis, an ACPLR approach was used to 
understand and interpret the SR data and reach the solution 
to the problem, as described in the following.

Step 1: Gaussian weighted moving average (GWMA) 

filter—One of the main problems with analyzing SHM 
data using PLR was the noise in the data. As the concrete 
specimens were exposed to the outdoor environment, they 
were subjected to rain, humidity, temperature, and other 
environmental effects. Although the influence of tempera-
ture was reduced from the resistance measurements, the 
data still seem noisy and, hence, can affect the predictions. 
A GWMA filter was used to compress the noise level of 
the original data, thereby smoothing the noisy data and 
reflecting the trend of the original data. This was done by 
selecting a window of a few data points to extract the noise 
and then assuming that for the distribution, the mean is zero 
with standard deviation σ to scale the noise level (Yavuz 
and Safak 2019). However, there is no straightforward rule 
for selecting a smoothing window. A short window size is 
usually selected to extract high-frequency data, while a long 
smoothing window is selected to extract low-frequency data 
and may eliminate high-frequency data points (Takatoi et al. 
2020). This is explained by considering one data set for MS 
concrete at 15 mm depth, as shown in Fig. 6(a). As only a 
few noisy points can be seen in the data, a short window size 
was chosen to smooth noisy data and maintain an optimum 
signal-to-noise ratio, as shown in Fig. 6(a).

Step 2: k-means clustering—It is an unsupervised ML 
algorithm that identifies patterns within the data sets without 
any training data or manual input and provides explor-
atory analysis (Hearty 2016). The main objective of using 
a k-means clustering algorithm is to separate the data set 
into clusters, find optimal coefficients, and predict the best 
possible outcome corresponding to a large number of data 
points that were difficult to predict manually. The algorithm 
was selected due to its advantage of dealing with large data 
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sets and running multiple clustering configurations to extract 
key content (Hearty 2016).

First, the elbow curve method was also used to identify 
the optimal number of clusters k. The algorithm was run for 
different values of k ranging from 1 to 10, and then the sum of 
squared distances to the centroid across all data points for each 
value of k was calculated. After plotting these points, the point 
where the average distance from the centroid falls suddenly 
was identified to find the optimal k clusters, as shown in 
Fig. 6(b). Thus, two clusters were specified for the analysis.

The next step was to provide an approximate location of 
the breakpoint such that there are at least 25% of the points 
in one cluster to have a good estimate of the line. The algo-
rithm divided the data into approximate clusters from the 
approximate location of the breakpoint to get the accurate 
location of the breakpoint. After initializing the algorithm, 
new cluster centroids were redefined by extracting the 
slope difference from the structure array. Based on this, 
the maximum slope difference was identified, as shown in 
Fig. 6(c), and thus, the two accurate clusters were found 
such that the data points were then kept to either side of the 
maximum slope difference.

Step 3: Piecewise linear regression—After obtaining the 
accurate location of the clusters, the algorithm estimated the 

position of the breakpoint and performed piecewise linear 
regression for each cluster simultaneously to have minimal 
absolute deviation (Yang et al. 2016). The linear coefficients 
and the intercept of linear functions were obtained by solving 
linear regression for each cluster, as shown in Fig. 6(d). 
Finally, the interaction point for the segments was identified 
and considered as the ultimate breakpoint for the change in 
resistance. The intersection point (x, y) was considered as the 
time taken to stabilize the resistance value (x-axis = 57 days) 
and the stabilized resistance (y-axis = 29.63 kΩ). Figure 6(d) 
shows the change in the resistance through two new clusters 
and linear regression for the two clusters via ACPLR for MS 
at a depth of 15 mm from the surface.

This paper uses the developed ACPLR-based SHM  
methodology in two phases for an effective and reliable 
interpretation of the resistance data. In the first phase, short-
term (early-age) resistance data up to 21 days were used to 
see the early change in resistance due to curing and iden-
tify the time taken to develop a discontinuous capillary pore 
structure during wet curing. The second phase used the 
complete resistance data to determine the standard steady-
state conditions for resistance and diffusion coefficient to 
predict concrete performance.

Fig. 6—Steps for ACPLR: (a) original data versus smoothed data (GWMA filter) for MS at 15 mm depth; (b) identifying number 
of optimal clusters using elbow method; (c) identification of maximum slope difference to find final clusters; and (d) piecewise 
linear regression on two clusters and breakpoint showing change in resistance, stabilized resistance, and time taken to stabilize 

resistance. (Note: Process was carried out 18 times [nine times each for short-term and long-term data analysis] in the study.)



101ACI Materials Journal/March 2024

RESULTS AND DISCUSSION

Phase 1—Short-term data analysis using ACPLR

As discussed in the last section, there was a change in the 
resistance during the initial few days of curing, and then the 
resistance started to increase at a faster rate for all depths in 
all three types of concrete. The change in resistance at an 
early age depicts the time taken for the concrete to develop 
its pore structure and start influencing the physical and 
mineralogical characteristics; both would contribute to the 
development of a discontinuous pore structure. According 
to Basnayake et al. (2020), the time taken to develop this 
discontinuous capillary pore structure can be identified from 
the change in slope of the resistance with time. That is, 
the intersection point of the two segments is considered to 
demonstrate the minimum time at which the wet curing influ-
ences the microstructure of the three concretes. The ACPLR 
is performed for the initial 21 days to study the change in 
behavior of concrete due to early-age hydration and curing 
effect. Table 4 shows both the intersection point at which 
the resistance starts to increase again and the change in the 
gradient of resistance.

It can be seen that the intersection point is at 5.18 days for 
PC, 5.85 days for PFA, and 6.31 days for MS. As the water 
content for the three concretes is the same (145 kg/m3), at 
least 5.5, 6, and 7 days, respectively, are required for PC, PFA, 
and MS concretes to begin to develop a discontinuous pore 
structure to satisfy durability requirements. These results are 
in agreement with Basnayake et al. (2020) that there is a 
change in resistance before and after obtaining a discontin-
uous pore structure, and wet curing should be continued for 
at least 7 days until the pore structure develops discontin-
uous pores. However, it is important to recognize that this 
suggested minimum wet curing duration is not universally 
applicable and may vary for different cementitious materials. 
In addition, Table 4 shows that MS takes the largest time to 
obtain a discontinuous pore structure, followed by PFA and 
PC. However, there is not much difference in the minimum 
wet curing duration for the three concretes, suggesting that 
all concretes started developing discontinuous pores almost 
simultaneously. This is likely because, during the very early 
stage of portland cement hydration, there is little effect of the 
pozzolanic reaction (Zelić et al. 2000).

Phase 2—Long-term data analysis using ACPLR

The second phase of the analysis was done to determine 
the steady-state conditions for the three concrete types and, 
thereby, to estimate diffusion coefficients to predict the 
concretes’ performance. The ACPLR was performed for the 
complete data set. Table 5 shows the initial rate of increase 
in resistance, the value of stabilized resistance, and the time 
taken to stabilize resistance based on the outputs from the 
program. The diffusion coefficient values were then calcu-
lated using the stabilized resistance values as ρbulk in the rela-
tionship described by Garboczi and Bentz (1992) in Eq. (4).

Overall trends—It is observed that, overall, the resis-
tance increased with time for all concrete types, showing 
that the pore structure is getting less conductive with time. 
Figure 7(a) presents the change in resistance with time for 
the three concretes at 15, 25, and 45 mm depths from the 

concrete surface. The rate of increase in resistance is the 
highest for MS, followed by PFA and PC. The data in Table 5 
shows that at 15 mm depth, MS has the highest initial resis-
tance, which is approximately five times that of the PFA. 
The initial resistance values varied for the three concretes 
and are within the range of one to five times that of the PC. 
Similarly, MS took more time to stabilize when compared 
to both PFA and PC, as shown in Fig. 7(b). The addition of 
SCMs such as microsilica and PFA alters the pore structure 

Table 4—Change in resistance at early age and 

intersection point for two segments

Concrete 
mixture

Depth of 
sensor, mm

Change in 
resistance, %

Intersection 
point, days

Resistance, 
kΩ

PC

15 16.6 5.18 8.21

25 13.4 4.95 5.71

45 10.9 4.62 4.03

PFA

15 26.4 5.85 3.33

25 18.8 4.84 2.81

45 16.8 4.76 2.79

MS

15 65.9 6.31 7.05

25 57.7 5.63 7.68

45 52.5 5.54 6.47

Fig. 7—(a) Rate of change in resistance; and (b) stabilized 

resistance for three concretes at three different depths deter-
mined using ACPLR.
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due to the continued pozzolanic reactivity of the binder 
material in all concrete and increases the rate of change in 
resistance for MS (Safiuddin et al. 2007; Nanukuttan et al. 
2015). Further, microsilica is a denser material and quickly 
reacts with the portland cement hydration products in a 
pozzolanic reaction than PFA once the discontinuous capil-
lary pore structure starts to develop. Therefore, it leads to 
a significant reduction in the porosity of concrete, resulting 
in a substantial increase in resistance (Sellevold and Radjy 
1983; Berke 1988).

Depth effect—Figure 7(b) shows that the resistance at 
the deeper concrete (45 mm) is lower than at the exposed 
surface (15 mm) for the three concretes. Similarly, all 
concretes took more time to stabilize at the deeper part. 
This is primarily due to the drying and wetting effects of 
the concretes. Resistance is strongly affected by the interac-
tion occurring between the surface layer of concrete and the 
atmosphere (McCarter et al. 2005). While the deeper part of 
the concrete is saturated, the surface releases more moisture, 
so the evaporation of moisture increases the surface layer’s 
resistance. However, in the case of MS, the resistance nearer 
to the surface at a depth of 15 mm is lower than at a depth of 
25 mm. This may be due to the decrease in resistance caused 
by water being trapped during the pozzolanic reaction of the 
binder material in the MS concrete.

Diffusion coefficient—Table 5 shows the estimated diffu-
sion coefficient values for the three mixtures using the stabi-
lized resistance values. It is observed that the diffusion coef-
ficients have a trend opposite to that of the resistance values, 
as is expected. The continued hydration and pozzolanic reac-
tions reduce both the porosity and the connected porosity 
in concrete; thus, the overall diffusion coefficient reduces 
with time (Oslakovic et al. 2008). The calculated values 
of the diffusion coefficient can then be used to predict the 
performance of concrete and thereby the service life. Table 5 
shows that the best performance among the three concretes is 
observed for MS. However, confirming this requires further 
research to determine their durability performance, which is 
outside the scope of this paper.

Advantages of using ACPLR-based SHM 

methodology

a) The ACPLR-SHM methodology used for the analysis 
is an easy and understandable approach to interpret large 
amounts of complex data by identifying the best aspects 
of segmented regression. Each line segment identified 
from the algorithm is balanced against the noise such that 
it reduces the influence of short-term fluctuations to show 
long-term results in smooth data. The algorithm efficiently 
analyzed a large amount of noisy electrical resistance sensor 
data (24,000 data points) to obtain a steady-state condition 
of resistance.

b) This approach is more efficient than the conventional 
method for different types of concrete and exposure conditions 
to calculate the value of the diffusion coefficient. The value of the 
diffusion coefficient is either determined by performing nonde-
structive testing of concretes in the lab or using an assumed 
diffusion coefficient value from the literature for service life 
modeling. Thus, this proposed methodology provides valuable 
knowledge on stabilized resistance values that can be used to 
calculate diffusion coefficient values.

c) The proposed methodology provides reliable inter-
pretations of the resistance/diffusion coefficient values. 
The obtained values of diffusion coefficient for the three 
concretes are in the range of 1 to 3 × 10–12 m2/s, which is at 
the high end of the spectrum for good-quality and high-per-
formance concrete as per the literature to measure the 
performance of the concrete (Bjegović et al. 1995; Yang et 
al. 2018). Therefore, this criterion can be used as a measure 
of the performance of the concrete and thereby reinforce the 
reliability of the proposed methodology.

CONCLUSIONS

The novelty of the proposed methodology lies in its 
ability to smooth noisy data and perform automated cluster-
ing-based piecewise linear regression (ACPLR) on the data 
set to obtain the time taken to develop a discontinuous pore 
structure, time taken to stabilize resistance, the stabilized 
resistance value, and the rate of change in resistance. Based 
on the results obtained from the application of ACPLR to 
electrical resistance sensor data, it can be concluded that 
the proposed methodology diminished the challenges of 
handling, smoothing, and analyzing large data sets manually. 

Table 5—Determination of steady-state resistance/diffusion coefficient values using ACPLR

Concrete 
mixture Depth, mm

Rate of increase 
in resistance, %

Time taken to stabilize 
resistance, days

Stabilized resistance 
value, kΩ

Diffusion coefficient, 
× 10– 12 m2/s

Average diffusion coefficient,
× 10– 12 m2/s

PC

15 25.6 49.62 11.02 1.11

1.5625 25.8 49.77 8.32 1.46

45 17.4 50.77 5.78 2.11

PFA

15 39.1 43.76 5.68 2.45

2.5525 23.5 49.76 5.28 2.64

45 22.6 52.32 5.42 2.57

MS

15 318.5 56.09 28.10 1.08

1.1225 3301.2 56.91 28.72 1.05

45 246.2 58.52 24.27 1.24



103ACI Materials Journal/March 2024

The methodology is robust enough to provide some valu-
able insights on the steady-state condition of the resistance, 
which means interpretability is of importance and thereby 
can be further used for calculating the diffusion coefficient 
values. The stabilized resistance and diffusion coefficient 
values obtained from the structural health monitoring (SHM) 
data also demonstrated the benefit of using supplementary 
cementitious materials (SCMs) to improve the durability 
of concrete. Overall, practitioners and researchers can use 
the proposed ACPLR-based SHM methodology to interpret 
resistance sensor data for different types of concrete struc-
tures for monitoring and determining the resistance/diffu-
sion coefficient values and thereby predict the performance 
of concrete in structures.

FURTHER RESEARCH

The results from the study highlighted that even after 
reducing the influence of temperature on resistance 
measurements, other environmental conditions, such as 
ambient temperature, RH, and rainfall also had an impact 
on the resistance measurements. Therefore, it is suggested 
that future work should use RH sensors inside and outside 
the concrete and temperature sensors outside the concrete 
during SHM and consider their effect on reducing the influ-
ence of ambient environmental conditions.

The proposed ACPLR-based SHM methodology was 
applied to the resistance sensor data from the concrete blocks 
exposed to environmental conditions for only 6 months. To 
conduct a more thorough evaluation of the methodology, it is 
suggested that a long-term study should be conducted across 
a wider set of locations with marine conditions.
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NOTATION
D0 = diffusion coefficient of chloride ion in pure water
Ea = activation energy, kJ/mol
Rg = universal gas constant, 8.3141 × 10–3 kJ/mole/K
ρ = resistivity of pore fluid
ρ0 = pre-exponential constant, kΩ
ρbulk  = bulk resistivity of saturated material
ρx = equivalent resistance, kΩ, at reference temperature 25°C
ρy  = resistance, kΩ, recorded at the temperature at Tk,x
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