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Modern security proofs of quantum key distribution (QKD) must take finite-size effects and composable

aspects into consideration. This is also the case for continuous-variable (CV) protocols, which are based on the

transmission and detection of bosonic coherent states. In this paper, we refine and advance the previous theory

in this area providing a more rigorous formulation for the composable key rate of a generic CV-QKD protocol.

Thanks to these theoretical refinements, our general formulas allow us to prove more optimistic key rates with

respect to previous literature.
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I. INTRODUCTION

Quantum key distribution (QKD) is arguably one of the

most advanced areas in quantum information, both theoreti-

cally and experimentally [1–3], with very well-known limits,

such as the fundamental PLOB bound for repeaterless quan-

tum communication [4,5] and its extension to repeaters and

networks with arbitrary topologies and routing mechanisms

[6]. In particular, the continuous-variable (CV) version of

QKD is a preferred option that has been gradually improved

in various aspects, such as the rigor of the security proofs,

the speed of data processing techniques, and the distance of

experimental implementations [1, Secs. 7 and 8]. In terms of

CV-QKD theory, the first asymptotic analyses were extended

to finite-size effects and, later, to composable security proofs

[7–27] (see also Ref. [1, Sec. 9]).

Here we build on previous composable security analyses

of CV-QKD [20–22] to provide a more refined and advanced

formulation. Our revised formulas enable us to achieve more

optimistic key rates for CV-QKD than previous literature.

The results apply to a variety of protocols, including schemes

with discrete alphabet or continuous (Gaussian [28,29]) mod-

ulation of coherent states, with homodyne or heterodyne

detection, CV measurement device-independent (MDI) QKD

[30,31], and also the postselection versions of these protocols.

The paper is structured as follows. In Sec. II we derive our

general formula for the secret key rate of a generic CV-QKD

protocol; this is done by refining previous theory and adopting

a number of improvements, including a different approach

to tensor-product reduction after error correction (proven in

Appendix A). In Sec. III, we apply the results to relevant ex-

amples of CV-QKD protocols, showing the improvements in

terms of key rate with respect to previous literature. Section IV

is for conclusions.

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

II. COMPOSABLE KEY RATE

In this section we derive an improved formula for the secret

key rate of a generic CV-QKD protocol in the finite-size and

composable framework. The main derivation is performed

under the assumption of collective attacks, but the result will

be easily extended to coherent attacks in the case of one of the

Gaussian-modulated protocols. We present the various ingre-

dients and aspects of the proof in a number of subsections.

A. Output state of a CV-QKD protocol

Consider a CV-QKD protocol where N single-mode sys-

tems are transmitted from Alice A to Bob B. A portion n

of these systems will be used for key generation, while a

portion m = N − n will be used for parameter estimation. Let

us assume that the bosonic communication channel depends

on a number npm of parameters p = (p1, p2, . . .) (e.g., trans-

missivity and thermal noise of the channel). These parameters

are estimated by the parties and we will account for their

partial knowledge at the end of the derivations. For now, let

us assume that Alice and Bob has perfect knowledge of p.

Under the action of a collective attack, the output classical-

quantum (CQ) state of Alice (A), Bob (B), and Eve (E ) has the

tensor-structure form ρ⊗n, where

ρ =
∑

k,l∈{0,...,2d −1}

p(k, l )|k〉A〈k| ⊗ |l〉B〈l| ⊗ ρ
k,l
E . (1)

Here Alice’s variable k and Bob’s variable l ∈ L =
{0, . . . , 2d − 1} are both multiary symbols (2d -ary, equivalent

to d-bit strings) and p(k, l ) is their joint probability distribu-

tion (depending on the interaction used by Eve).

In the case of a protocol based on the Gaussian modulation

of coherent states, the multiary symbols are the output of

analog-to-digital conversion (ADC) from Alice’s and Bob’s

quadratures, x and y, i.e., we have x
ADC→ k and y

ADC→ l . If the

protocol is based on the homodyne detection, we have that y is

randomly created by a random switching between the q and p

quadrature (with Alice choosing the corresponding quadrature

for each instance, upon Bob’s classical communication). If

2643-1564/2024/6(2)/023321(13) 023321-1 Published by the American Physical Society
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the protocol is based on the heterodyne detection, both q and

p quadratures are used, so we have y = (qB, pB)
ADC→ (lq, lp)

followed by the concatenation l = lqlp so that the dimension

is d = dq + dp, where dq (dp) refers to the dimension of

lq (lp). Finally, in the case of CV-QKD protocols based on

discrete-alphabet coherent states, no ADC is necessary and the

discretized variables are directly expressed by the encoding

variables.

Whatever protocol is used, after n uses, there will be

two sequences of multiary symbols, k = (k1, k2, . . .) and l =
(l1, l2, . . .), each with length n (so their equivalent binary

length would be nd). These are generated with joint probabil-

ity p(k, l) =
∏n

i=1 p(ki, li ), and the total n-use state of Alice,

Bob and Eve reads

ρ⊗n =
∑

k,l ∈{0,...,2d −1}n

p(k, l)|k〉An〈k| ⊗ |l〉Bn〈l| ⊗ ρ
k,l
En , (2)

where |k〉 = ⊗n
i=1|ki〉, |l〉 = ⊗n

i=1|li〉 and

ρ
k,l
En = ⊗n

i=1ρ
ki,li
E . (3)

B. Error correction and epsilon correctness

Alice and Bob will then perform procedures of error cor-

rection (EC) and privacy amplification (PA) over the state ρ⊗n

with the final goal to approximate the sn-bit ideal CQ state,

which is of the type

ρn
ideal = ωn

AB ⊗ ρEn , (4)

ωn
AB := 2−sn

∑

s

|s〉An〈s| ⊗ |s〉Bn〈s|, (5)

where Alice’s and Bob’s classical systems contain the same

random binary sequence s of length sn, from which Eve is

completely decoupled (note that the final output is a binary

sequence even if we start from multiary symbols k and l for

Alice and Bob).

In reverse reconciliation, Alice attempts to reconstruct

Bob’s sequence l. During EC, Bob publicly reveals leakec

bits of information to help Alice to compute her guess l̂ of

l starting from her local data k. In practical schemes of EC

(based on linear codes, such as LDPC codes), these leakec bits

of information corresponds to a syndrome synd(l) that Bob

computes over his sequence l, interpreted as a noisy codeword

of a linear code agreed with Alice.

Then, as a verification, Alice and Bob publicly compare

hashes computed over l and l̂. If these hashes coincide, the

two parties go ahead with the probability pec, otherwise, they

abort the protocol. We denote by Tec the case of a successful

verification (no abort), so that ρ|Tec
represents a conditional

post-EC state. More specifically, the hash comparison requires

Bob to send ⌈− log2 εcor⌉ bits to Alice for some suitable εcor

(the number of these bits is typically small in comparison to

leakec). Parameter εcor is called the ε-correctness [32, Sec. 4.3]

and it bounds the probability that Alice’s and Bob’s corrected

sequences are different even if their hashes coincide. The

probability of such an error is bounded by [33]

pecProb(l̂ 	= l|Tec) � pec2−⌈− log2 εcor⌉ � εcor. (6)

C. Equivalence to a projection process

As discussed above, EC consists of two steps. In the

first (correction) step, Bob sends the syndrome information

synd(l) to Alice. Conditionally on synd(l), she transforms her

variable via a function

k 
→ fguess(k, synd(l)) = l̂ ∈ {0, 2d − 1}n. (7)

The second (verification) step is the verification of the hashes.

If successful, this is equivalent to having a corrected sequence

l̂ that is indistinguishable from l with a probability larger than

1 − εcor.

Overall, successful EC is equivalent to filtering the

entire set of initial sequences (k, l) ∈ {0, . . . , 2d − 1}n ⊗
{0, . . . , 2d − 1}n into a subset of “good” sequences

Ŵ = {(k, l) : Prob(l̂ 	= l|Tec) � εcor}, (8)

with associated probability pec =
∑

(k,l)∈Ŵ p(k, l). This can

equivalently be represented by a projection

ρ⊗n → �Ŵρ⊗n�Ŵ, �Ŵ =
∑

(k,l)∈Ŵ

|k, l〉〈k, l|, (9)

restricting the classical states to the labels (k, l) ∈ Ŵ followed

by the application of the quantum operation

Eguess(|k, l〉〈k, l|) = |l̂, l〉〈l̂, l|, (10)

according to the transformation in Eq. (7). In particular, note

that this operation is a completely positive trace-preserving

(CPTP) map, i.e., a quantum channel.

Thus, the (normalized) post-EC state is given by

ρ̃n
ABE |Tec

=
∑

(k,l)∈Ŵ

l̂= fguess(k,synd(l))

p(k, l)

pec

|l̂, l〉AnBn〈l̂, l| ⊗ ρ
k,l
En . (11)

It is clear that the state above, expressed in terms of n-long

sequences of 2d -ary symbols, can equivalently be rewritten in

terms of nd-long binary strings. It is also important to note

that, due to the projection, the state after EC no longer has a

tensor product structure.

D. Privacy amplification and epsilon secrecy

The next step is PA, which realizes the randomness extrac-

tion while decoupling Eve. The parties agree to use a function

f randomly chosen from a family F of two universal hash

functions with probability p( f ) among a total of |F | possible

choices (note that it is necessary to randomize over the hash

functions as discussed in Ref. [34]). Then, they transform their

multiary n-long sequences into nd-long binary strings [so the

state in Eq. (11) is suitably expressed in terms of these binary

strings]. Such strings are individually compressed into a key

pair {ŝ, s} of sn < nd random bits.

The process of PA can be described by a CPTP map ρF ⊗
ρ̃n

ABE |Tec
→ ρ̄n

ABEF |Tec
, where

ρ̄n
ABEF |Tec

= p−1
ec

∑

f ,ŝ,s

p( f )p(ŝ, s)

× |ŝ〉An〈ŝ| ⊗ |s〉Bn〈s| ⊗ ρ
f ,ŝ,s
En ⊗ | f 〉F 〈 f |, (12)

023321-2
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which is a generalization of Ref. [35, Eq. (5.5)]. This also

means that Alice’s and Bob’s sequences undergo local data

processing, which cannot increase their distinguishability, i.e.,

we have

Prob(ŝ 	= s|Tec) � Prob(l̂ 	= l|Tec), (13)

due to the pigeonhole principle. By tracing out Alice, we can

write the reduced state of Bob (containing the key) and Eve

ρ̄n
BEF |Tec

= p−1
ec

∑

f ,ŝ,s

p( f )p(ŝ, s)|s〉Bn〈s| ⊗ ρ
f ,ŝ,s
En ⊗ | f 〉F 〈 f |.

(14)

On the latter state, we impose the condition of ε-secrecy

for Bob. First note that we may write the ideal state as

ωn
B ⊗ ρ̄n

EF |Tec
, where

ωn
B := 2−sn

∑

s

|s〉Bn〈s|, ρ̄n
EF |Tec

:= TrB

(
ρ̄n

BEF |Tec

)
. (15)

Then, we impose that the distance from this ideal state must

be less than εsec, i.e., we impose

pecD
(
ρ̄n

BEF |Tec
, ωn

B ⊗ ρ̄n
EF |Tec

)
� εsec. (16)

E. Combining correctness and secrecy into epsilon security

Following Ref. [32, Th. 4.1], we can combine the features

of correctness and secrecy into a single epsilon parameter. In

fact, if Eqs. (6) and (16) hold, then we may write the condition

for ε-security for Alice and Bob

pecD
(
ρ̄n

ABEF |Tec
, ωn

AB ⊗ ρ̄n
EF |Tec

)
� ε := εcor + εsec. (17)

It is instructive to repeat the proof of this result from Ref. [32,

Sec. 4.3].

Proof. Let us define the following state, similar to ρ̄n
ABEF |Tec

but where Alice’s system is copied from Bob’s so they have

exactly the same key string

γ̄ n
ABEF |Tec

= p−1
ec

∑

f ,ŝ,s

p( f )p(ŝ, s)

× |s〉An〈s| ⊗ |s〉Bn〈s| ⊗ ρ
f ,ŝ,s
En ⊗ | f 〉F 〈 f |. (18)

Then, we can use the triangle inequality to write

D
(
ρ̄n

ABEF |Tec
, ωn

AB ⊗ ρ̄n
EF |Tec

)
�D

(
ρ̄n

ABEF |Tec
, γ̄ n

ABEF |Tec

)

+ D(γ̄ n
ABEF |Tec

, ωn
AB ⊗ ρ̄n

EF |Tec
).

(19)

The first term accounts for the correctness and can be bounded

as follows:

D
(
ρ̄n

ABEF |Tec
, γ̄ n

ABEF |Tec

)

� p−1
ec

∑

f ,ŝ,s

p( f )p(ŝ, s)D(|ŝ〉An〈ŝ|, |s〉An〈s|)

=
∑

ŝ 	=s

p(ŝ, s)

pec

= Prob(ŝ 	= s|Tec)

� Prob(l̂ 	= l|Tec). (20)

The second term in Eq. (19) accounts for secrecy and can be

manipulated as follows:

D
(
γ̄ n

ABEF |Tec
, ωn

AB ⊗ ρ̄n
EF |Tec

)

= D
(
γ̄ n

BEF |Tec
, ωn

B ⊗ ρ̄n
EF |Tec

)

= D
(
ρ̄n

BEF |Tec
, ωn

B ⊗ ρ̄n
EF |Tec

)
, (21)

where we use the fact that the trace distance does not change

if we trace Alice’s cloned system in γ̄ n.

Thus we have

pecD
(
ρ̄n

ABEF |Tec
, ωn

AB ⊗ ρ̄n
EF |Tec

)

� pecProb(l̂ 	= l|Tec) + pecD
(
ρ̄n

BEF |Tec
, ωn

B ⊗ ρ̄n
EF |Tec

)
.

(22)

Using Eqs. (6) and (16) in the right-hand side of Eq. (22) we

get Eq. (17). �

F. Leftover hash bound

We may now bound the distance of the privacy amplified

state ρ̄n
BEF |Tec

from the ideal state ωn
B ⊗ ρ̄n

EF |Tec
containing sn

random and decoupled bits. For this, we employ the converse

leftover hash bound. Following Ref. [36, Th. 6], we may write

pecD
(
ρ̄n

BEF |Tec
, ωn

B ⊗ ρ̄n
EF |Tec

)
� εs + 1

2

√
2sn−H

εs
min

(Bn|En )σn ,

(23)

where σ n is Bob and Eve’s subnormalized state before PA and

after EC, given by

σ n := σ n
BE |Tec

= pecρ̃
n
BE |Tec

= TrA

[
Eguess(�Ŵρ⊗n

ABE�Ŵ )
]

=
∑

(k,l)∈Ŵ

p(k, l)|l〉Bn〈l| ⊗ ρ
k,l
En . (24)

By imposing the condition

εs + 1
2

√
2sn−H

εs
min

(Bn|En )σn � εsec, (25)

we certainly realize the secrecy bound in Eq. (16). If we also

impose the condition of correctness in Eq. (6), we reach the

condition of epsilon security for Alice and Bob expressed by

Eq. (17). Setting εh := εsec − εs and re-arranging Eq. (25), we

derive the following upper bound for the binary length of the

key (converse leftover hash bound)

sn � H
εs

min(Bn|En)σ n + 2 log2(2εh). (26)

Thus, for the protocol to be epsilon-secure with ε := εcor +
εsec = εcor + εs + εh, the binary length of the key cannot ex-

ceed the right-hand side of Eq. (26).

G. Including the leakage due to EC

Let us better describe Eve’s system En as EnR, where En

are the systems used by Eve during the quantum commu-

nication while R is an extra register of dimension dimR =
2leakec+⌈− log2 εcor⌉. The latter is used by Eve to store the bits

that are leaked during EC. This means that Eq. (26) is more

precisely given by

sn � H
εs

min(Bn|EnR)σ n + 2 log2(2εh). (27)

023321-3
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We can then use Ref. [37, Prop. 5.10] for the smooth min-

entropy computed over generally subnormalized states, which

leads to

H
εs

min(Bn|EnR)σ n � H
εs

min(Bn|En)σ n − log2 dimR

= H
εs

min(Bn|En)σ n − leakec − ⌈− log2 εcor⌉
� H

εs

min(Bn|En)σ n − leakec − log2(2/εcor).

(28)

We then replace the above expression in Eq. (27), which leads

to a stricter upper bound for the key length

sn � H
εs

min(Bn|En)σ n + 2 log2(2εh)

− leakec − log2(2/εcor)

= H
εs

min(Bn|En)σ n − leakec + θ, (29)

where we have set

θ := log2

(
2ε2

hεcor

)
. (30)

Note that we include the more precise term θ instead of just

log2(2ε2
h ) as in past derivations [20–22].

H. Tensor-product reduction and asymptotic

equipartition property

We may replace the smooth-min entropy of the subnormal-

ized state σ n after EC with that of the normalized state ρ⊗n

before EC. As we show in Appendix A, we may write the

following tensor-product reduction

H
εs

min(Bn|En)σ n � H
εs

min(Bn|En)ρ⊗n . (31)

This is a major improvement with respect to Ref. [20].

Because the state before the EC projection has a tensor

product form (under collective attacks), we can now write

a simpler (but larger) lower bound that is based on the von

Neumann entropy of the single-copy state ρ in Eq. (1). In fact,

we may apply the asymptotic equipartition property (AEP)

[37, Cor. 6.5] and write

H
εs

min(Bn|En)ρ⊗n � nH (B|E )ρ −
√

n
aep, (32)

where


aep := 4 log2(
√

|L| + 2)

√
− log2

(
1 −

√
1 − ε2

s

)

≃ 4 log2(
√

|L| + 2)

√
log2

(
2/ε2

s

)
, (33)

and |L| = 2d is the cardinality of the discretized variable l

(see Ref. [37, Th. 6.4] and Ref. [21, Sec. 2.F.1]).

I. Upper bound for the secret-key rate

Using Eqs. (31) and (32) in Eq. (29), we may write the

following stricter upper bound

sn � nH (B|E )ρ − leakec −
√

n
aep + θ, (34)

where ρ is the single-copy state in Eq. (1). We finally expand

the conditional entropy as

H (B|E )ρ = H (l|E )ρ = H (l ) − χ (l : E )ρ, (35)

where H (l ) is the Shannon entropy of l , and χ (l : E )ρ is Eve’s

Holevo bound with respect to l . Therefore, we get

sn � n[H (l ) − χ (l : E )ρ] − leakec −
√

n
aep + θ. (36)

Alternatively, this can be written as

sn � nR∞ −
√

n
aep + θ, (37)

where we have introduced the asymptotic key rate

R∞ = H (l ) − χ (l : E )ρ − n−1leakec. (38)

The result in Eq. (37) is an upper bound to the number

of secret random bits that Alice and Bob can extract with

epsilon security ε = εcor + εs + εh. Note that the secret key

rate will need to account for the fact that this amount of

bits is generated with probability pec and that only a fraction

n/N of the total systems are used for key generation. Thus,

the composable secret key rate (bits per use) of a generic

CV-QKD protocol under collective attacks is given by

R =
pecsn

N
. (39)

More explicitly, we have the upper bound

R � RUB =
pec[nR∞ −

√
n
aep + θ ]

N
. (40)

J. Achievable key rate for optimal PA

The result in Eq. (40) means that Alice and Bob cannot

exceed RUB bits per use if they want to have ε-security as-

sured. Assuming they can implement optimal PA, they can

reach a rate Ropt, which is still bounded by RUB from above,

but we can also guarantee that at least RLB bits per use are

generated. Basically, for a protocol with optimal extraction

of randomness [37, Sec. 8.2], we may have a guaranteed

ε-security and a rate satisfying RLB � Ropt � RUB, where RUB

is given in Eq. (40) and

RLB =
pec[nR∞ −

√
n
aep + θ − 1]

N
. (41)

The lower bound in Eq. (41) is proven by repeating the

proof and using the direct part of the leftover hash bound [36]

{see also Ref. [37, Eq. (8.7)]}for the number of bits s
opt
n that

are achievable by a protocol with optimal data processing. For

this number, we may in fact write

sopt
n � H

εs

min(Bn|En)σ n + 2 log2(
√

2εh). (42)

We can see that the −1 difference between Eqs. (26) and (42)

become an extra −pec/N in Eq. (41). Because N is typically

large, we also see that RLB ≃ RUB.

Note that the direct leftover hash bound was used in the

derivations of Refs. [20–22], which therefore provided for-

mulas for the rate achievable by protocols with optimal PA.

However, these previous works are more pessimistic than our

current result due to a different tensor-product reduction with

respect to Eq. (31). In particular, the key-rate lower bound

from Ref. [21] takes the form

Rold
LB =

pec[nR∞ −
√

n
′
aep + θ ′ − 1]

N
, (43)

023321-4
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where θ ′ = θ + log2[pec(1 − ε2
s /3)], and


′
aep = [
aep]εs→pecε2

s /3. (44)

(To be precise the formula above is already a refinement since

we have also included more precise leakage contribution, as

explained in Sec. II G).

K. Specification to various protocols

1. Formula for discrete-alphabet coherent state protocols

More specific formulas for a discrete-alphabet protocol are

immediately derived. Let us define the reconciliation parame-

ter β ∈ [0, 1] by setting

H (l ) − n−1leakec = βI (k : l ), (45)

where I (k : l ) is Alice and Bob’s mutual information. Then,

the asymptotic key rate takes the form

R∞ = βI (k : l ) − χ (l : E )ρ . (46)

This is to be replaced in Eq. (40) for the upper bound, and

Eq. (41) for the lower bound with optimal PA.

2. Formula for Gaussian-modulated coherent state protocols

In the case of a Gaussian-modulated protocol, we need

to express the formulas in terms of quadratures. First, we

redefine the reconciliation parameter β ∈ [0, 1] as

H (l ) − n−1leakec = βI (x : y), (47)

where I (x : y) � I (k : l ) is Alice and Bob’s mutual informa-

tion computed over their continuous variables. Second, we

exploit the data processing inequality for Eve’s Holevo bound,

so χ (l : E )ρ � χ (y : E )ρ under digitalization y
ADC→ l . Thus,

we can use the asymptotic rate

R∞ = βI (x : y) − χ (y : E )ρ, (48)

to be replaced in the previous general formulas.

3. Other protocols

Other protocols can be considered. For example, the com-

posable key rate of CV-MDI-QKD can be expressed using

our general formulation once we replace the correspond-

ing asymptotic expression R∞. The same can be stated for

postselection protocols, which also involves the introduction

of an extra (postselection) probability pps, appearing as a

further prefactor in Eqs. (40) and (41), i.e., pec[. . . ]/N →
pps pec[. . . ]/N . In general, the postselection process can be

seen as a global filter that distills the number of runs and is

applied before the standard processing of data via EC and PA.

L. Parameter estimation

The asymptotic key rate R∞ depends on a number

npm of parameters p. By sacrificing m systems, Alice

and Bob can compute maximum likelihood estimators p̂

and worst-case values pwc, which are w standard de-

viations away from the mean values of the estimators.

The worst-case value bounds the true value of a param-

eter up to an error probability εpe = εpe(w). This means

that, overall, npm worst-case values pwc will bound the

parameters p up to a total error probability ≃ npmεpe.

Because PE occurs before EC, this probability needs to be

multiplied by pec, so we have a total modified epsilon security

ε = εcor + εs + εh + pecnpmεpe. (49)

In the composable formulas of Eqs. (40) and (41), the

asymptotic term R∞ = R∞(p) will be computed on the esti-

mators and worst-case values, i.e., replaced by

Rpe
∞ := R∞(p̂, pwc). (50)

In particular, the expressions in Eqs. (46) and (48) will be

replaced by

Rpe
∞ = β[I]p̂ − [χρ]pwc

. (51)

M. From one block to a session of blocks

In a typical fiber-based scenario, a QKD session is stable,

i.e., the main channel parameters are constant for a substantial

period of time. This means that we can consider a session

of nbks blocks, each block with size N . In this scenario,

the success probability pec becomes the fraction of blocks

that survive EC (the value 1 − pec is also known as frame

error rate). Assuming such a stable QKD session, PE can

be performed on a large number of points, namely nbksm.

This approach leads to better estimators and worst-case val-

ues to be used in Eq. (50). Using these improved statistics,

Alice and Bob will then implement EC block-by-block. Each

block surviving EC will undergo PA, where it is subject to a

hash function randomly chosen from a two-universal family.

Each block compressed by PA is then concatenated into the

final key.

N. Extension to coherent attacks for heterodyne

One can extend the security of the Gaussian-modulated

protocol with heterodyne detection to coherent attacks, fol-

lowing the Gaussian de Finetti reduction of Ref. [19]. The

parties need to verify that the Hilbert space of the signal states

is suitably constrained. In other words, the energy of Alice’s

and Bob’s states should be less than some threshold values, dA

and dB, respectively. The parties execute a random energy test

over k states to estimate the energy of the other n signal states

that participate in the standard steps of the protocol. Given that

the test is successful with probability pen and that the protocol

is ε-secure against collective Gaussian attacks, the new key

length is decreased by the following amount of secret bits [19]

s′
n � sn − 
, where


 := 2

⌈
log2

(
K + 4

4

)⌉
, (52)

and

K = max

⎧
⎪⎨
⎪⎩

1, n(dA + dB)
1 + 2

√
ln(8/ε)

2n
+ ln(8/ε)

n

1 − 2

√
ln(8/ε)

2k

⎫
⎪⎬
⎪⎭

. (53)

The number of channel uses per block is extended to N ′ =
N + k, the epsilon-security is rescaled to

ε′ =
K4

50
ε, (54)
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and the probability of not aborting pec is replaced by pec →
pen pec. One may set Alice’s energy threshold to be larger than

the mean photon number n̄A = V/2 of the average thermal

state created by her classical modulation V . More specifi-

cally, taking into account statistical calculations due to the

use of k signal states, one may set dA � n̄A + O(k−1/2). Then,

under the assumption of a lossy channel with reasonable ex-

cess noise, the mean number of photons received by Bob is

smaller than n̄A, so if we set dB = dA, we certainly have dB �

n̄A + O(k−1/2). These conditions lead to an almost successful

energy test pen ≃ 1. Consequently, the secret key rate of the

heterodyne protocol under coherent attacks will be given by

R′ =
pecs′

n

N ′ , (55)

constrained by the upper bound [similar to Eq. (40)]

R′
� R′

UB =
pec[nR∞ −

√
n
aep + θ − 
]

N ′ , (56)

and the lower bound [similar to Eq. (41)]

R′
� R′

LB = R′
UB −

pec

N ′ . (57)

O. Practical considerations

In an experimental implementation of a CV-QKD protocol,

the parties have to numerically estimate two crucial parame-

ters: the EC probability pec and the reconciliation efficiency

β. The EC probability can be computed as the ratio pec = nec

nbks

between the nec successfully corrected blocks and the total

number of blocks of a session nbks, assuming that the channel

is stable (see also [24,25,31]). The reconciliation efficiency

can be computed from the leakage of the EC scheme em-

ployed. Typically, the EC scheme exploits nonbinary LDPC

codes, described by a c × n parity check matrix with code

rate Rcode = c/n, where c is the number of parity checks. In

this case, the leakage can be bounded by

n−1leakec � dleast − Rcodedsyn, (58)

where dleast is the number of the least significant bits sent

on the clear, while dsyn is the number of syndrome bits (see

Refs. [24,25] for details and precise definitions).

Once the leakage is bounded, one may use Eqs. (45) or

(47) to compute the reconciliation parameter β. However, in

a practical setting, the value of the entropy H (l ) is also not

exactly known and must be estimated. During PE, the parties

calculate the frequency fl = nl/n of the value l , starting from

its nl occurrences in the sequence of length n. In this way, they

construct the estimator

Ĥ (l ) = −
2d −1∑

l=0

fl log2 fl . (59)

The value of this estimator is then used in Eqs. (45) or (47) to

derive an estimate for β [38].

The uncertainty on the value of Bob’s entropy has also an

effect at the level of the composable key rate, introducing a

further epsilon parameter. For the entropy estimator, we have

H (l ) � E(Ĥ (l )), (60)

and we can write

Prob[|Ĥ (l ) − E(Ĥ (l ))| � δent] � εent, (61)

for

δent = log2(n)

√
2 ln(2/εent)

n
. (62)

This means that we have the condition

− δent � Ĥ (l ) − E(Ĥ (l )) � δent (63)

with probability larger than 1 − εent.

Combining the inequality above with Eq. (60), we get

H (l ) � Ĥ (l ) − δent (64)

up to an error probability εent. In other words, we can replace

Bob’s entropy in the asymptotic rate of Eq. (38) with the lower

bound in Eq. (64) computed from the estimator in Eq. (59).

This leads to a stricter upper bound for the composable secret

key rate. More precisely, Eq. (37) becomes

sn � nR̂∞ − nδent −
√

n
aep + θ, (65)

where the asymptotic key rate becomes

R̂∞ = Ĥ (l ) − χ (l : E )ρ − n−1leakec. (66)

Thus, the corresponding composable secret key rate

R =
pecsn

N
(67)

is upper bounded by

R � R̂UB =
pec[nR̂∞ − nδent −

√
n
aep + θ ]

N
, (68)

with overall ε-security ε = εcor + εs + εh + pecεent. Note that

εent is rescaled by pec because Bob’s entropy is evaluated

during PE and, therefore, before EC. Similarly, according to

the discussion in Sec. II J, we may write the lower bound

Ropt
� R̂UB −

pec

N
(69)

for a protocol with optimal PA.

Including the estimation of the channel parameter p via

p̂ and pwc, the asymptotic rate in Eq. (66) becomes R̂
pe
∞ =

R̂∞ (̂p, pwc). In particular for the protocols in Sec. II K, the

rates in Eqs. (46) and (48) become

R̂pe
∞ = β̂[I]p̂ − [χρ]pwc

. (70)

By replacing R̂PE
∞ → R̂∞ in Eq. (68), we therefore bound the

composable secret key rate, which accounts for the entire PE

process, with overall ε-security

ε = εcor + εs + εh + pecεent + pecnpmεpe. (71)

Finally, for the heterodyne protocol, we may extend the secu-

rity to coherent attacks repeating the modifications that lead

to Eqs. (56) and (57) of Sec. II N.

III. EXAMPLES WITH THE MAIN

GAUSSIAN-MODULATED PROTOCOLS

In order to use the composable formula, we need to specify

the asymptotic key rate and the PE procedure, so that we can
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compute the rate R
pe
∞ in Eq. (50) to be replaced in Eq. (40).

Here, we report the known formulas for the asymptotic

key rates of the Gaussian-modulated coherent-state protocols

(with homodyne and heterodyne detection). These asymptotic

formulas can be found in a number of papers (e.g., see Ref. [1]

and references therein). Then we consider the modifications

due to PE.

A. Gaussian modulation of coherent states

with homodyne detection

We model the link connecting the parties as a thermal-loss

channel with transmissivity T = 10−D/10 (where D is here the

loss in dB) and excess noise ξ . The dilation of the channel

is represented by a beam splitter with transmissivity T that

Eve uses to inject one mode of a two-mode squeezed vacuum

(TMSV) state with variance

ω =
T ξ

1 − T
+ 1. (72)

Eve’s injected mode is therefore coupled with Alice’s incom-

ing mode via the beam splitter and the output is received by

Bob, who detects it using a homodyne detector with efficiency

η and electronic noise uel (both local parameters that can be

considered to be trusted in a well-calibrated scenario). The

other, environmental, output of the beam splitter is stored by

Eve in a quantum memory, together with the kept mode of the

TMSV state. In this way, many modes are collected in Eve’s

quantum memory, which is finally subject to an optimal joint

measurement (collective entangling-cloner attack).

Alice and Bob’s mutual information is given by

I (x : y) =
1

2
log2

[
1 +

V

ξ + (1 + uel)/(T η)

]
, (73)

where V is Alice’s modulation. The CM of Eve’s output state

(her partially transmitted TMSV state) is given by

VE =
(

ωI ψZ

ψZ φI

)
, (74)

where I = diag(1, 1), Z = diag(1,−1) and

ψ =
√

T (ω2 − 1), (75)

φ =T ω + (1 − T )(V + 1). (76)

Then, Eve’s conditional CM (conditioned on Bob’s outcome)

is given by

VE |y = VE − b−1

(
γ 2

� γ θ�

γ θ� θ2
�

)
, (77)

where � = diag{1, 0} and

b = T η(V + ξ ) + 1 + uel, (78)

γ =
√

η(1 − T )(ω2 − 1), (79)

θ =
√

ηT (1 − T )(ω − V − 1). (80)

By calculating the symplectic eigenvalues of the total CM, ν+
and ν−, and those of the conditional CM, ν̃+ and ν̃−, we obtain

Eve’s Holevo information on Bob’s outcome

χ (E : y) = h(ν+) + h(ν−) − h(ν̃+) − h(ν̃−), (81)

where we use the usual CV-based entropy function

h(ν) :=
ν + 1

2
log2

ν + 1

2
−

ν − 1

2
log2

ν − 1

2
. (82)

Then the asymptotic secret key rate is given by the difference

between the mutual information (multiplied by the reconcilia-

tion efficiency β) and Eve’s Holevo information as in Eq. (48).

B. Gaussian modulation of coherent states

with heterodyne detection

For the protocol with heterodyne detection, the mutual

information is a simple modification of the previous one in

Eq. (73) and given by

I (x : y) =
V0

2
log2

[
1 +

V

ξ + (V0 + uel)/(ηT )

]
, (83)

where V0 = 2 (note that for V0 = 1 we get the expression valid

for homodyne detection). Eve’s CM is the same as in Eq. (74),

but the conditional CM is instead given by

VE |y = VE − (b + 1)−1

(
γ 2I γ θZ

γ θZ θ2I

)
. (84)

C. Parameter estimation and final performance

Let us now include PE, assuming that m signals are sac-

rificed for building the estimators of the channel parameters

(to be used in the mutual information) and the associated

worst-case values (to be used in Eve’s Holevo bound). One

therefore computes estimators T̂ ≃ T , ξ̂ ≃ ξ and the follow-

ing worst-case values:

Twc ≃ T − wσT , (85)

ξwc ≃
T

Twc

ξ + wσξ , (86)

where

σT =
2T

√
V0m

√

cpe +
ξ + V0+uel

ηT

V
, (87)

σξ =

√
2

V0m

ηT ξ + V0 + uel

ηTwc

. (88)

In the equations above, V0 = 1 is for homodyne detection

and V0 = 2 is for heterodyne detection. Then, in Eq. (87),

the term cpe can be set to zero [14] (in fact, another choice

would be cpe = 2 [15] based on a weaker assumption [39]).

The parameter w that connects the worst-case values with εpe

is simply given by an inverse error function when we assume

a Gaussian approximation for the parameters, i.e.,

w =
√

2erf−1(1 − εpe). (89)

However, when stricter conditions are required, e.g., in the

case of coherent attacks [see Eq. (54)], we use chi-squared

distribution tail bounds where w is given by

w =
√

2 ln ε−1
pe . (90)

(See Appendix B for more details.)
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FIG. 1. Improved composable secret key rate [upper bound of

Eq. (40)] for the Gaussian modulated coherent-state protocol with

homodyne detection (blue solid line) and heterodyne detection (black

solid line) with respect to channel loss in dB. These lines over-

lap with those associated with the lower bound of Eq. (41). The

corresponding dashed lines are computed using Eq. (43), based on

previous literature. We have set β = 0.98 and pec = 0.95. Excess

noise is ξ = 0.01, detection efficiency is η = 0.6, and electronic

noise is uel = 0.1. Security epsilons have all been set to 2−32. The

cardinality of the alphabet is |L| = 27 for homodyne and |L| = 214

for heterodyne. Block size is N = 107 and PE is based on m = N/10

sacrificed signals. We have optimized the results over the variance V

of Alice’s Gaussian modulation.

Thus, by using p̂ = (T̂ , ξ̂ ) and pwc = (Twc, ξwc), we com-

pute the PE rate as in Eq. (51) to be replaced in Eq. (40) for

both the homodyne and heterodyne protocols. Let us assume

ad hoc values for pec and β (the exact numerical values of

these parameters are known after a realistic implementation

or simulation of EC, as discussed in Sec. II O). Then, we

show the performances of the two protocols in Figs. 1 and

2. More specifically, in Fig. 1, we depict the secret key rate

versus channel loss, while, in Fig. 2, we show its behavior

with respect to block size. For the sake of comparison, we

have also included the results based on previous literature

[20,21] (refined in Sec. II J). From the figures, we can see a

significant improvement in the key rate performance both in

terms of robustness to loss and smaller block size.

IV. CONCLUSIONS

In this paper, we have introduced an improved formula-

tion for the composable and finite-size secret key rate of a

generic CV-QKD protocol. By resorting to previous theory

and proving various other tools, such as a refined tensor-

product reduction for the state after error correction, we have

derived simpler and more optimistic formulas, able to show

an improvement in the general performance of CV-QKD. As

shown in the examples, this improvement can be appreciated

both in terms of increased robustness to loss and/or reduced

requirements for the size of the usually larger QKD blocks.

In general, this paper contributes to making a step forward

in the rigorous deployment of CV-QKD protocols in practical

scenarios.

FIG. 2. Improved composable secret key rate [upper bound of

Eq. (40)] for the Gaussian modulated coherent-state protocol with

homodyne detection (blue solid line) and heterodyne detection (red

solid line) with respect to the block size N . These lines coincide with

those computed from the lower bound of Eq. (41). The corresponding

dashed lines are computed using Eq. (43), based on previous litera-

ture. Loss is set to 7 dB, while all the other parameters are chosen as

in Fig. 1.
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APPENDIX A: PROOF OF THE TENSOR-PRODUCT

REDUCTION IN EQ. (31)

Consider an arbitrary Hilbert space H and two gen-

erally subnormalized states ρ, τ ∈ S�(H) with Trρ, Trτ �

1. We may consider the purified distance [40] P(ρ, τ ) =√
1 − FG(ρ, τ )2, where FG is the generalized quantum fidelity

[37, Def. 3.2, Lemma 3.1].

For any (generally sub-normalized) state ρ of two quantum

systems A and B, we may write [37, Def. 5.2]

H ε
min(A|B)ρ = max

τ∈Bε (ρ)
Hmin(A|B)τ , (A1)

where

B
ε(ρ) := {ρ ′ : Trρ ′

� 1, P(ρ ′, ρ) � ε < 1} (A2)

is a ball of generally subnormalized states around ρ. In partic-

ular, for any generally subnormalized CQ state

ρCQ =
∑

x

px|x〉C〈x| ⊗ ρx
Q, (A3)

for x in the alphabet X , we can find another generally subnor-

malized CQ state τCQ ∈ Bε(ρCQ) such that [37, Prop. 5.8]

H ε
min(C|Q)ρ = Hmin(C|Q)τ . (A4)

In particular, we may write

τCQ =
∑

x

qx|x〉C〈x| ⊗ τ x
Q. (A5)
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Let us now consider a CCQ extension of ρCQ denoted by ρC′CQ

such as ρCQ = TrC′ (ρC′CQ). More specifically, we may write

ρC′CQ =
∑

x′,x

px′,x|x′, x〉C′C〈x′, x| ⊗ ρ
x′,x
Q , (A6)

ρCQ =
∑

x′,x

px′,x|x〉C〈x| ⊗ ρ
x′,x
Q , (A7)

where the summation takes place over all the elements

x′ ∈ X ′ and x ∈ X of the basis {|x′, x〉C′C〈x′, x|}.
Then there is an extension for τCQ [41, Col. 9], denoted by

τ̄C′CQ, such that

P(τ̄C′CQ, ρC′CQ) = P(τCQ, ρCQ) � ε. (A8)

Note that, due to the monotonicity of the purified distance [37,

Theorem 3.4] under CPTP maps E , we have

P(E (τ̄C′CQ), E (ρC′CQ)) � P(τ̄C′CQ, ρC′CQ). (A9)

In particular, consider a “pinching” channel [42, Def. 4.4]

in the basis {|x′, x〉C′C〈x′, x|}, i.e.,

Epch(ρ) =
∑

x′,x

|x′, x〉C′C〈x′, x|ρ|x′, x〉C′C〈x′, x|. (A10)

This channel transforms an arbitrary input state into an output

CCQ state, which is classical in the systems C′C, i.e., with

respect to the basis {|x′, x〉C′C〈x′, x|}. At the same time, it is

clear that this channel does not change ρC′CQ. According to

Sec. A 1, we may write

τC′CQ = Epch(τ̄C′CQ)

=
∑

x′,x

qx′,x|x′, x〉C′C〈x′, x| ⊗ τ
x′,x
Q , (A11)

τCQ =
∑

x′,x

qx′,x|x〉C〈x| ⊗ τ
x′,x
Q , (A12)

and we have

P(τC′CQ, ρC′CQ) = P(Epch(τ̄C′CQ), Epch(ρC′CQ)) � ε, (A13)

as a consequence of Eqs. (A8) and (A9) specified to the

pinching channel.

Consider the joint projection

� :=
∑

(x′,x)∈Ŵ

|x′, x〉C′C〈x′, x|, (A14)

defined over a reduced alphabet Ŵ ⊆ X ′ ⊗ X for the classical

system C′C and a subsequent guess channel Eguess applied to

C′C [cf. Eqs. (9) and (10) in the main text]. Then due to the

monotonicity of the purified distance under completely posi-

tive trace nonincreasing maps, i.e., projections, CPTP maps,

and partial trace operations [37, Theorem 3.4], we have

P(τ̃CQ, ρ̃CQ) � P(τC′CQ, ρC′CQ) � ε, (A15)

where

ρ̃CQ = TrC′[Eguess(�ρC′CQ�)]

=
∑

(x′,x)∈Ŵ

px′,x|x〉C〈x| ⊗ ρ
x′,x
Q , (A16)

τ̃CQ = TrC′[Eguess(�τC′CQ�)]

=
∑

(x′,x)∈Ŵ

qx′,x|x〉C〈x| ⊗ τ
x′,x
Q . (A17)

This means that τ̃CQ ∈ Bε(ρ̃CQ) and as a consequence of the

definition of the smooth min-entropy

H ε
min(C|Q)ρ̃ � Hmin(C|Q)τ̃ . (A18)

Then we exploit the following formula [37, Sec. 4.2.1] for

the min-entropy

Hmin(A|B)τ = − log2 max
E

Tr[EB→B′ (τAB)γAB′ ], (A19)

where τAB ∈ S�(HAB) is a subnormalized state for systems

A and B, γAB′ = |γAB′〉〈γAB′ | is a subnormalized maximally-

entangled state for systems A and B′, i.e.,

|γAB′〉 =
∑

x

|x〉 ⊗ |x〉, (A20)

and EB→B′ is a CPTP map from B to B′, where HB′ ∼= HA. In

particular, when we assume CQ states as in Eq. (A12), we may

write

Tr[EQ→Q′ (τCQ)γCQ′ ]

=
∑

x′,x

qx′,xTr
[
|x〉C〈x| ⊗ EQ→Q′

(
τ

x′,x
Q

)
γCQ′

]

=
∑

x′,x

qx′,x〈x|EQ→Q′
(
τ

x′,x
Q

)
|x〉

�
∑

(x′,x)∈Ŵ

qx′,x〈x|EQ→Q′
(
τ

x′,x
Q

)
|x〉

= Tr[EQ→Q′ (τ̃CQ)γCQ′], (A21)

where the inequality stems from the fact that we have a

summation of a smaller amount of positive terms due to the

reduced alphabet (x′, x) ∈ Ŵ of the projection. By taking the

maximum and the minus logarithm of the previous relation,

we may write the following relation for the min-entropies of

the states τCQ and τ̃CQ,

Hmin(C|Q)τ̃ � Hmin(C|Q)τ . (A22)

By replacing Eq. (A4) and (A18) in the previous inequality,

we obtain the corresponding inequality for the smooth min-

entropies of ρ and ρ̃, i.e.,

H ε
min(C|Q)ρ̃ � H ε

min(C|Q)ρ . (A23)

Finally, we note that we get Eq. (31), by replacing ρ →
ρ⊗n, ρ̃ → σ n, C → Bn, and Q → En.

1. Form of the CCQ extension in Eq. (A11)

Let us assume a general CCQ state

θC′CQ =
∑

x′,x

q̃xq̃x′|x|x′, x〉C′C〈x′, x| ⊗ τ̃
x′,x
Q (A24)

and we set

τ̃ x
Q :=

∑

x

q̃x′|x τ̃
x′,x
Q . (A25)
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We impose that the reduced state, after tracing out A, is equal

to Eq. (A5). From the block diagonal form of the states, we

obtain

qxτ
x
Q = q̃x τ̃

x
Q. (A26)

Similarly, by further tracing out E , we have that

qxtr
{
τ x

Q

}
= q̃xtr

{
τ̃ x

Q

}
. (A27)

By combining Eqs. (A26) and (A27), we obtain

τ x
Q =

tr
{
τ x

Q

}

tr
{
τ̃ x

Q

} τ̃ x
Q

=
∑

x′

q̃x′|x
tr
{
τ x

Q

}

tr
{
τ̃ x

Q

} τ̃
x′,x
Q . (A28)

We can freely set

qx′|x :=
q̃x′|x

tr
{
τ̃ x

Q

} , (A29)

τ
x′,x
Q := tr

{
τ x

Q

}
τ̃

x′,x
Q , (A30)

so Eq. (A28) simply becomes

τ x
Q =

∑

x′

qx′|xτ
x′,x
Q . (A31)

Then, by using Eq. (A27) in Eq. (A24), we obtain

θC′CQ =
∑

x′,x

qxtr
{
τ̃ x

Q

}−1
q̃x′|x|x′, x〉C′CQ〈x′, x| ⊗ tr

{
τ x

Q

}
τ̃

x′,x
Q

=
∑

x′,x

qxqx′|x|x′, x〉C′CQ〈x′, x| ⊗ τ
x′,x
Q , (A32)

where, in the last equation, we have used Eqs. (A29) and

(A30). Note that the fact that the state must be CCQ and

that its reduced form must be equal to Eq. (A5) completely

characterizes the state. Therefore, we can derive the form in

Eq. (A11).

APPENDIX B: DETAILS ON PARAMETER ESTIMATION

FOR GAUSSIAN-MODULATED PROTOCOLS

We assume that V0m data points are used for PE, with

V0 = 1 (V0 = 2) for the homodyne (heterodyne) protocol. For

simplicity, we assume that the two quadratures have been

modulated with the same variance and that the channel trans-

forms them in the same way (phase-insensitive channel, as

typical of the standard thermal-loss channel). Then we denote

with x and y the Gaussian input and output of the channel,

respectively, with Gaussian noise variable z and transmissivity

T , where

y =
√

ηT x + z. (B1)

1. Estimating the transmissivity

We write the covariance Cxy = Cov(x, y) =
√

ηT σ 2
x ,

where σ 2
x is the variance of x. Its estimator is given by

Ĉxy : =
1

V0m

V0m∑

i=1

[x]i[y]i (B2)

=
1

V0m

V0m∑

i=1

√
T [x]2

i + [x]i[z]i

≃
√

ηT σ 2
x +

1

V0m

V0m∑

i=1

[x]i[z]i, (B3)

where, in Eq. (B3), we replaced Alice’s known variance.

We calculate VCov := Var(Ĉxy) directly from Eq. (B2) and

obtain

VCov =
1

V0m

[
ηT Var(x2) + σ 2

x σ 2
z

]

=
1

V0m

[
ηT 2

(
σ 2

x

)2 + σ 2
x σ 2

z

]

=
1

V0m
ηT

(
σ 2

x

)2

[
2 +

σ 2
z

ηT σ 2
x

]
. (B4)

Otherwise, we can start from Eq. (B3) and obtain

VCov =
1

V0m
σ 2

x σ 2
z . (B5)

Both of them can be summarized into

VCov =
C2

xy

V0m

[
cpe +

σ 2
z

ηT σ 2
x

]
, (B6)

where, for the first one, we set cpe = 2 and, for the second one,

cpe = 0. Then we may write the estimator

T̂ =
1

η
(
σ 2

x

)2
Ĉ2

xy =
VCov

η
(
σ 2

x

)2

(
Ĉxy√
VCov

)2

. (B7)

Since
Ĉx,y√
VCov

follows a standard normal distribution with mean
Cx,y√
VCov

, then (
Ĉx,y√
VCov

)2 follows a noncentral chi-squared dis-

tribution with degrees of freedom d f = 1 and noncentrality

parameter κcn = C2
x,y/VCov. Consequently T̂ follows the same

distribution but rescaled by the factor VCov

η(σ 2
x )2 . Via the chi-

squared distribution parameters, we can calculate its variance

Var(T̂ ) =
2V 2

Cov

η2
(
σ 2

x

)4

(
1 + 2

C2
x,y

VCov

)
, (B8)

and, by omitting the terms O(1/m2), we obtain

Var(T̂ ) =
4VCovC

2
x,y

η2
(
σ 2

x

)4
=

4C4
x,y

η2
(
σ 2

x

)4

[
cpe + σ 2

z

ηT σ 2
x

]

V0m
(B9)

=
4η2T 2

(
σ 2

x

)4

η2
(
σ 2

x

)4

[
cpe + σ 2

z

ηT σ 2
x

]

V0m

=
4T 2

V0m

[
cpe +

σ 2
z

ηT σ 2
x

]
:= σ 2

T . (B10)

Given that

σ 2
z = ηT ξ + uel + V0, (B11)
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we may write

σT =
2T

√
V0m

√√√√
[

cpe +
ξ + V0+uel

ηT

σ 2
x

]
, (B12)

as in Eq. (87) of the main text up to replacing V = σ 2
z . For

m ≫ 1, we may assume that the distribution of T̂ is Gaussian

with variance given by Eq. (B9). Therefore, we may write that

Twc ≃ T − wσT (B13)

with

w =
√

2erf−1(1 − 2εpe). (B14)

To better understand the result above, let us assume a

generic estimator p̂ that follows a normal distribution with

mean p and variance σ 2
p . We impose the probability that

p̂ � pwc := p + wσp is less than εpe. In other words,

Prob[ p̂ � p + wσT ] � εpe. (B15)

We can rewrite Eq. (B15) as follows:

Prob[ p̂ − p � +wσp] � εpe,

Prob

[
p̂ − p

σp

� w

]
� εpe. (B16)

We can recognize the cumulative distribution


(w) = 1
2
[1 + erf(w/

√
2)] (B17)

of the normal variable
p̂−p

σp
. We use its connection to the error

function erf(.) to write

1 − 
(w) � εpe, (B18)

1
2
[1 + erf(w/

√
2)] � 1 − εpe, (B19)

erf(w/
√

2) � 1 − 2εpe, (B20)

w �
√

2erf−1(1 − 2εpe), (B21)

and we use the bound above in Eq. (B14).

Alternatively, we may use tail bounds for the chi-squared

distribution. In particular, for the stochastic variable X follow-

ing the latter distribution, we have that

Prob
[
X � (d f + κnc) − 2

√
(d f + 2κnc) ln ε−1

pe

]
� εpe,

(B22)

Prob
[
X � (d f + κnc) + 2

√
(d f + 2κnc) ln ε−1

pe + 2 ln ε−1
pe

]
� εpe.

(B23)

Applying this to T̂ , we obtain

Twc =
VCov + C2

x,y

η
(
σ 2

x

)2

−
2

η
(
σ 2

x

)2

√(
V 2

Cov + 2C2
x,yVCov

)
ln ε−1

pe . (B24)

Then, we expand the square root above and omit O( 1
m

)

terms
√(

V 2
Cov + 2C2

x,yVCov

)

=
√

2C2
x,yVCov

√
1 +

VCov

2C2
x,y

=
√

2C2
x,yVCov

[(
1 +

VCov

4C2
x,y

)
+ O

(
1

m2

)]

=
√

2C2
x,yVCov + O

(
1

m

)

≃

√√√√
2
η2T 2

(
σ 2

x

)4

V0m

[
cpe +

σ 2
z

ηT σ 2
x

]
. (B25)

Finally, we obtain

Twc ≃ T −
√

2 ln ε−1
pe

2T
√

V0m

√[
cpe +

σ 2
z

ηT σ 2
x

]
, (B26)

which can be written in the form of Eq. (B13) but with

w =
√

2 ln ε−1
pe . (B27)

2. Estimating the noise

In the same manner, we calculate the estimator for σ 2
z , the

variance of the noise variable z. We have that

σ̂ 2
z =

1

V0m

V0m∑

i=1

(y −
√

ηT̂ x)2 (B28)

≃
1

V0m
σ 2

z

V0m∑

i=1

(
y −

√
ηT x

σz

)2

. (B29)

The sum above follows a central chi-squared distribution with

d f = V0m and, therefore, with mean V0m and variance 2V0m.

Then σ̂ 2
z follows the same distribution but rescaled by

σ 2
z

V0m
.

Thus, its mean value is σ 2
z while its variance Vz = 2(σ 2

z )2

V0m
. From

this, we may write

[
σ 2

z

]
wc

≃ σ 2
z + w

√
Vz (B30)

with w given by Eq. (B14).

Otherwise, we may use the tail bounds in Eq. (B22) to

obtain

[
σ 2

z

]
wc

=
σ 2

z

V0m

(
V0m + 2

√
V0m ln ε−1

pe + 2 ln ε−1
pe

)

= σ 2
z + σ 2

z

√
2

√
V0m

√
2 ln ε−1

pe + O

(
1

m

)

≃ σ 2
z + σ 2

z

√
2

√
V0m

√
2 ln ε−1

pe , (B31)

which can be written as in Eq. (B30) but with w given in

Eq. (B27).
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Finally, from Eq. (B11), we derive

ξwc =
[
σ 2

z

]
wc

ηTwc

−
uel + V0

ηTwc

≃
ηT ξ + w

√
Vz + uel + V0

ηTwc

−
uel + V0

ηTwc

=
T

Twc

ξ +
w

√
Vz

ηTwc

. (B32)

This expression can equivalently be written as

ξwc ≃
T

Twc

ξ + wσξ , (B33)

where

σξ =
√

Vz

ηTwc

=

√
2

V0m

ηT ξ + V0 + uel

ηTwc

, (B34)

as in Eq. (88) of the main text.
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