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ABSTRACT
In this paper, we investigate whether overdensity formation via streaming instability is consistent with recent multiwavelength
Atacama Large Millimeter Array (ALMA) observations in the Lupus star-forming region. We simulate the local action of
streaming instability in 2D using the code ATHENA, and examine the radiative properties at mm wavelengths of the resulting
clumpy dust distribution by focusing on two observable quantities: the optically thick fraction ff (in ALMA band 6) and the
spectral index α (in bands 3–7). By comparing the simulated distribution in the ff–α plane before and after the action of streaming
instability, we observe that clump formation causes ff to drop, because of the suppression of emission from grains that end up
in optically thick clumps. α, instead, can either increase or decline after the action of streaming instability; we use a simple toy
model to demonstrate that this behaviour depends on the sizes of the grains whose emission is suppressed by being incorporated
in optically thick clumps. In particular, the sign of evolution of α depends on whether grains near the opacity maximum at a few
tenths of a mm end up in clumps. By comparing the simulation distributions before/after clump formation to the data distribution,
we note that the action of streaming instability drives simulations towards the area of the plane where the data are located. We
furthermore demonstrate that this behaviour is replicated in integrated disc models provided that the instability is operative over
a region of the disc that contributes significantly to the total mm flux.

Key words: accretion, accretion discs – hydrodynamics – instabilities – planets and satellites: formation – protoplanetary discs –
circumstellar matter.

1 IN T RO D U C T I O N

According to core accretion theory, planets form through dust growth
from initial μm-sized grains up to the size of a planet (Safronov &
Zvjagina 1969). Since a substantial change in the grain mass and size
is required in this process, different physical processes are expected
to happen during dust growth; therefore, the process is often divided
into three main stages (e.g. Lissauer 1993; Papaloizou & Terquem
2006; Armitage 2007): grain growth, where the dust grains grow
from μm to cm, mainly through collision and sticking processes
(Dominik & Tielens 1997; Birnstiel, Klahr & Ercolano 2012; Garaud
et al. 2013; Dominik, Paszun & Borel 2016); planetesimal formation,
from cm-sized dust grains to km-sized planetesimals; and protoplanet
formation, which leads to spherical objects of ∼103 km, which
could be either rocky planets or gaseous planet cores (see e.g.
Safronov & Zvjagina 1969; Kokubo & Ida 1996; Rafikov 2003;
Ormel, Dullemond & Spaans 2010; Kobayashi, Tanaka & Okuzumi
2016; Kobayashi & Tanaka 2018).

The planetesimal formation stage represents a critical step in
the growth process because the formation of km-sized objects is
hampered by the so-called ‘metre-sized barrier’ or ‘radial drift
barrier’ (Adachi, Hayashi & Nakazawa 1976; Weidenschilling 1977;
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Takeuchi & Lin 2002; Brauer, Dullemond & Henning 2008; Pinte &
Laibe 2014). The aerodynamic interaction between dust and gas in
protoplanetary discs, in fact, causes dust particles to lose angular
momentum and to drift inwards. How rapidly the particles drift
depends on the coupling between the gas and the dust, which is
usually measured through the so-called Stokes number, τ s. Since τ s

is proportional to the grain size, a, we can relate the radial drift to a,
and it is possible to show that for grains characterized by a ∼ cm–m
drift can be as fast as tdrift ∼ 100 yr at 1 au from the star (e.g. Armitage
2007; Birnstiel, Fang & Johansen 2016). Consequently, unless other
mechanisms interfere with the inward drift, the ∼cm–m-sized grains
are soon lost and they are no longer available to form planetesimals.

A potential way to avoid the metre-sized barrier is dust con-
centration in overdensities that rapidly collapse due to self-gravity
(Johansen et al. 2007), and the streaming instability (Youdin &
Goodman 2005) is a popular idea for how this might happen
(Johansen & Youdin 2007; Youdin & Johansen 2007; Johansen
et al. 2007). Like radial drift, the streaming instability is caused
by the interaction between dust and gas components within the disc,
and, more precisely, by the backreaction of dust on the gas. When
exerted by partially coupled particles (τ s ∼ 1), the dust backreaction
is strong enough that it can locally trigger on the disc mid-plane a
powerful hydrodynamic instability (the streaming instability; Youdin
& Goodman 2005), which, in appropriate conditions, promotes fast
particle clumping, forming dust overdensity regions (Youdin &

C© 2021 The Author(s).
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/1/1495/6188383 by guest on 01 July 2024

http://orcid.org/0000-0002-0364-937X
mailto:ces204@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/


1496 C. E. Scardoni, R. A. Booth and C. J. Clarke

Johansen 2007; Carrera, Johansen & Davies 2015; Yang, Johansen &
Carrera 2017). Thus, streaming instability might be the key to solving
the planetesimal formation issue: on one hand, the formed clumps
would interact in a different way with the gas and this would slow
down the drift velocity; on the other hand, local overdensities would
facilitate the gravitational collapse and then planetesimal formation
(Johansen et al. 2007).

Clump formation through streaming instability can qualitatively
be described as follows. The backreaction on the gas causes the gas
component to orbit faster, and therefore it reduces the difference
in azimuthal velocity between the gas and the dust; thus, the
headwind on the particles becomes weaker (Youdin & Goodman
2005; Johansen & Youdin 2007; Squire & Hopkins 2020). If a dust
overdensity were present, it would perturb the system equilibrium,
causing a stronger backreaction, and therefore a reduced radial drift
(which is determined by the difference in velocity between the
two components). The system therefore faces an instability, as the
initial dust overdensity increases more and more due to the new
material drifting inwards from outer orbits and stopping in the clump
(Johansen & Youdin 2007 described this effect as a ‘traffic jam’);
the consequence is an exponential growth of clumps, whose density
can become as high as 103 times the gas density, ρg (e.g. Youdin
& Johansen 2007; Bai & Stone 2010b,c). At the same time, some
particles are lost from the inner radius of the clumps, due to radial
drift; therefore, at some point a steady state is reached and the
exponential growth saturates. The development of such exponentially
growing instabilities is expected to be easier for marginally coupled
particles (Johansen & Youdin 2007), because their backreaction is
stronger (the fastest radial drift is expected to occur for τ s ∼ 1).

The ability of streaming instability to form dust clumps depends
on the local characteristics of the system, and in particular on the
following three parameters: the grain Stokes number τ s, which
regulates the gas–dust interaction; the pressure support, �, which
gives rise to the relative velocity and thus ultimately generates the
streaming instability; and the local dust-to-gas mass ratio, Z, which
must exceed a certain threshold in order to create dust clumps. From
the theoretical point of view, several studies focused on exploring
this parameter space, in order to find which combinations of (τ s,
�, Z) can trigger dust clumping via streaming instability. Bai &
Stone (2010b,c) showed that, for a given grain size population, the
stronger the pressure support, the higher is the critical Z to have
streaming instability, whereas, for a given Z, smaller values of �

allow smaller particles to form clumps. More recently, Carrera et al.
(2015) and Yang et al. (2017) studied in detail the critical Z required
to trigger streaming instability for fixed τ s (single grain population)
and �, identifying the regions of the Z–τ s plane where streaming
instability is expected to occur. Several studies also focused on the
properties of streaming instability in multispecies simulations, both
in the linear instability phase (Laibe & Price 2014; Drążkowska,
Alibert & Moore 2016; Krapp et al. 2019; Zhu & Yang 2020)
and in the non-linear phase (Bai & Stone 2010c; Schaffer, Yang
& Johansen 2018). They found that, under certain conditions, the
efficiency of linear growth can be increased/decreased when multiple
grain species are considered with respect to the single grain models.
As well as the physical properties of streaming instability, recent
works studied in detail the influence of numerical parameters (size
of the simulation box, resolution, etc.), algorithms, and boundary
conditions on streaming instability simulations (Yang & Johansen
2014; Li, Youdin & Simon 2018).

From an observational perspective, the recent Disk Substructures
at High Angular Resolution Project (DSHARP) survey (Andrews
et al. 2018), conducted with the Atacama Large Millimeter Array

(ALMA), provided high-resolution data for 20 protoplanetary discs,
finding in most of them interesting substructures, such as rings,
spirals, gaps, etc. These observations are allowing a more detailed
analysis of the processes operating in protoplanetary discs, including
planetesimal formation, thereby deepening our knowledge of these
systems. Among other results, it has been found that the rings are
marginally optically thick (Dullemond et al. 2018; Huang et al. 2018);
this feature may be a mere coincidence, but it could also be the
consequence of a common mechanism happening in rings, e.g. clump
formation via streaming instability (Stammler et al. 2019).

Furthermore, Tazzari et al. (2020a,b) recently presented a new
ALMA survey at 3 mm in Lupus star-forming regions. By combining
these results to the previous surveys at 0.9 and 1.3 mm (Ansdell et al.
2016, 2018), they were able to study in detail the optical properties
of observed systems and to extract important information about disc
radii, the size–luminosity relation, the system optical depth, etc.
Focusing on the spectral index and the optically thick fraction,1

they noticed that the data concentrate in the region of spectral index
∼2.4–3 and with a range of values of the optically thick fraction,
presenting a number of potential models that might explain the
observed distribution in this plane.

In this context, the aim of this paper is to investigate whether
the formation of optically thick substructures through the action of
streaming instability is consistent with the observations by Tazzari
et al. (2020a,b). We therefore simulate systems where streaming
instability is present (taking advantage of the broad parameter
analysis performed in the studies mentioned above) and analyse
their optical properties after the formation of dust clumps. We then
compute the two observable quantities considered by Tazzari et al.
(2020a,b) – the optically thick fraction and the spectral index –
in order to perform a comparison between the data and the final
distribution from our simulations.

The paper is organized as follows: in Section 2, we briefly
summarize the main parameters and equations describing streaming
instability; in Section 3, we describe the simulations performed and
the method applied to analyse their optical properties; Section 4
illustrates the process of clump formation in our simulations; the
explanation of the consequences of the presence of substructures on
optical properties is covered in Section 5, where we also introduce
a toy model that mimics the action of streaming instability, and we
compare the local results to the disc-averaged observations of Tazzari
et al. (2020b); in Section 6, we define an integrated disc model and
its optical properties are compared with the foregoing local results;
finally, in Section 7 we discuss the influence of the main model
parameters and grain composition on the final results.

2 D U S T – G A S IN T E R AC T I O N A N D S T R E A M I N G
INSTABILITY

Protoplanetary discs contain both dusty and gaseous materials, in an
overall initial dust-to-gas ratio of about 1:100. Both the components
orbit around the central star, but their azimuthal velocities vφ are
moderately different between each other; in fact, vφ is the result of the
balance of gravitational, pressure, and centrifugal forces in the case of
gas, whereas the dust is subject only to gravity and centrifugal force,
and the absence of pressure force makes the dust azimuthal velocity
slightly faster than that of the gas. This results in an aerodynamic
interaction between the two components, exerted through drag forces,

1Defined as the ratio of the flux to that of an optically thick disc of the same
size; see Section 3.4.
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which (together with the consequent backreaction) plays the main
role in triggering the streaming instability.

In this paper, we consider the Epstein drag force (valid for particles
smaller than their main free path; Epstein 1924):

FD = 4π

3
ρga

2vvth, (1)

where a is the particle radius, ρg is the gas density, and vth is the gas
thermal velocity. The ratio between the particle momentum and the
drag force provides the interaction time-scale between the gas and
the dust grains of different sizes

ts =
√

π

8

ρpa

ρgvth
, (2)

which can be conveniently expressed in units of the dynamical time-
scale 	−1

τs = ts	, (3)

obtaining the dimensionless stopping time, usually called Stokes
number, which provides information about the coupling between
gas and dust: τ s � 1 means that the time-scale for interaction is
significantly smaller than the dynamical time; thus, the particles, at
first approximation, follow the gas motion; on the contrary, if τ s �
1, the dust–gas coupling is weak and the particle motion is barely
affected by the gas.

Equation (3) can also be reversed to compute the grain size
corresponding to a given Stokes number

a = 2

π

τs
g

ρp
, (4)

where vth is written in terms of the isothermal sound speed cs ∼	kHg,
and ρg = ρ0 exp[−z2/(2H 2

g )] = 
g/(
√

2πHg) is the Gaussian pro-
file assumed for the gas density (
g is the vertically integrated gas
density).

The pressure gradient, which is the main cause of drag between
dust and gas, is often characterized by the so-called pressure support
parameter, defined as

� = η
vk

cs
= η

(
Hg

R

)−1

, (5)

where Hg is the gas scale height, vk is the Keplerian velocity, cs is
the sound speed, and η is related to the pressure gradient

η = 1

2

(
Hg

R

)2
∂ log P

∂ log R
. (6)

Finally, we introduce the dust-to-gas ratio (also called metallicity),
defined as the ratio between the dust and gas densities (
d and 
g,
respectively), as follows:

Z = 
d


g
, (7)

which is required to be high in order to trigger streaming instability.
Note that the requirement of high Z is just a local requirement; thus,
it is not in tension with the fact that the global dust-to-gas ratio is of
the order of 1:100.

Bai & Stone (2010a) implemented in ATHENA the dust–gas
equations, written in a local reference frame located at a fixed radius
R0 and rotating at angular velocity 	 (non-inertial reference frame).
The continuity equation for the gas is

∂ρg

∂t
+ ∇ρgug = 0, (8)

where ρg and ug are the gas density and velocity, respectively; the
Euler equation for the gas is

∂ρgug

∂t
+ ∇(

ρgugug + P I
)

= ρg

(
2ug × � + 3�2xx̂ − �2zẑ +

∑
k

εk

vk − ug

ts,k

)
, (9)

where P is the pressure, εk is the dust-to-gas ratio (for particle species
k), ts,k is the stopping time of k particle species, and σ k and vk are
the particle local mass density and velocity, respectively. The left-
hand side includes the momentum time derivative and the effects due
to advection and pressure gradient; the right-hand side includes the
action of Coriolis force (first term), radial tidal momentum (second
term), vertical gravity (third term), and backreaction (fourth term).
The i-particle equation of motion is

dvi

dt
= −2ηvk�x̂ + 2vi × � + 3�2xi x̂ − �2zi ẑ − vi − ug

ts,k
, (10)

where the first term on the right-hand side is the effect of the pressure
gradient, and all the other terms correspond to those in equation (9).

We have neglected the self-gravity of the dust in these simulations.
Since, as we show later, the clumps formed in our simulations without
self-gravity already contribute negligibly to the total flux of the disc,
the inclusion of self-gravity, which acts to further enhance clumping,
is not expected to have a significant effect on the observed properties.

We also neglected the effects of turbulence, as is common in
streaming instability simulations (Liu & Ji 2020). Turbulence is gen-
erally expected to reduce particle clumping via streaming instability
(Gole et al. 2020; Umurhan, Estrada & Cuzzi 2020); therefore, the
usual no-turbulence assumption corresponds to the most optimistic
case for clumping via streaming instability.

3 M E T H O D S

To understand whether the action of streaming instability is consistent
with recent ALMA observations, we characterize the system observ-
able quantities before and after the action of streaming instability.
Our method can be described as a four-step process: (1) We perform
hydrodynamics simulations of systems where streaming instability
takes place; (2) we define a physical disc model, which allows us to
translate the simulation results to physical systems; (3) we compute
the radiative properties of these systems; and (4) we compare two
observable properties to those derived from ALMA observations by
Tazzari et al. (2020a,b).

3.1 Numerical simulations

To simulate the action of streaming instability, we perform 2D
hydrodynamics simulations of dust and gas using the hybrid code
ATHENA, which treats the gas as a fluid on a Eulerian grid (Stone
et al. 2008) and the dust as superparticles on that grid (Bai & Stone
2010a). We use a 2D (vertical and radial directions) shearing box
approach, which allows us to simulate a portion of the disc located
at an arbitrary radius R0 and rotating at angular velocity 	k(R0).

In the following, the simulation parameters are given in code units:
The time unit is the dynamical time 	−1

k and the length unit is the gas
layer thickness Hg. The choice of the mass unit is arbitrary, because
the equations describing gas and dust interaction (equations 9 and 10)
depend on the dust-to-gas mass ratio, but are independent of the disc
mass.

For all the 12 simulations we performed, we considered a box of
size Lr × Lz = 0.05 × 0.15 (Lr and Lz are the radial and vertical
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Table 1. Parameters of the simulations.

Name τmin
s τmax

s � Z q

T41-Z02-Q3 10−4 10−1 0.025 0.02 3
T41-Z02-Q35 10−4 10−1 0.025 0.02 3.5
T41-Z02-Q4 10−4 10−1 0.025 0.02 4
T41-Z03-Q3 10−4 10−1 0.025 0.03 3
T41-Z03-Q35 10−4 10−1 0.025 0.03 3.5
T41-Z03-Q4 10−4 10−1 0.025 0.03 4
T30-Z02-Q3 10−3 1 0.025 0.02 3
T30-Z02-Q35 10−3 1 0.025 0.02 3.5
T30-Z02-Q4 10−3 1 0.025 0.02 4
T30-Z03-Q3 10−3 1 0.025 0.03 3
T30-Z03-Q35 10−3 1 0.025 0.03 3.5

box lengths, respectively), split into Nr × Nz = 256 × 768 cells. In
each box, we include Ntot = 7 × 105 particles, equally distributed
in Nspecies = 28 particle species. The Stokes numbers of the different
species are uniformly distributed in log space between minimum and
maximum Stokes numbers, τmin and τmax, respectively; six of our
simulations are characterized by τmin − τmax = (10−4)–(10−1), and
six are characterized by τmin − τmax = (10−3)–(1). The pressure
support parameter is � = 0.025 in all the simulations, while two
values for the dust-to-gas mass ratio are considered (Z = 0.02 and
0.03).

All the simulations evolve for at least 1500 dynamical times, in
some cases simulations had not reached a steady state in 1500 	−1;
thus, the running time has been extended to 2000 	−1 (see Ap-
pendix A for more details).

We use reflecting boundary conditions in the vertical direction and
periodic boundary conditions in the radial direction.

As initial conditions, all the particle species are distributed accord-
ing to a Gaussian-shaped distribution in the vertical direction, centred
in the disc mid-plane, whose standard deviation (corresponding to
the initial layer thickness) is Hd = 0.015Hg. We use the parameter
q to specify the particle mass distribution per logarithmic particle
radius bin

dMp

d log a
∝ a4−q , (11)

or, equivalently, the number distribution n(a)

n(a) = dNp

da
= n0a

−q , (12)

where Mp and Np are the particle mass and number, respectively. In
our simulations, we consider q = 3, 3.5, and 4 for each choice of Z
and set of Stokes numbers.

In Table 1, we summarize the parameter used in our simulations.

3.2 Physical model

Studying the optical properties of simulated systems requires the
definition of a disc model, allowing conversion of the dimensionless
simulation results into physical units. As reference model, we
consider the Minimum Mass Solar Nebula model by Chiang &
Youdin (2010).

Chiang & Youdin (2010) model is characterized by a flaring index
f = 2/7; thus, the aspect ratio at the generic disc radius R is

Hg(R) = Hg(R0)R

(
R

R0

)2/7

, (13)

where R0 is the box location (in the following, we take R0 = 35 au,
unless otherwise specified) and the aspect ratio at R0 corresponds to
the length unit Lunit = Hg(R0).

The time unit is defined as the inverse Keplerian velocity at the box
location tunit = 	−1

k (R0). Thus, it depends only on the box location
and the star mass, which we assume to be the same as that of the Sun
M∗ = M
.

We then choose the arbitrary mass unit by fixing the gas density
at 1 au and computing the gas density at box location R0 as


g(R0) = 
g(1 au)

(
R0

au

)−p

, (14)

where p = 1.5 in Chiang & Youdin (2010) model. We do not
fix a single value for the gas density, but we vary it in the range

g(1 au) = 100–3000 g cm−2 [cf. 2200 g cm−2 in Chiang & Youdin
(2010) model], which corresponds to 
g(R0) = 0.5–14.5 g cm−2;
for each simulation, therefore, we obtain a population of discs
characterized by different masses. For a disc characterized by
inner and outer radii Rin = 0.1 and 70 au, respectively, the chosen
density distribution corresponds to discs of masses between 10−3 and
3 × 10−2 M
.

Finally, we define the temperature profile

T (R) = T0

(
R

au

)−3/7 (
L∗
L


)1/4

, (15)

where the temperature at 1 au is T0 = 120 K (unless stated otherwise)
and the temperature profile is the same as that used in the review by
Chiang & Youdin (2010), while the star luminosity is L∗ = L
. The
corresponding temperature at the box location (35 au) for the chosen
temperature profile is T (R0) ∼ 26 K.

3.3 Optical properties

To study the dust optical properties, we start by computing the
opacity of dust grains; we use Birnstiel et al. (2018) dust code (which
applies the Mie theory combined with optical data sets to compute
the system optical properties), assuming (similarly to Tazzari et al.
2016) spherical compact grains, whose composition includes water,
silicates (from Warren & Brandt 2008; Draine 2003), troilite (from
Henning & Stognienko 1996), and organics (from Zubko et al. 1996).
Note that the chosen composition is similar to that labelled as ‘Zubko’
in Birnstiel et al. (2018).2

Through Birnstiel et al. (2018) code, we obtain the dust material
density ρp = 1.632 g cm−3, used to compute the dust grain size

a = 2

π


gτs

ρp
. (16)

Then, we extract from Birnstiel et al. (2018) code the opacity
corresponding to each simulated grain size and selected wavelength,
obtaining the single grain opacity ksingle

ν (a).
Since the real grain size distribution is expected to be continuous,

each simulated ai represents a set of grain sizes between ai and ai +
dai; thus, we compute the opacity of each grain size as the average
opacity

kabs
ν (ai) =

∫ ai

ai−dai
ksingle

ν (a)m(a)n(a)da∫ ai

ai−dai
m(a)n(a)da

. (17)

2See Section 7.3 for a discussion on the composition choice.
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Then, we compute the size averaged opacity, which gives the system
average response (see the Appendix B for further details)

kavg
ν =

∫ amax

amin
kabs

ν (a)m(a)n(a)da∫ amax

amin
m(a)n(a)da

, (18)

where m(a) is the mass of the dust grain. The main characteristics of
kavg

ν as a function of the maximum grain size amax are the presence of
a steep increase when amax ∼ λ/(2π ), followed by a decline towards
larger amax values.

We use the information on kavg
ν to obtain the optical depth

τν = kavg
ν 
d

cos i
, (19)

where we assume the inclination angle to be i = 0, and we use this
information to obtain the specific intensity (assuming that the system
is in local thermodynamical equilibrium)

Iν = Bν(T )(1 − e−τν ), (20)

where Bν is the Planck function evaluated at the local temperature
T(R) [for the location of the considered box we obtain T (R0) ∼
26 K]. Finally, we compute the flux

Fν ∝
∫

IνdA. (21)

3.4 Comparison with observations

After studying the systems’ optical properties, we compare our
simulations to the observations obtained by Tazzari et al. (2020a,b)
in the Lupus star-forming region. Therefore, we focus on the same
plane used in Tazzari et al. (2020a,b) to study their data distribution:
the optically thick fraction − spectral index plane.

The optically thick fraction is defined as the ratio between the
system flux Fν and the flux that the system would emit if it was a
blackbody

ff = Fν

Fν,blackbody
=

∫
IνdA∫
BνdA

, (22)

where Bν is the Planck function. Note that if a system were optically
thick (τ ν � 1), it would have Iν ∼ Bν (see equation 20) and therefore
ff ∼ 1; on the contrary, an optically thin system (τ ν � 1) would be
characterized by Iν ∼ τ νBν , thus ff ∼ τ ν .

The spectral index, instead, measures the frequency dependence
of the flux

α = ∂ log Fν

∂ log ν
. (23)

It is also useful to introduce the opacity index (see Appendix B for
further information)

β = ∂ log kavg
ν

∂ log ν
, (24)

which describes the variation of the opacity with frequency (assum-
ing that kavg

ν ∝ νβ ). β(amax) describes how kavg
ν varies with amax; we

thus expect β to have a peak for amax ∼ λ/(2π ), i.e. where kavg
ν has a

steep increase with grain size. Since the value of amax corresponding
to peak opacity scales with the wavelength, if we consider any two
wavelengths λ1 and λ2, so that λ1/(2π ) < amax < λ2/(2π ), the opacity
is much higher at wavelength λ1 and hence the value of beta is large
(see Appendix B for further details and plot regarding the spike
in β).

In the limit of low optical depth Fν∝τ νBν , α can be related to the
opacity index β:

α = ∂ log Bν

∂ log ν
+ β, (25)

which can be derived by using equations (23) and (24). In the
Rayleigh–Jeans limit, α = 2 + β. Thus, higher α is associated with
higher β in the optically thin case; for optically thick emission in the
Rayleigh–Jeans limit, α = 2.

We populate the ff–α plane with the simulation results and, by
adding on the same plane the data distribution by Tazzari et al.
(2020a,b), we verify whether or not the simulations are consistent
with observations. Since the data are available in ALMA bands 3
(100 GHz, 3.3 mm), 6 (230 GHz, 1.33 mm), and 7 (345 GHz,
0.88 mm), we compute the optical properties in these bands;
specifically, we compute the optically thick fraction in band 6 ffB6,
while we use band 3 and band 7 to compute the spectral index αB3-B7

(note that we need two values to compute α, because it is defined as
a derivative).

4 C LUMP FORMATI ON V I A STREAMI NG
INSTABILITY

Considering, as an example, simulation T41-Z03-Q4 (see Table 1) in
this section we study the properties of clumps formed in the simulated
box due to the action of streaming instability.

In Fig. 1, we show the vertically integrated density profiles of dust
[σ dust(R, z) is the 2D dust density, in vertical and radial directions]:


dust(R) =
∫ Lz/2

−Lz/2
σdust(R, z)dz, (26)

for a selection of 10 particle species from the 28 species used in
the simulation. The three panels correspond to different time-steps
of the system evolution: t = 0 	−1 (left-hand panel), t = 200 	−1

(central panel), and t = 2000 	−1 (right-hand panel). The density
profile of each particle species corresponds to a different colour in
a rainbow palette, from the smallest particle species in red to the
biggest one in magenta.3

The initial density profiles (left-hand panel) are uniform for all
the particle species, and clumps are gradually formed as the system
evolves (central and right-hand panels). By comparing the central
and right-hand panels, we notice that the biggest particle species
(magenta, violet, and blue lines) are already involved in clumps after
200 	−1, while smaller species (cyan and green lines) require more
time to participate in clumps; the smallest particle species (yellow and
orange lines), instead, never participate in clumping. In fact, particles
characterized by Stokes number close to 1 are the most affected by the
drag forces, thus they are expected to clump via streaming instability
more rapidly, while the smallest particles are highly coupled to the
gas, thus they follow gas evolution and do not clump.

5 IMPAC T O F STREAMI NG I NSTABI LI TY O N
O B S E RVAT I O N S : LO C A L M O D E L

In this section, we study the observable properties of the simulated
boxes undergoing streaming instability. In the following, unless

3Given the very small area occupied by the clumps at the end of the
simulation, they are expected to contribute negligibly to the disc total flux;
thus (as anticipated in the previous section), the inclusion of self-gravity is
not expected to affect significantly the observable properties.
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1500 C. E. Scardoni, R. A. Booth and C. J. Clarke

Figure 1. Dust radial density profiles as a function of radius in the simulated box for simulation T41-Z03-Q4. The rainbow colour palette goes from red,
which corresponds to the smallest particle species, to magenta, which corresponds to the biggest particle species. The three plots correspond to three different
simulation time-steps: the initial condition t = 0 	−1 (left-hand panel), when all the particle species have a uniform density 
d ∼ 0.003; an intermediate
snapshot t = 200 	−1 (central panel); and the result at the end of the simulation t = 2000 	−1 (right-hand panel).

specified otherwise, we adopt the disc physical model described
in Section 3.2.

5.1 Distribution in the ff–α plane before and after particle
clumping

To analyse the effects on the optical properties caused by clump
formation via streaming instability, we examine the optically thick
fraction (equation 22) and the spectral index (equation 23) of the
integrated emission from the box, both before and after the formation
of clumps. Since the simulations are scale free (being characterized
by the dimensionless numbers set out in Table 1), we can map a
single simulation on to a variety of outcomes through considering
a range of gas surface densities in the box; we considered 10 values
for 
g at the box location, logarithmically distributed between 0.5
and 14.5 g cm−2.

In Fig. 2, we show the distribution in the ff–α plane for three
simulations (T41-Z03-Q4, T30-Z02-Q4, and T30-Z03-Q3; see
Table 1). In all the three panels, the blue squares represent the
initial distribution of the selected systems, whereas the magenta
diamonds correspond to the distribution of the 10 discs at the end
of the simulation, i.e. after clumps have formed. The black arrows
link together the initial and final conditions of the same system.
The intensity of the blue/magenta symbols indicates the gas surface
density, with the darkest (lightest) shading indicating the highest
(lowest) surface density values. For reference, the data distribution
is shown in the same plane with the green stars; we notice that clump
formation either drives the models towards the area occupied by the
data (left-hand panel), or keeps the models in the data area (central
panel), or does not affect significantly the distribution (right-hand
panel). See Sections 5.2 and 6 for a detailed comparison between
simulations and data.

Focusing first on the initial conditions (blue squares), we notice
that even if they are different in the three considered simulations (due
to the difference in the parameter choices), they show some common
features. In all cases, the system characterized by the highest gas
surface density (darkest blue square) represents the highest value for

ff and the lowest one for α: At fixed metallicity, this system has the
highest dust surface density and hence optical depth and the value
of α is therefore close to 2 as expected for optically thick emission.
Conversely, for lower gas surface density, the lower optical depth
results in systems with lower ff and higher α.

We consider first the evolution of ff when clumps form. Clumping
involves depositing some of the grains in regions where the optical
depth is higher than it was initially; if the clumps are optically thin,
then this does not affect the overall flux produced by the box. How-
ever, if the clumps are optically thick then it means that some of the
emission from grains in the uniform initial conditions is now hidden
and therefore the overall flux declines. Consequently, clumping in
general reduces ff, though in the case of very optically thin initial con-
ditions (as in the right-hand panel where the high maximum Stokes
number and relatively low q mean that the emission is dominated by
large, low-opacity grains) ff may be hardly affected by clumping.

The effect on α is subtler and depends on the grain size (and
hence optical properties) of the grains that are removed from the
uniform background and deposited in optically thick clumps where
their emission is concealed. Recalling that it is the largest grains that
are deposited in the clumps, the direction of evolution of α depends
on whether these largest grains have higher or lower opacity index,
β, than the rest of the grain population.

We illustrate this effect via a ‘toy model’ (see also Appendix C
for more details) in which we modify the initial conditions of
a system to mimic clump formation by modifying the particles’
distribution. Since in Section 4 we observed that only particle species
characterized by high Stokes numbers participate in clumping, we
split the grains into two groups: half of the grains (the smallest ones)
are left in the uniform background, whereas the density profile of the
remaining grains (the biggest ones) is modified as follows:


j,i(R) =
{


j,0

pi
R0 − dRi/2 < R < R0 + dRi/2, j ≥ 15

0 otherwise
(27)

where j indicates the j-th species; 
j,0 is the initial uniform density
and dRi represents the radial fraction of the 2D box in which we
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Streaming instability and disc emission 1501

Figure 2. Distribution in the ff–α plane of simulations T41-Z03-Q4 (left-hand panel), T30-Z02-Q4 (central panel), T30-Z03-Q3 (right-hand panel). The blue
squares correspond to the distribution for the systems initial conditions, while the magenta diamonds correspond to the distribution at the end of the system
evolution; the arrows link the initial ff–α values to the corresponding ones at the end of the simulation. The shades of colours correspond to different gas
densities: from the highest density [
g(R0) = 14.5 g cm−2, corresponding to Mdisc ∼ 3 × 10−2 M
], represented by the darkest blue/magenta markers, to the
lowest density [
g(R0) = 0.5 g cm−2, corresponding to Mdisc ∼ 10−3 M
], represented by the lightest blue/magenta markers. The green stars illustrate the data
distribution by Tazzari et al. (2020a).

concentrate the dust

dRi = pi(Rmax − Rmin), (28)

where pi ∈ [0, 1]. Note that we are redistributing only the biggest
particles; thus, 
d will not be 0 outside the main peak, since the
smallest particles are retained in the background; thus, the total dust
density for each clump model i is given by


d,i(R) =
∑
j≤14


j,0(R) +
∑
j≥15


j,i(R). (29)

In the left-hand panel of Fig. 3, we show the dust density profiles
obtained by redistributing the initial uniform dust density (black
line) of simulation T30-Z03-Q4, considering 
g = 0.5 g cm−2 and
11 values for parameter pi, logarithmically distributed between 0.01
and 1 (the clump height increases from the lowest value in black to
the highest value in pale pink).

In the right-hand panel of Fig. 3, we show the distribution in the
ff–α plane (as before, we consider 
g = 0.5–14.5 g cm−2) obtained
by computing the observable quantities for each clump width: The
colours in this plot correspond to the dust distribution on the left with
the same colour, while the black arrows link together the initial and
final conditions of the same system. To explain the behaviour of the
spectral index, we focus on the lowest density model (lower right in
the plot) and the highest density model (upper left in the plot), which
show opposite behaviours in α.

We first recall that the spectral index (in the optically thin limit)
can be related to the opacity index as follows:

α ∼ ∂ log Bν

∂ log ν
+ β; (30)

thus, we expect α to increase (decrease) when β increases (de-
creases). We therefore show in Fig. 4 the opacity index β as a
function of the maximum grain size amax (black line). The two panels
correspond to the highest and lowest density models on the left and
right, respectively. In both the panels, two coloured areas highlight
the β corresponding to clumping (intense violet/blue area) and non-

clumping (light blue/violet area) particle species in the simulation
(separated at a Stokes number of τ s = 0.036, which corresponds to
different grain sizes in the two panels).

We notice that, in the lowest density case, the clumping grains
are close to the opacity resonance and hence have higher β values
than the rest of the population. Once these grains go into the clumps
(which are optically thicker than the uniform background), their
contribution to the system’s emission is downweighted. Therefore,
the overall β decreases and thus we expect α to decrease – as,
indeed, happens in the lowest density model in the right-hand panel
of Fig. 3. On the contrary, when we consider the opacity index for
the highest density model (right-hand panel in Fig. 4), we observe
that clumping species are here characterized by lower β values than
the non-clumping species. Thus, we expect both β and α to increase
after particle clumping, which is consistent with the behaviour of the
highest density model in the right-hand panel of Fig. 3.

These behaviours can be related to Fig. 2.4 In the central panel,
the high maximum Stokes number implies relatively large grains
and hence clumping increases the spectral index (though this effect
is weaker at the lowest gas surface densities where the grain size is
smaller at fixed Stokes number). In the left-hand panel, conversely,
the lower maximum Stokes number places the largest grains in
the simulation close to the opacity resonance. Clumping therefore
reduces α in this case.

5.2 Comparison with data

In Fig. 5, we show the distributions in the ff–α plane for all the
simulated systems and for the data distribution (green stars) obtained
by Tazzari et al. (2020a,b).

4Note that if the clumping factors p for each species are computed from the
simulation, then the toy model is able to recover the precise behaviour of
simulations (see Appendix C).
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1502 C. E. Scardoni, R. A. Booth and C. J. Clarke

Figure 3. Left-hand panel: redistribution of the initial homogeneous dust density of simulation T30-Z03-Q4 (for the case with local gas density 
g = 0.5 g cm−2)
to create artificial clumps characterized by various heights and widths, assuming that only half of the particle species clump (the biggest ones); a colour code is
used, so that dust concentration increases moving from black to pale pink. Right-hand panel: observable quantities for all the density distributions considered
in the left-hand panel (the colour of each square indicates at which dust density redistribution that colour corresponds) and different values of 
g.

Figure 4. Both panels: opacity index as a function of the grain size obtained using Birnstiel et al. (2018) code (black line); the intense violet/blue area highlights
the values of β corresponding to the clumping species sizes in the toy model, while the light violet/blue area highlights the values of β corresponding to the
non-clumping species sizes. The plot in the left-hand panel is obtained considering the lowest density model in this paper (
g = 0.5 g cm−2), while the plot in
the right-hand panel is obtained considering the highest density model in this paper (
g = 14.5 g cm−2). Note that grain size distribution is assumed to be a
power law with q = 4.

We split the simulations into two groups characterized by the same
Stokes number range: In the left-hand panels, we show the initial
(upper panel) and final (lower panel) distributions for simulations
characterized by τ s = (10−4)–(10−1); the right-hand panels show
the initial (upper panel) and final (lower panel) distribution for
simulations characterized by τ s = 10−3–1. In each panel, the different
colours refer to different combinations of q and Z, as indicated in the
plot legend.

It is worth noticing that the initial distributions (upper panels) par-
tially cover the data distribution. However, most cases characterized
by τmax = 10−1 have too high optically thick fractions in the highest

density models, which are unable to cover the lower left area where
data lie; secondly, the lowest density models present too high values
for α. Similarly, some of the τmax = 1 models present ff higher than
those of the data (see, in particular, the yellow and pink models).

If we then compare the initial distributions to the final ones (lower
panels), we note that the action of streaming instability pushes the
simulated systems into the region occupied by data. Indeed, the
optically thick fraction is lowered by clump formation, and this
effect enables the high density models to re-cover the low-ff data
that previously were not matched by simulations. Moreover, the
spectral index of the low density models is significantly reduced
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Streaming instability and disc emission 1503

Figure 5. Distribution in the ff–α plane of all the simulations performed (see Table 1). The left-hand panels illustrate the distribution in the observable plane
for simulations characterized by τmax = 0.1, at the beginning (upper panel) and at the end (lower panel) of the system evolution. The two panels on the right
show the same distributions, but for simulations characterized by τmax = 1. The values of the main parameters are indicated in the legend, according to the
following rule: the squares correspond to q = 3, the diamonds to q = 3.5, and the dots to q = 4; in the left-hand panel, the shades of red (blue) are used for
systems characterized by Z = 0.02 (Z = 0.03); in the right-hand panel, the shades of pink (brown) are used for systems characterized by Z = 0.02 (Z = 0.03).
In all the panels, the data distribution is illustrated through the green stars.

for cases with τmax = 0.1; this happens because in these models
the clumping species are those characterized by β values close to
the resonance; thus, by removing these grains from the background
emission, the α value must decrease. Therefore, for these cases,
the action of streaming instability changes the system optical
properties so that they become consistent with the data; thus, the
streaming instability can be considered a candidate to explain the data
distribution.

We further underline that there are two simulations (T30-Z02-Q3
and T30-Z03-Q3) whose observable quantities barely evolve when
clumps form. This behaviour is related to the fact that, in these cases,
both the clumping and non-clumping species are relatively big (due
to the particular combination of τ s and q); thus, the creation of clumps
does not significantly alter the system opacity.

6 IMPAC T O F STREAMI NG I NSTABI LI TY O N
OBSERVATI ONS: INTEGRATED MODEL

After studying the local observational properties of clumps, we define
in this section an integrated disc model to study the global optical
properties of systems undergoing streaming instability.

In the integrated disc model, we assume azimuthal symmetry, and
we define a disc characterized by the following gas density profile:


g(R) = 
g(1 au)

(
R

au

)−p

, (31)

where 
g(1 au) varies between 100 and 3000 g cm−2 (note that these
values at 1 au correspond to the values used in the local model at
the box location) and we define Rin = 0.1 au and Rout = 70 au as
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1504 C. E. Scardoni, R. A. Booth and C. J. Clarke

inner and outer radii, respectively. The corresponding dust density
profile can be obtained as 
d = Z
g, where Z is chosen according
to the considered simulation (see Table 1). In this model, the Stokes
number is assumed to be constant across the disc [found to be a rea-
sonable approximation in the Birnstiel et al. (2012) two-population
model].

We divide the defined disc in Nrings = 100 ‘rings’ from Rin = 0.1 au
to Rout = 70 au, equally spaced on a linear scale. We then use
the 
g and Hg local values to map simulations into physical
units. If the streaming instability is triggered in a particular ring,
then the quantities calculated for that ring are those from the
end state of the simulation; otherwise, the initial conditions are
used.

Once the dust density is obtained, both the opacity and the optical
depth are computed at each ring following the same procedure as
that used in the local model; in fact, each ring behaves as a single
box. In each ring, we compute the flux F ring

ν , then we sum over all
the rings to obtain the total flux

F TOT
ν =

Nrings∑
i=1

F ring,i
ν . (32)

It is worth noting that for realistic emissivity profiles, the weighting
by surface area ensures a relatively large contribution from the outer
disc.

As final step, we compute the observable quantities, which can
be simply obtained by using equations (22) and (23) where F TOT

ν is
used instead of Fν .

To explore different scenarios, we consider the following four
different disc models:

(1) all the disc is involved in streaming instability;
(2) the inner disc is involved in streaming instability;
(3) the outer disc is involved in streaming instability;
(4) a ring in the disc is involved in streaming instability.

Following the method outlined above, we determine the distribution
in the ff–α plane for all the four integrated disc models. Since the
flux is dominated by the outer disc, we found that in models (2)
(where the instability occurs only within 35 au) and (4) (where the
instability occurs in a ring of width 10 au located at 35 au), the
action of streaming instability hardly affects the flux and, therefore,
the observable quantities; for the same reason, streaming instability
modifies the observable quantities in models (1) and (3), whose
behaviour is similar to each other. Therefore, in the following we
show the results only for the ‘outer disc’ model, where streaming
instability is assumed to take place for R > RSI and we choose
RSI = 35 au.

As in the local model, we compare the distribution in the ff–α

plane obtained from all the performed simulations to that obtained
from the data, and we show the results in Fig. 6. As in Fig. 5, the
upper (lower) panels correspond to the initial (final) distributions of
system characterized by τmax = 0.1 and 1, on the left and on the
right, respectively. The legend is the same as that used in Fig. 5.

As in the local model, the initial conditions partially match the
data distribution; in fact, the two distributions overlap in the area
characterized by (α, ff) ∼ (0.6, 2.5); nevertheless, the simulated
systems are initially unable to cover the central area where most
of the data are located (α, ff) ∼ (0.4, 2.5). After the action of
streaming instability, however, the optically thick fractions decrease,
because, as previously explained, the surface density of particles
in the optically thin background is reduced by clump formation,
reducing the flux and allowing the final distribution to cover the

data area that the initial conditions were unable to match. Note
that the models do not cover few data located at (α, ff) ∼ (2.4,
0.8); this can be explained by noticing that ff increases and α

decreases as the disc radius is reduced, as shown by figs 5 and
7 in Tazzari et al. (2020b). Since our integrated disc models are
characterized by a constant disc size (Rout = 70 au), we expect
the low-α high-ff data to be reproduced by considering smaller
discs (indeed, we verified that they are matched by models with
Rout = 35 au).

It is also worth noticing that in Tazzari et al. (2020a) the spectral
index is correlated with radius, suggesting that the large spectral
indices of transition discs can be explained if they have large radii for
their masses. This result is consistent with the finding by Andrews
et al. (2018) that transition discs are large for their flux, which is
also reconcilable with the fact that they have a cavity in their mm
emission. Such a cavity in the inner disc, however, is not expected to
modify significantly the results obtained in this section, as the outer
disc is dominant in determining the observable consequences of the
action of streaming instability.

We caution that the results might depend on the particular choice
of the integrated disc model parameters; see Section 7.2 for a detailed
discussion.

Finally, we underline that if we compute the mm fluxes from our
models, we find that they are broadly consistent with those observed,
if we adopt the same temperature profile and disc sizes as those
observed.

7 D ISCUSSION

7.1 Influence of model parameters on the distribution (local
model)

Although the physics of streaming instability depends only on the
parameters chosen in the simulations, the observable quantities also
depend on the specific disc model used to convert the simulation
dimensionless code units to physical units: The choice of the
mass unit influences the grain size, hence the opacity; the local
gas density depends on the choice of the box location and the
chosen density profile; the temperature profile influences the Planck
function.

In Fig. 7, we test the effect on the distribution in the ff–α plane
of changing the temperature, changing T0 to 60 K in blue, 120 K in
purple, and 240 K in green (corresponding to temperatures of 13, 26,
and 52 K at the box location);5 as an example, we consider simulation
T41-Z03-Q4. The shades of each colour represent different local gas
densities, logarithmically distributed from 
g = 0.5 to 14.5 g cm−2

(the darker the colour, the higher the density). For comparison, the
green stars represent the data distribution.

Changing T0 has no effect on the optically thick fraction, since it
only depends on the dust density profile and the opacity (i.e. the grain
sizes and their composition), which are independent of T0 (which
only modifies the Planck function). Regarding the spectral index
(equation 23), we expect it to be unaffected by T0 if the emission
is in the Rayleigh–Jeans limit (in which case α = 2 + β); for low
T0, however, the emission is not in the Rayleigh–Jeans regime and

5Note that we only calculate the effect of changing temperature on the
radiative properties and do not model the effect of changing �(∝T0.5) on
the simulations; according to Bai & Stone (2010b), a factor 2 increase of
� over the canonical value causes a modest increase in the dust-to-gas ratio
required to trigger the streaming instability.
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Streaming instability and disc emission 1505

Figure 6. Distribution in the ff–α plane of all the simulations performed (see Table 1) applying the outer disc integrated model. The upper panels show the
distribution in the plane for the initial condition, for simulations characterized by τ max = 0.1 and 1 in the upper left panel and upper right panel, respectively;
the lower panels show the distribution after the system evolution (in the left-hand panel for τmax = 0.1 and in the right-hand panel for τmax = 1). The values of
the main parameters are indicated in the legend (following the same rule as in Fig. 5). In all the panels, the data distribution is illustrated through the green stars.

this means that α is lower for lower temperatures due to the fact that
the higher frequency emission is beyond the Wien peak, resulting in
a lower value of α. We see from Fig. 7 that the effect on the final
distribution is relatively small and that the overall distribution is not
considerably affected by the choice of T0.

7.2 Influence of model parameters on the distribution
(integrated model)

We also test the influence of the parameter choices in the
case of the integrated model, focusing, as an example, on the
‘outer disc’ model. The main parameters to be studied are Rout

and RSI.
In the left-hand panel of Fig. 8, we plot three distributions obtained

using the method described in Section 6 for different disc outer

radii: Rout = 50 au (blue squares), Rout = 70 au (purple squares),
and Rout = 100 au (green squares). The value of RSI is modified so
that the portion of disc which is involved in streaming instability is
always half of the total disc (RSI = Rout/2). The considered values for
the gas density at 1 au are the same regardless of the disc outer radius
[
g(1 au) = 100–3000 g cm−2]. The three obtained distributions are
very similar, and the only difference is that smaller discs are slightly
optically thicker; in fact, the outer disc portion (which dominates
the flux) in smaller discs is optically thicker than that in a bigger
disc (see equation 31); therefore, overall the disc is expected to be
optically thicker.

In the right-hand panel of Fig. 8, we test the effect of changing
RSI when Rout = 70 au is fixed. In particular, we consider RSI =
15 au (blue squares), RSI = 35 au (purple squares), and RSI = 55 au
(green squares). We notice that when RSI is lower, and thus more of
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1506 C. E. Scardoni, R. A. Booth and C. J. Clarke

Figure 7. Distribution in the ff–α plane at a box location of 35 au for simu-
lation T41-Z03-Q4 considering different temperature scalings: T0 = 60 K in
blue, T0 = 120 K in purple, and T0 = 240 K in green (local temperatures of
13, 26, and 52 K). The shades of colours correspond to different values for
local 
g (logarithmically distributed in the interval 0.5–14.5 g cm−2). The
green stars represent the data distribution by Tazzari et al. (2020a).

the disc participates in the streaming instability, the optically thick
fractions tend to be slightly lower and the bunching towards a smaller
range of α (see left-hand hand panel of Fig. 2) also becomes more
pronounced.

Overall, the distributions shown in Fig. 8 are not significantly
influenced by the choice of either Rout or RSI in the range considered.
Therefore, we can state that the result obtained in Fig. 6 is reason-
ably model independent, provided that the streaming instability is

operating over a region of the disc that contributes significantly to
the total emission at mm wavelengths.

7.3 Composition and porosity

In this paper, we analysed the optical properties of the simulated
systems by considering the composition for dust grains similar
to that used in Tazzari et al. (2016) (which corresponds to the
composition labelled as ‘Zubko’ in Birnstiel et al. 2018). However, it
is important to discuss how the results would be affected by different
compositional choices.

We first note, by combining equations (4) and (19), that at fixed
dust-to-gas ratio, the Stokes number depends on the maximum grain
size, optical depth, and opacity via

τs ∝ kavg
ν

τν

a. (33)

We found that, in our models, the streaming instability was
successful in improving the match to the properties of observed discs
on account of the changes in optical depth and spectral index effected
when the maximum grain size is close to the opacity resonance. For
the compositions adopted here, when the optical depth fraction is
several tens of per cent (as in observed systems) and a is close to the
opacity resonance, then the Stokes number is in the range where the
streaming instability is strong. We can estimate the effect of using,
for example, the DSHARP composition (see the case labelled as
‘default’ in Birnstiel et al. 2018). From the top panel in fig. 10 of
Birnstiel et al. (2018), we observe that the DSHARP opacity is lower
than the ‘Zubko’ one (approximately by a factor of 20) while the
β peak (middle panel) is located at higher a values (approximately
by a factor of 4). This means that for the DSHARP composition the
Stokes number corresponding to the resonance at the same optical
depth would be around a factor of 5 less than what we have simulated
in this paper. It remains to be seen whether the streaming instability is

Figure 8. Distributions in the ff–α plane for simulation T41-Z03-Q4, using the ‘outer disc’ integrated model. The left-hand panel shows three distributions
obtained using different outer disc radii: Rout = 50 au (blue squares), Rout = 70 au (purple squares), and Rout = 100 au (green squares); in all the three cases,
we rescale RSI so that in all models half of the disc is involved in streaming instability (RSI = Rout/2). The range of gas density at 1 au is the same for all the
three cases: 
g(1 au) = 100–3000 g cm−2. The right-hand panel shows three distributions obtained by fixing the outer radius Rout = 70 au and changing the
radius dividing the area undergoing streaming instability from the area where streaming instability does not take place: blue squares correspond to RSI = 15 au;
purple squares to RSI = 35 au; and green squares to RSI = 55 au. In both the plots, the colours of the squares vary their intensity according to the density of the
corresponding disc (the higher is the disc density, the darker is the colour).
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Streaming instability and disc emission 1507

sufficiently strong at these lower Stokes numbers to have a significant
effect on disc radiative properties.

Likewise, we note that if, instead, porous grains are employed, the
peak in β associated with the opacity resonance virtually disappears
(see middle panel of fig. 10 in Birnstiel et al. 2018) and thus the
streaming instability would have little impact on mm emission from
discs. In the absence of the streaming instability, Tazzari et al. (2020b)
showed that the data in Lupus require lower β values than can be
produced by porous grains. Thus, since we find that the streaming
instability does little to the radiative properties of discs in this case,
we are led to disfavour the hypothesis of porous grains.

8 C O N C L U S I O N S

In this paper, we simulated the action of streaming instability by
performing 12 2D shearing box simulations with multiple grain
sizes using the ATHENA code. By comparing the results from our
simulations to observations in Lupus by Tazzari et al. (2020a,b), we
found that the action of streaming instability is overall consistent
with the integrated emission from discs at mm wavelengths.

Analysis of dust density profiles after clump formation shows that
the largest particles participate significantly in clumping, whereas the
smallest ones remain almost uniformly in the background. Streaming
instability thus affects the emission properties of discs in cases where
grains towards the upper end of the grain size distribution exhibit a
steep dependence of opacity, and its wavelength dependence, on grain
size. Such a steep dependence is associated, in the case of compact
grains, with the opacity resonance at a grain size around a few tenths
of a mm.

We explored the effect of the streaming instability on the location
of models in the ff–α (optical depth fraction versus spectral index)
plane. The instability always reduces the optical depth fraction,
because the effect of clumping is to reduce the emission from
those grains that are translated from optically thin to optically thick
regions [in agreement with the finding by Stammler et al. (2019) that
the streaming instability reduces the system’s optical depth]. The
spectral index can evolve in either direction depending on whether
the maximum grain size is above or below the size corresponding to
the opacity resonance. The net effect is to drive modelled disc systems
towards a relatively narrow range of spectral indices (around ∼2.5)
that agrees well with the observed distribution of discs in the ff–α

plane (see Fig. 5).
Finally, we remark that although we have investigated the specific

scenario of clump generation by streaming instability, our results are
likely to apply, at least qualitatively, to any situation where clumping
predominantly affects the largest grains. Clumping is likely strongest
for large particles in any effective clumping mechanism, as is the
case for trapping by spiral arms in self-gravitating discs (as long
as τ s � 1; Booth & Clarke 2016), pressure maxima created by
planets, and vortices. Our primary result (that clumping reduces the
optically thick fraction and brings systems to a relatively narrow
range of spectral index values) is therefore likely to be of general
applicability.
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A P P E N D I X A : C O N V E R G E N C E

Since we are interested in the changes of optical properties before
and after the action of streaming instability, we must ensure that at
the end of our running time our simulations have converged. We
therefore computed for each simulation the observable quantities as
a function of time, and we considered the simulation as converged
when α and ff stopped to increase/decrease. In Fig. A1, we show,
as an example, the variation of the spectral index with time for
simulation T30-Z03-Q4: In the first 800 dynamical times α increases
considerably, and then it stabilizes on a nearly constant value. We

Figure A1. Spectral index as a function of time for simulation T30-Z03-Q4,
considering the standard disc model with local gas density 
g = 14.5 g cm−2.

performed this convergence test for all the simulations, finding that
the most of simulations have converged after 1500 	−1, apart from a
few simulations (simulations T41-Z02-Q4, T41-Z03-Q4, T30-Z02-
Q3, and T30-Z03-Q3) that required a longer evolution to reach
convergence (2000 	−1).

APPENDI X B: O PACI TY

Considering as an example simulation T41-Z03-Q4, we explain here
the details of the method applied to compute the size averaged
opacity for our simulations. The method can be split into three
phases: (1) We compute the single grain opacity, using Birnstiel et al.
(2018) code; (2) we interpolate over the grain size interval that each
simulated grain represents (equation 17); and (3) we compute the
size-averaged opacity (equation 18). To test whether our computation
works properly, we compute the opacity index β as a function of the
maximum grain size amax and we compare it to the same quantity
obtained with Birnstiel et al. (2018) code.

In the left-hand panel of Fig. B1, the magenta line shows β

obtained by considering a simulation characterized by seven particle
species and without operating the grain interpolation. The thick grey
line shows the result obtained from Birnstiel et al. (2018) code
(as well as in the other two panels). This computation is clearly
unable to return the correct opacity, as the low number of species
and the absence of grain size interpolation cause strong oscillations.
By increasing the number of particle species to 28 (central panel),
we note a considerable improvement in the computation of opacity,
since the majority of oscillations disappear; nevertheless, at high
amax, β seems to be underestimated. Once we introduce also the size
grain interpolation (right-hand panel), we are finally able to recover
precisely the correct shape of β − amax. This analysis allowed us
to choose the correct number of particle species to insert in our
simulation (28 species) and to verify that equation (17) is needed in
order to compute the opacity properly.

In Fig. B2, we applied the method outlined above to the cases q =
3 (magenta line), q = 3.5 (cyan line), and q = 4 (violet line). The thin
lines refer to our computation, and the thick translucent ones refer
to the corresponding result obtained through Birnstiel et al. (2018)
code. Even though for small amax, the three cases behave similarly,
they differ significantly among each other for the peak height and the
value for big amax. In particular, for big grains, the opacity variation
with frequency is steeper and steeper as q increases.
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Figure B1. Opacity index as a function of the maximum grain size for different models, obtained from simulation T41-Z03-Q4. The grey line is the result
obtained from Birnstiel et al. (2018) code; the magenta line is the result of our computation. The left-hand panel shows the result when we consider the single
grain opacity and seven particle species; the middle panel shows the result when we interpolate the grain distribution using 28 particle species; the right-hand
panel shows the result when we consider that each grain represents a set of grains and we extrapolate the distribution to include the low-mass grains.

Figure B2. Opacity index as a function of the maximum grain size, for
different grain size distributions: q = 3 (magenta), q = 3.5 (cyan), and
q = 4 (violet). The thick translucent lines correspond to the values obtained
through Birnstiel et al. (2018) code; the thin solid lines correspond to the
values computed using our sets of dust grain distributions.

APPEN D IX C : TOY MODEL

In Section 5.1, we used a toy model to illustrate how the optical
properties of clumping particles affect the increase/decrease in α.

Here, we show that the toy model is effective in reproducing the
distribution in the ff–α plane of simulated systems.

We compute for each simulation the level of clumping for each
particle species through the mean density ratio (i.e. we compute the
dust density for each particle species and average that over all the
particles), then we use the result to identify the clump area as the
area where the final mean density ratio is higher than the initial one,
and finally we obtain p by using equation (28). The result is shown
in Fig. C1.

We then use the values of p computed above to mimic clump
formation of each particle species6 through equations (28) and (27)
and we compute the corresponding distribution in the ff–α plane.
We test the toy model by applying it to the initial conditions of
simulations plotted in Fig. 2 and we show the results in Fig. C2
(the panels, from left to right, correspond to the panels in Fig. 2).
By comparing Figs C2 to 2, we can notice that the behaviour
of the observable quantities in the toy model is similar to that
obtained through the actual simulations; this confirms that both the
definition used to obtain p in Fig. C1 and the method of mimic clump
formation by redistributing the particles are effective in reproducing
the observable quantities.

6Note that the simplified approach used in Section 5.1, in which we arbitrarily
split the particles into clumping/non-clumping species, is useful to explain
the different behaviours of α, but it cannot reproduce the distribution in the
ff–α plane precisely.
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Figure C1. Parameter p as a function of the particle species Stokes number τ s for all the simulations performed. The results are split into three groups depending
on their q parameter: q = 3 in the left-hand panel, q = 3.5 in the central panel, q = 4 in the right-hand panel.

Figure C2. Distribution in the ff–α plane obtained applying the toy model to systems characterized by the same parameters as simulations considered in Fig. 2:
T41-Z03-Q4 (left-hand panel), T30-Z02-Q4 (central panel), and T30-Z03-Q3 (right-hand panel).
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