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Abstract

Collisional fragmentation is a ubiquitous phenomenon arising in a variety of astrophysical systems, from asteroid
belts to debris and protoplanetary disks. Numerical studies of fragmentation typically rely on discretizing the size
distribution of colliding objects into a large number N of bins in mass space, usually logarithmically spaced. A
standard approach for redistributing the debris produced in collisions into the corresponding mass bins results in
O(N?) calculation, which leads to significant computational overhead when N is large. Here, we formulate a more
efficient explicit O(N?) fragmentation algorithm, which works when the size spectrum of fragments produced in an
individual collision has a self-similar shape with only a single characteristic mass scale (which can have arbitrary
dependence on the energy and masses of colliding objects). Fragment size spectra used in existing fragmentation
codes typically possess this property. We also show that our O(N?) approach can be easily extended to work with
non-self-similar fragment size distributions, for which we pr0v1de a worked example. This algorithm offers a
substantial speedup of fragmentation calculations for large N > 10% even over the implicit methods, making it an
attractive tool for studying collisionally evolving systems.

https://doi.org/10.3847/1538-4365 /ab7b71

CrossMark

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sc1ences University of Cambridge, Wilberforce Road, Cambridge CB3

Unified Astronomy Thesaurus concepts: Debris disks (363); Planetesimals (1259); Algorithms (1883)

1. Introduction

The issue of collisional fragmentation regularly arises in
astrophysical problems where the masses of colliding objects—
e.g., planetesimals or dust particles in protoplanetary disks—
need to be followed. Examples include evolution of the asteroid
belt (Durda & Dermott 1997), the Kuiper Belt (Davis &
Farinella 1997; Kenyon & Bromley 2004), dust populations in
debris disks (Kenyon & Bromley 2005; Krivov et al. 2008),
and protoplanetary disks (Brauer et al. 2008; Birnstiel et al.
2010). The large number of objects in these applications makes
it convenient to characterize the state of the system via the mass
distribution (spectrum) n(m), such that the number of objects in
the mass interval (m, m + dm) is n(m)dm. Pair-wise collisions
cause mass to be exchanged between different parts of the mass
space: a collision between objects m; and m, produces a
number of fragments, channeling mass toward smaller objects.
The total mass in the system of colliding objects is usually
conserved in the process, although it may be lost in very
energetic collisions when vaporization occurs; for simplicity,
we will disregard the latter possibility. Also, when particles
reach very small sizes, they could be removed from the system
by other processes, such as Poynting—Robertson drag or
radiation pressure.

In a continuous limit, the evolution of the mass spectrum due
to fragmentation in pair-wise collisions is described by the
following equation:

on(m)
ot

—f f dmydm, g(m|m, my)
X R(my, ma)n(mp)n(ma)

— n(m) fooc dmi R (m, m)n(my). (1)

Here, R(m,, m,) is the rate coefficient for collisions between
particles of masses m; (target) and m, (projectile), while

g(m|my, my) is the size (or mass) distribution of fragments
produced in a single collision. It is defined such that the number
of fragments in the mass interval (m, m + dm) resulting in a
collision between particles m; and m; is g(m|m,, m;)dm. The
first term in Equation (1) is the source and represents the
production of particles of mass m in collisions of particles with
masses m; and m,, with a factor of 1/2 introduced to avoid
double counting. Note that g (m|m;, m;) can be identically zero,
e.g., when m; + my, < m. The second term in Equation (1)
describes the removal of particles in a given mass bin in
disruptive collisions with other particles of all sizes. Note that,
although we do not consider the possibility of particle
coagulation in this work, our subsequent results are applicable
also to systems, in which both fragmentation and coagulation
operate.

In numerical applications, the mass coordinate is discretized
into a large number N of bins (typically uniformly spaced in
Inm). The number of objects per ith bin is #n,(f) and the vector
n={n}, i=1,..,N fully -characterizes the system.
Equation (1) is then evolved in two steps. First, one chooses a
pair of bins i and j, i, j = 1, ..., N and computes the number of
collisions between particles in these bins that occur in time Af.
Second, the fragments produced in collisions of each mass pair
are distributed over the N bins according to their mass
distribution (i.e., the function g (m|m;, m,)), which is described
by the first term on the right-hand side of this equation. This
procedure needs to be repeated for each i, j pair of colliding bins.

The first step requires O(N?) operations in general, while the
second takes O(N). As a result, the numerical cost of evolving
Equation (1) scales as® O(N3) per time step. This can be rather

5 This numerical cost of the fragmentation calculation should be compared
with the O(N?) cost of the coagulation computation, which is less demanding.
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challenging when N is very large, which is often needed to
provide an accurate description of the collisional evolution of
astrophysical systems spanning many orders of magnitude
in mass.

The goal of this work is to demonstrate that the numerical
cost can be reduced to O(N?) for a certain class of fragment
size distributions, which is rather common, and flexible enough
to handle even more general models of collision outcomes. We
describe this fragmentation model in Section 2, and the
associated O(N?) algorithm in Section 3. We then show how
this model can be extended to approximate more general forms
of the fragment size distribution (Section 4), and provide a
numerical illustration in Section 5. We compare explicit and
implicit methods for evolving fragmentation cascades in
Section 6. Our results are discussed in Section 7.

2. Fragmentation Model

The outcome of a collision between two objects depends on
a variety of factors. The primary ones are the masses m; and m,
involved in a collision, the relative velocity of the colliding
objects v,, and the material properties of each object
determined by the composition, structural characteristics (e.g.,
porosity), and size. The precise geometry of the collision (i.e.,
impact parameter for spherical objects) also plays an important
role. In many studies, the rates of the collisions and collision
outcomes are treated in an averaged sense, by convolving over
the distributions of v, impact parameters, etc. In this work, to
simplify the notation, we will explicitly spell out the
dependence of collision outcomes only on the masses of the
colliding objects, implicitly assuming that the collisional
velocities (or characteristics of their distribution, such as the
mean and dispersion) and other parameters depend on masses
as well. Given that the relative velocities may also depend on
time, the collision outcomes should typically be recalculated at
every time step.

We characterize the size distribution of fragments forming in
a collision of objects with mass m; and m, using a reasonably
general model of a collision outcome. It covers the two most
common possibilities: (1) the erosion in weakly energetic
collisions, which results in one dominant post-collision
remnant with the mass m,, (m,, m;) and a continuous spectrum
of small fragments; and (2) catastrophic disruption, when the
large remnant no longer exists and only a continuous spectrum
of fragments remains. This model has a form

g(m|ml’ m2) = 66(m - mrm) + gf(mlml’ m2)’ (2)

where € = 1 in the case of erosion, while ¢ = O in the case of
catastrophic collisions. Here, g (m|m;, m) is a mass spectrum
describing a continuous population of fragments formed in a
collision; see Figure 1 for a schematic illustration. There are
other possible outcomes of particle collisions—sticking, mass
transfer, bouncing, etc. (Giittler et al. 2010; Windmark et al.
2012)—which we do not consider in this study.

A particular form of g;explored in this work that allows one
to reduce the computational cost of the fragmentation
calculation to OW?) is the self-similar fragment mass
spectrum:

m ) 3)

g (mlmy, my) = As@(—
4 my(my, my)
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g(m | mm,) = A (m/m,)

dN/dm

m,(m,,m,) m_ m+m, m

Figure 1. Schematic representation of an outcome of a collision (mass
distribution of collision products) between the two objects with masses m; and
my, represented by Equation (2). Collision products consist of: (1) a large
remnant with mass m,, (for e = 1); and (2) a continuous spectrum of small
fragments g; (m|my, my), which in this case has a self-similar form (3). Various
characteristic mass scales are indicated on the horizontal axis.

Here, ¢ is an arbitrary function that truncates at large masses m;
m, is the characteristic mass scale set by my, m,, and the details
of collision physics (i.e., collision energy); and A is the
normalization of the spectrum. As we will show later in
Section 3, the key feature of this fragment mass spectrum is
that all information about the collision details, e.g., the time-
dependent relative velocity of the colliding objects (which sets
both the rate of collisions and the size distribution of
fragments), etc., is absorbed in a single parameter—the mass
scale m.

The value of A is set by mass conservation (in the absence of
mass losses to vaporization)

my+ my = €mm + A f mep (m/my)dm, 4)
0
so that
my + my — €My e
A= - , I= f zp(2)dz. 5)
Img 0

Integration over the mass coordinate can be to extended to
infinity since the function ¢(z) vanishes for large values of z.

Laboratory experiments suggest (Gault & Wedekind 1969;
Hartmann 1969; Fujiwara et al. 1977; Blum & Miinch 1993)
that the fragment mass spectrum can often be described
reasonably well by a power law in fragment mass m truncated
above some largest fragment mass my = mys:

(m/my)Y, m < my,
0, m > my.

g mlm, mo) = A{ ©)
For example, Fujiwara et al. (1977) found that the mass
spectrum of fine fragments resulting in collisions of basaltic
bodies can be well-described by a power-law dependence with
index v = —1.8. On the other hand, Blum & Miinch (1993)
found that v= —9/8 in their experiments with ZrCO,
aggregates. The spectrum (6) has the self-similar form (3) with

(@) = ¢Pl(zly) = 81 — 2)27, (7)
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where z = m/my; and O(z) is the Heavyside step function
(superscript “pl” stands for “power law”).

3. O(N?) Fragmentation Algorithm

We now demonstrate how the fragmentation calculation
described by the Equation (1) can be turned into an O(N?)
problem, rather than O(N?3), for the fragment mass spectrum in
the form (3). We will later show in Section 4 that this procedure
can be generalized to cover even more complicated fragment
mass spectra.

The basic idea behind this algorithm lies in the order in
which different steps are performed. In the standard O(N?)
approach, for every pair of mass bins, the calculation of the
collisional debris production is immediately followed by the
redistribution step—assigning fragments to their corresponding
mass bin. In our new method, the order is different: after
computing debris production for each mass bin pair, we bin the
outcomes (spectrum amplitudes A) according to their m, and
My, Which is possible when gf(mlml, m,) has a self-similar
shape (3). Only after this procedure has been carried out for all
pairs of bins do we perform the fragment distribution step. Both
of these steps, performed sequentially, can be computed in
O(N?) operations, providing the desired speedup. We next
describe this algorithm in detail.

Let us introduce two auxiliary N-dimensional vectors. One is
n™ = {n/™} and is used to record the number of large remnant
bodies resulting from erosive collisions in a fixed time interval
that end up in the ith bin (i.e., with m,, falling into this bin).
Another vector is A = {A;}—the sum of normalization factors
A given by Equation (5) for all collisions that have the
characteristic mass scale of their fragment size distributions m,,
falling into the ith mass bin.

We can now describe our O(N?) fragmentation algorithm
step by step.

1. At the start of a new time step, we set n,;™ = 0, 4; = 0,
i=1,...,N.

2. We pick a particular mass bin i = 1, ..., N, which is an
O(N) operation.

3. We first take care of the last term in the right-hand side of
Equation (1), although the order is not important. We
consider collisions of objects in the ith bin with objects in

every j = 1,...,N bins in the system, calculating their
rate R(m;, m;) and the actual number of collisions in time
ar.

dNg" = R(m;, mj)n(m;)n(my)dm;dm;dt, ®)

where dm;, dm; are the width of the ith and jth mass bin,
respectively. Note that dl\’ijc-011 can be a noninteger.
The total loss of particles from the ith bin is then

N
dn;=>" dNg°". )
j=1

Calculation of d]\/[j-"11 and dn;” for all combinations of
i and j requires O(N?) operations.

4. We then deal with the first term in the right-hand side of
Equation (1) and consider the spectrum of fragments
resulting in collisions between objects in ith and jth bins
considered before. Standard fragmentation algorithms
directly distribute these fragments for each i, j pair into
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the relevant mass bins already at this step (another O(NV)
operation). This would make the algorithm scale as
O(N3).

We proceed differently. Knowing the relative energy
of collision, we compute the values of m,,, m, and A for
every pair of i and j. We then treat large remnants and
small debris as follows.

Large remnant bodies: We find the index k,, of the

bin into which m, falls, and increase the value of n;" by

the number of remnant bodies produced in dNijC-"11

collisions:

m
i — oM 4 EdNi§°11—rm. (10)
mkrn]

The factor my, /m.y is introduced here to conserve mass:
it accounts for the fact that the large remnant mass m,,
does not necessarily equal the central mass of the bin
mg,.-
Small fragments: We then take care of the contin-
uous spectrum of smaller fragments. First, we determine
the index k, of the bin into which m, falls. Since, again,
in general my, = my, We ensure mass conservation by
adjusting A to a (slightly different) value A’, such that

2
A :A(ﬂ) . (11)

mk*

This follows from the fact that the total mass of the self-
similar fragment size spectrum with mass scale m, is
Am2I, where I is the integral defined in Equation (5).

We then update the k,th component of the vector .4
as follows:

A, = Ag, + dNSMA' (12)

5. Operations in steps (2)—(4) are repeated for all pairs of i
and j (avoiding double counting). This, in general,
requires O(N?) calculations, at the end of which vectors
n™ and A; get fully updated.

6. Now we go through the final, redistribution, steps. We
first update the number of objects n;ineachi =1, ..., N
bins as follows:

N .
n—ni +n™+ > Aj'(p(ﬂ]dm,‘, (13)

j=1 m;

where dm,; is the width of ith mass bin. In other words, we
add to each bin all the large remnants and small
fragments that originally fell within its corresponding
mass interval. This step again uses O(N?) operations.

Finally, contributions (sinks) from step (3) are
subtracted for all i = 1, ..., N bins:

n; — n; —dn;, (14)

adding O(N) additional operations.
7. Time is incremented by dt and steps (1)—(6) are repeated
once again.

One can see that this algorithm indeed performs the
fragmentation calculation using only (O(N?) operations per
time step, and not O(N?) as the conventional approach. This
improvement can be achieved only when the collision outcome
is described by the Equation (3), with the mass spectrum of
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fragments being a self-similar function ¢ with a single
characteristic mass scale my,.

Indeed, if ¢ depended on, e.g., two mass scales, then the
amplitude vector A would need to be replaced with the two-
dimensional N x N amplitude array. In that case, the first part
of the redistribution step (6) would have involved O(N?)
operations, since the summation in Equation (13) would need
to be carried out over two indices. Similarly, methods based on
implicit time integration are O(N?); see Section 6. Never-
theless, in the following sections, we will show how our O(N?)
algorithm can be applied also to some more general collision
outcomes than the one given by the Equation (3).

4. Generalizations of the Algorithm

The method presented in the previous section allows some
straightforward generalizations that greatly extend its applic-
ability. Such generalizations are possible when the spectrum of
fragments can be represented or approximated using the self-
similar components. We cover both cases below.

4.1. Superposition of Self-similar Mass Spectra

A rather straightforward extension of the algorithm outlined
above is possible when the fragment mass spectrum can be
represented as a sum of L > 1 self-similar mass distributions:

L
gf(mlml, mp) = Z An%(L), (15)

n=1 mn (ml’ mZ)

where characteristic mass scales m, are distinct (i.e., not
multiples of each other). In this case, amplitudes A,, can no
longer be found from Equation (5). Instead, they need to be
specified independently, with the only constraint coming from
the mass conservation:

L
my 4+ my, = emy, + ZAnmi]n’ (16)
n=1

I, = fow 2, (2)dz. (17)

For example, the full mass spectrum (2) can be viewed as a
sum of two self-similar components: remnant spectrum
€6 (m — myy,) with the amplitude € and mass scale m,,,, and
the continuous self-similar spectrum of small fragments given
by Equation (3).

The only difference from the procedure described in
Section 3 is that instead of one amplitude vector A; we would
introduce now L such vectors and then repeat the steps (4)—(6)
for all L individual self-similar contributions. The number of
operations would scale as O(LN?).

4.2. Piecewise Approximation of the Fragment Spectrum

Our algorithm can also be used when the spectrum of the
fragments can be approximated in a piecewise fashion using a
number of self-similar components. For example, almost any
fragment spectrum can be represented as a series of § > 1

Rafikov, Silsbee, & Booth
power-law segments (within certain mass intervals) of the form

g (mlmy, mp) = Y5, W(m),

0, m < mem,
mmax oA )
Y(m) = A, J , o m™ < m < m™, (18)
m
0, m > m"™,

where ~y, is some average of dlIng,(m)/dInm within the

interval m{™" < m < m™ . Fragment size distributions in the

form of two (or more) broken power laws have been found in
the collisional experiments of Fujiwara et al. (1977), Takagi
et al. (1984), Davis & Ryan (1990). However, any reasonably
smooth fragment mass spectrum can be approximated in this
way, given a sufficiently large number of components (mass
intervals) S.

Each of these components can be written as the difference of
the two power law spectra ©P' defined by Equation (6), namely

'Xv]
min )7

N R o m

s - -

msmdx msmln

Combining Equations (18) and (19), we see that
gs(mlmy, my) ends up being approximated as a linear
combination of 2S self-similar (power law) components, which
reduces the problem to the one already considered in
Section 4.1.

Note that one does not have to approximate gras the sum of
only power-law segments Y(m); other representations are
possible too, as will be shown next.

_ 1| _m
Y(m) = Ay P [mma"

s

%]. (19)

5. Example Calculation: Piecewise Approximation of the
Fragment Spectrum

To demonstrate the accuracy and speedup associated with
using our O(N?) algorithm, we now provide an example of
applying it to treat collisional evolution with a non-self-similar
fragment size distribution. We consider a fragment mass
spectrum

3 a
g (mlmy, my) = Aexpl—(mi) ](mi)
*1 *1

o\ 72
y [1 + (—*2) ] , (20)
m

with normalization A, two mass scales, m, and m,,, and two
power law slopes « and (3. This mass spectrum is exponentially
truncated above my,. It behaves as a power law m~® for
myo < m < my; however, the power-law slope smoothly
changes to (3 for very small fragments, m < my;.

Very importantly, m..;/my, is not a constant, but changes as
the collision characteristics (e.g., masses m; and m,) vary. This
makes gf(mlml, my) given by Equation (20) non-self-similar,
which is illustrated in Figure 2. There, we show how the shape
of gf(m|m1, my) (multiplied by m?) evolves as My and my,
vary, implying lack of self-similarity. Each of the curves is
normalized such that the total mass in fragments is always
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m,,/(m,;+m,): 0.1, 1073, 1073

1
0.1
0.01

g 107
Z10-¢
$10
E10-6
10-7
10-
10~

10-10 ‘
10-8 10-7 106 10-5 104 10~° 0.01 0.1 1

m/(m,+m,)

o(mz""”,n'""“

UL UL AL BLL BLL RLL RILL UL BLL BUL N
oo vod vl o voud vood od o ol o 0

Figure 2. Fragment mass spectrum given by Equation (20), shown for three
different values of my; = 0.1, 1072, 1073 (with corresponding my; =
1072, 1074, 107°). We used &« = —1.2 and =2 in this illustration. The
color scheme is illustrated at the top. Note the non-self-similar shape of the
spectrum revealed by its evolution as m,; changes.

my + my — €myy (although in this figure, we set e =0 for
simplicity).

We can approximate the mass spectrum (20) as a super-
position of three self-similar components as follows:

3 «@
8¢ (mlmy, my) ~ Aexp [—(l) ](ﬂ)
Mx M

Agﬁpl(i a) + A+¢P1(£ ﬂ), 21)

Ny N

each of them featuring only one mass scale. This decomposi-
tion is illustrated in Figure 3. The first term (green dotted
curve) is an exponentially truncated power law extending all
the way down to very small fragment sizes; it is designed to fit
the original spectrum (20) for m 2 my;. The second term (blue
dashed line) is a power law with the same slope « as in the first
term, sharply truncated above m,,. Its amplitude A_ is chosen
so that it fully offsets the first term below m., (note that it
enters with the negative sign). Finally, the last component
(dashed magenta line) is another power law sharply truncated at
Mmy,, with the slope 3 and amplitude A, chosen such that this
term matches the behavior of the spectrum (20) for m < my,.
We now carry out two fragmentation calculations. One uses
fragment mass spectrum (20) without approximations; because
of its non-self-similar shape, this calculation employs the
standard O(N?) fragmentation algorithm. The second calcul-
ation uses an approximation (21), allowing us to use our O(N?)
algorithm as described in Section 4.2. Both of them use explicit
time stepping (see Section 6 for comparison with implicit
calculations). In both cases, we evolve the system using Euler’s
method. The time step is chosen so that the number of particles
in one bin will not change by more than 10% in any one time
step (with an allowance for bins with a small number of
particles in them). We then compare the outcomes of the two
calculations, as well as the numerical costs involved.
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m,, m,,
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10-¢ 105 10+ 103 0.01 0.1 1
m/(m,+m,)

Figure 3. Decomposition of the fragment mass spectrum (20) into three
different self-similar components, as shown in Equation (21). See text for
details.

In both cases, we assume that m,. is given by

my ((m )?
1 1
my = —| — 1| ., 22
= 02 (mz) (22)
where m; > m,. We also choose
2
Mgy = —EL_ (23)
my + mo

so that when my/(m; + my) goes down (e.g., for more
energetic collisions), there is a larger range in Inm, for which
gf(m|m1, my) < m® (i.e., more small fragments get formed).
We use a« = —1.5 and 8 = 2.5 in this calculation. At time,
t = 0 all mass in the system is in objects with the same mass
m = 1 (monodisperse initial condition) occupying a single
mass bin. The mass interval that we cover extends from
m=10""" to m = 1. For this problem, we assume that
fragments falling below the lower-mass end get removed from
the system, representing the removal of small particles from the
fragmentation cascade in debris disks by noncollisional
processes such as Poynting—Robertson drag, radiation pressure
on dust grains, etc.; this does not affect the operation of our
algorithm in any way. However, strict mass conservation can
easily be enforced for problems in which the removal of small
debris is not expected (e.g., by assuming that the smallest bin
includes all particles with size smaller than the minimum
covered by the mass grid).

For simplicity, we assume that collisions lead to fragmenta-
tion only if m,/m; > 1072, Also, we assume that no largest
remnant remains, i.e., only the continuous spectrum of small
fragments results in a fragmentation event. The collision rate is
proportional to the geometric cross section of the two colliding
bodies, assuming all objects to be spheres of the same density.
This setup is similar to that in Dohnanyi (1969) and Tanaka
et al. (1996), except for the non-self-similar shape of the
fragment spectrum.

Results of the two calculations are shown in Figure 4. There,
we plot the mass distributions dN/dm (multiplied by m? and
normalized to the initial mass and particle number) at different
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100+ ]
N =35 N =140
10-1 N=70 N =280 1
Z% 10—2 t=0.01 i t=0.1
~
P
t=10.0

10°°

1073

1075 1012 109

~

m

1 1075 10712 106 103 1

Figure 4. Mass spectrum (multiplied by m? to provide a proxy for a cumulative mass distribution in the system) at four different times indicated on the panels,
expressed in units of collisional timescale for the initial mass bin. We use si and N for m and N, normalized by the initial mass (m = 1) and initial number of objects in
the system. Different-colored curves correspond to different numbers of bins in the simulation, labeled in panel (a). Solid lines correspond to the curves from the
O(N?) algorithm, and dotted lines to those from the O(N?) algorithm. In the bottom right panel, we show in black the line of slope 1/6 (consistent with
Dohnanyi 1969), which provides a good overall fit to the fragment distribution. The superimposed wavy structure is discussed in the text.

times during the calculation, for the two different algorithms
run with different numbers of mass bins. Time, labeled on the
panels, is in terms of the initial timescale for collisions between
bodies in the initial mass bin. The height of the bin at m = 1
shows the current number of particles in the initial mass bin
normalized to the initial number of objects in the system.

We first discuss the general features of the collisional
evolution in this calculation. Early on, at ¢t = 0.01, the mass
spectrum closely mirrors that of the assumed fragment size
distribution (20). This is to be expected because, at that time,
the number of objects with m < 1 is small enough (total mass
in this part of the spectrum is <1%) for their mutual collisions
to be rare. On the other hand, collisions between these fragment
and the numerous large m = 1 objects do occur, which
explains a bump® appearing above m = 102, This bump
becomes more pronounced at ¢ = 0.1, and fully morphs with
the continuous mass spectrum by ¢ = 1.

By ¢ = 0.1, the shape of the distribution of fragments starts to
evolve away from the single-collision spectrum (20) at small m.
By t = 1, the fragment mass distribution attains a steady-state
form, which can be viewed as a power law with superimposed
wavy structure. The slope of this power law is close to 1/6
(shown in black in the bottom right panel), in agreement with
the results of Dohnanyi (1969) and Tanaka et al. (1996).

6 According to Equation (22), collisions with smaller fragments result in
larger my;. Because of our assumption of no fragmentation when
my/my < 1072, the largest possible m,; is 0.1m;. This explains the gap
between the initial mass bin at m =1 and the continuous spectrum of
fragments, which persists at all times.

The wiggles on top of this power law are caused by the boundary
condition at the low-mass end; see Campo Bagatin et al.
(1994) for a discussion of this effect. Beyond ¢ = 1, only the
normalization of the size distribution changes, steadily decaying
in time because of mass lost to particles smaller than our smallest
mass bin, while its overall shape stays the same. The height of
the m = 1 bin goes down as well; it drops by two orders of
magnitude by ¢ = 10, signaling substantial erosion of the initial
population of objects.

5.1. Comparison of the O(N?) and O(N?) Algorithms

We now compare the performance of the O(N?) algorithm
and the full O(N?) calculation. We first note that, for small
numbers of bins (N =35), there are substantial differences
between the results of the two calculations at all times.
However, as the number of bins increases, the results converge,
with two algorithms agreeing with each other quite well already
for N = 70. Minor differences remain, especially at early times
(when there is still a strong sensitivity to the shape of the input
fragment spectrum), as even in the limit of an infinite number
of bins, the fragment mass distributions are slightly different
near m,, (see Figure 3). This can be seen, for example, near
m = 107> — 10~* (right around my, for collisions of two
m =1 objects) at t = 0.01 for N = 280. Nevertheless, at late
times, these differences are largely wiped out. Thus, we can
conclude that already with 5-10 mass bins per decade, our
O(N?) algorithm is able to reproduce the fine details of the
collisional evolution even for a non-self-similar fragment size
spectrum.



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 247:65 (9pp), 2020 April

fixed simulation time

104

103

102

Calculation time

10!

104 fixed number of steps

103

Calculation time

10!

25 50 100 200
Number of bins

Figure 5. Run time as a function of the number of bins, expressed in arbitrary
units. Data points in the top panel show the amount of time needed to reach a
simulation time of # = 1 in units of initial collision times. Data points in the
bottom panel show the time needed to run for 400 steps. Blue points and curves
are for the O(N?) algorithm, and red ones are for the O(N?) algorithm. Solid
lines are the best-fit power law to all the points, assuming the slopes to be
exactly 2 and 3. Dotted lines are the best-fit power laws determined without
fixing the slope. See text for more details.

Turning now to the computational cost of each algorithm, in
Figure 5 we show the wall clock time to run them as a function
of the number of bins N. We use an adaptive time step, so the
number of time steps required to evolve the distribution for a
given simulation time is slightly different between the two
algorithms, and for different numbers of bins. For that reason,
we plot both the amount of time required to reach a fixed
simulation time (=1, upper panel), as well as the time
required to execute 400 steps of the run (lower panel).

There are slight variations in the run time even for the exact
same parameters, presumably caused by the evolving state of
the computing hardware. For this reason, for each algorithm
and number of bins, we run the calculation 10 times; hence the
multiple points shown in Figure 5 for each number of bins. We
then calculate the best-fit lines through the points for each
algorithm, assuming 7' oc N* and N° scalings, correspondingly.
These are the solid lines in the figure. We also calculate the
best-fit lines without fixing their slopes, which are shown as the
dotted lines. These slopes turn out to be 2.04 and 2.98 in the
top panel, and 1.96 and 2.90 in the bottom panel, in good
agreement with the theoretical expectations.
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6. Implicit versus Explicit Time Stepping

A number of studies have used implicit time integration
methods to evolve the coagulation-fragmentation equations
(Brauer et al. 2008; Birnstiel et al. 2010; Garaud et al. 2013;
Booth et al. 2018). The advantage of these methods has
traditionally been that they allow much longer time steps to be
used in the integration, leading to a faster time to solution
despite the increased complexity of the method. However,
these studies did not make use of the O(N?) fragmentation
algorithm, which can only be used with explicit time stepping.

The difference between explicit and implicit methods can be
summarized as follows. Master Equation (1) written in a
discretized form in mass space has the form of a system of
equations

o = fi (&, n), (24)

ot
where, as before, n = {n;} and vector f = {f} stands for the
expressions in the right-hand side of Equation (1) written out
for each i. When evolving this system, explicit updates by 6t in
time take the form

ni(t + 6t) = ni(t) + f.(t, n(1))6t, (25)

whereas implicit updates reduce to solving the system of
equations

ni(t + 0t) = n;(t) + f; (¢t + 6t, n(t + 6t)) 6t (26)

forn;(t + 6t). Writing F (n,%) = n* — n;(t) — £, (t + 6t, n*)ét,
the solution F(n;(t + 6t)) = 0 can be found via Newton—
Raphson iteration, in which the estimate »;" is updated via

—1
n* —n* — [A - a—f&] F(n"), 27
on

where [ is the identity matrix.

The appearance of the Jacobian, Of /On, and matrix inversion
in the above equation prevents implicit methods from benefiting
from the O(N?) computation of the fragmentation rate because
both the Jacobian computation and the matrix inversion in
Equation (27) require O(N3) operations to compute. The O(N?)
complexity of the Jacobian calculation can be understood from
Equation (12), as .A/9n is an N x N matrix.

To compare the efficiency of implicit O(N?) and explicit
O(N?) schemes, we use a simplified version of the problem
presented in Section 5.1. We take the fragment spectrum to
have a self-similar form

3 @
e B ] o
*1 *1

with m,, defined by Equation (22) as before. In this case, to
integrate these equations, we choose two third-order methods:
the explicit third-order Runge—Kutta method of Gottlieb & Shu
(1998), and the implicit third-order Rosenbrock method of
Rang & Angermann (2005) used by Booth et al. (2018). Both
of these methods provide an embedded error estimates, which
are used to adapt the time step to ensure that the relative error is
below 1%. For the implicit scheme, we use the traditional
O(N?) fragmentation algorithm, while the O(N?) scheme is
used with the explicit time integration scheme.
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Figure 6. Comparison of the time required (top), shown in arbitrary units, and
number of steps taken (bottom) to evolve the system for 10 initial collisional
timescales for the third-order implicit (orange) and explicit (blue) methods. The
lines show best fits assuming slopes of 2 and 3.

The time taken and number of steps required by the schemes
to integrate the fragmentation equations to ¢ = 10 in units of
initial collisional timescales are shown in Figure 6. While the
implicit method requires a factor of 7-9 fewer steps than the
explicit scheme (bottom panel), the extra cost of the O(N?)
algorithm outweighs this for problems with more than about 50
cells (top panel). It is worth noting that the implicit method is
more competitive for problems where the mass distribution is
close to a steady state. Evidence of this is provided by
considering the amount of time spent in the example shown in
Figure 6 integrating from r = 0 to = 1 (during which time the
shape of the mass distribution changes considerably), com-
pared with the time spent integrating from t =1 to t = 10
(when only the normalization changes). The explicit method
uses similar numbers of steps in each of the two time intervals,
while the implicit method requires approximately 10 times
fewer steps for the latter time interval in which the distribution
is in a quasi-steady state. Tests on problems including both
coagulation and fragmentation lead to similar conclusions.

7. Discussion

The main result of this work is the O(N?) algorithm for
numerical treatment of fragmentation in collisional systems,
described in Section 3. The main condition necessary for this
approach to work is that the continuous size distribution of
fragments resulting in an individual collision gf(m|m1, my)
depends on a single mass scale my. This algorithm
is insensitive to the details of the actual dependence of the
different characteristics of the fragment mass spectrum
—mMmm, My, and A, see Equations (2)—(3)—on the energy and
masses of objects involved in a collision.
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Self-similarity of g,(m|m;, m>) is not a highly demanding
requirement, since the majority of numerical studies of
fragmentation in astrophysical systems use such self-similar
size distributions of fragments anyway, typically in the form of
a truncated power law (6); see Greenberg et al. (1978), Kenyon
& Luu (1999), Lohne et al. (2008), Brauer et al. (2008), and
Birnstiel et al. (2010). On the other hand, implementation of
this algorithm allows substantial gains in computational
efficiency, significantly reducing the time consumed by
fragmentation simulations with large number of mass bins,
N 2 102; see Section 5.1.

Moreover, as we showed in Sections 4-5, the O(N?)
algorithm can be applied even when the fragment size spectrum
is not a simple self-similar function with a single mass scale;
one just needs to approximate the non-self-similar fragment
size distribution using several self-similar components. A
practical example shown in Section 5 demonstrates that the
differences between a calculation carried with this algorithm
and the direct “exact” O(N?) calculation, which takes much
longer, are very minor (at the level of several per cent or less)
in systems that have evolved for longer than their characteristic
collisional timescale. At early times, the level of agreement is
dictated mainly by the accuracy with which the original
complicated spectrum of fragments is approximated by the self-
similar components.

There is a reason why approximating even rather compli-
cated non-self-similar fragment size distributions (e.g., mea-
sured in some experiments, Fujiwara et al. 1977) with a simple
self-similar shape works in practice. The characteristics of the
steady-state collisional cascades are known to be rather
insensitive to the input fragment size spectrum g (m|my, m).
For example, Tanaka et al. (1996) has shown that, as long as
gf(m|m1, m,) is self-similar with my o my, the slope of the
steady-state cascade should be sensitive only to the scaling of
the collision rate with the masses of objects involved in a
collision, but not to the actual form of 8 (m|my, my). Similarly,
O’Brien & Greenberg (2003) have shown that the slope of the
collisional cascade depends on the mass scaling of the energy
necessary to disrupt an object, but not on the power law of the
fragment size spectrum (as long as m,  m,;). By abandoning
the assumption my o< my, Belyaev & Rafikov (2011) were able
to demonstrate the sensitivity of the steady-state cascade to the
shape of the fragment size spectrum; however, the variation
was found to be very weak (logarithmic). This is one of the
reasons why, on long time intervals, after several collisional
timescales have passed and the system settled into a steady-
state cascade, our O(N?) algorithm performs just as well as the
exact calculation; see Figure 4(c) and (d).

Fragmentation algorithms documented in the literature (e.g.,
Greenberg et al. 1978; Kenyon & Luu 1999; Brauer et al. 2008;
Lohne et al. 2008; Windmark et al. 2012; Garaud et al. 2013,
etc.) redistribute the debris produced in collisions in the direct
manner as described in Section 1 and are thus O(N?). To the
best of our knowledge, Booth et al. (2018) is the only other
study mentioning the possibility of constructing O(N?)
algorithm for self-similar fragment size distributions, albeit
without providing details. Our present study is intended partly
to fill this gap.

A number of studies invoke implicit time integration (Brauer
et al. 2008; Birnstiel et al. 2010; Garaud et al. 2013), which has
an O(N?) complexity due to the Jacobian calculation. The
benefit of these schemes has traditionally been that the larger
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time steps they allow outweigh the additional cost in solving
the linear system, which is only a factor of ~2 when already
using an O(N?) fragmentation algorithm. Because our O(N?)
algorithm is more than one order of magnitude faster than an
implicit method per step already for N = 100, this means that
the time step for implicit methods must be smaller by a similar
factor to remain competitive. Such a reduction in the number of
steps was reported by Brauer et al. (2008) for a problem
including both grain growth and radial drift, but this required
computing both the coagulation and radial drift implicitly.
Without computing radial drift implicitly, the explicit O(N?)
approach is substantially faster, as demonstrated in Figure 6.
The simplicity of our O(N?) algorithm also makes it easier to
implement and parallelize, as well as using less memory than
fully implicit methods (as the entire Jacobian need not be
stored). This makes our algorithm more attractive for complex
problems.

Some studies of coagulation/fragmentation in astrophysical
systems characterize the constituent objects not only by their
mass, but also by additional properties determining the
collision outcome—e.g., particle porosity (Okuzumi et al.
2009), elemental abundances (Stammler et al. 2017), or charge
(Akimkin et al. 2020). This would not affect the performance of
our O(N?) algorithm as long as the size distribution of
fragments maintains the self-similar form (3). If only the mass
scale m,, but not the other characteristics of 8 (m|my, m,), start
to depend on these additional properties, nothing should
change in the logic of applying our algorithm in mass space.

Recently, simulations of dust dynamics in protoplanetary
disks started including evolution of the dust size distribution
due to coagulation /fragmentation spatially resolved in multiple
dimensions (Drazkowska et al. 2019; Li et al. 2019). As this is
done using the existing O(N?) framework of Birnstiel et al.
(2010), there is an associated computational overhead that
scales steeply with the number of mass bins used to
characterize dust size distribution. Use of our O(N?) fragmen-
tation algorithm could substantially reduce the computational
cost of such calculations, making this tool an attractive option
for future (multidimensional) studies of the dust evolution in
disks around young stars.
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