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A B S T R A C T 

Thermal disc winds occur in many contexts and may be particularly important to the secular evolution and dispersal of 
protoplanetary discs heated by high energy radiation from their central star. In this paper, we generalize previous models of 
self-similar thermal winds – which have self-consistent morphology and variation of flow variables – to the case of launch 

from an ele v ated base and to non-isothermal conditions. These solutions are well-reproduced by hydrodynamic simulations, in 

which, as in the case of isothermal winds launched from the midplane, we find winds launch at the maximum Mach number 
for which the streamline solutions extend to infinity without encountering a singularity. We explain this behaviour based on the 
fact that lower Mach number solutions do not fill the spatial domain. We also show that hydrodynamic simulations reflect the 
corresponding self-similar models across a range of conditions appropriate to photoe v aporating protoplanetary discs, even when 

gravity, centrifugal forces, or changes in the density gradient mean the problem is not inherently scale free. Of all the parameters 
v aried, the ele v ation of the wind base affected the launch velocity and flow morphology most strongly, with temperature gradients 
causing only minor differences. We explore how launching from an elevated base affects Ne II line profiles from winds, finding 

it increases (reduces) the full width at half maximum (FWHM) of the line at low (high) inclination to the line of sight compared 

with models launched from the disc midplane and thus weakens the dependence of the FWHM on inclination. 

Key words: accretion, accretion discs – hydrodynamics – protoplanetary discs – circumstellar matter. 
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 I N T RO D U C T I O N  

inds originating from accretion discs are thought to account for 
lueshifted features in a number of astrophysical spectra, such as 
he Low Velocity Component (LVC) of forbidden emission lines 
uch as [Ne II ] and [O I ] in protoplanetary disc line spectra (Hartigan,
dwards & Ghandour 1995 ; Pascucci & Sterzik 2009 ; Rigliaco et al.
013 ; Simon et al. 2016 ; Banzatti et al. 2019 ; Pascucci et al. 2020 ),
arm absorbers in AGN spectra (e.g. Mizumoto et al. 2019 ; Ganguly

t al. 2021 ; Laha et al. 2021 ), and Fe lines from X-ray binaries
e.g. Begelman, McKee & Shields 1983 ; Higginbottom et al. 2020 ).
n dif ferent environments, v arious ef fects may dri ve or assist the
cceleration of the wind: from magnetic tension, to centrifugal forces, 
o thermal pressure gradients and radiation pressure (Alexander 
t al. 2014 ; King & Pounds 2015 ; Ercolano & Pascucci 2017 ).
nderstanding the kinematics of these winds is of importance both 

or interpreting these observations and for assessing their effects both 
n the accretion disc and their surroundings. 
Roughly speaking, a thermal wind may be launched from a disc 

o long as the thermal energy of heated gas in its upper layers (which
s converted to kinetic energy by pressure gradients) is sufficient to 
 v ercome the gravitational potential of the star, leading to unbound
aterial. F or a giv en sound speed c S , this is possible outside of

he gravitational radius r G (Shu, Johnstone & Hollenbach 1993 ; 
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ollenbach et al. 1994 ): 

 G 

= 

GM ∗
c 2 S 

≈ 9 au 
M ∗
M �

( c S 

10 km s −1 

)−2 
. (1) 

n practice, pressure gradients mean that winds are also accelerated 
nside r G (Font et al. 2004 ; Clarke & Alexander 2016 ), with
 crit ≈ 0.2 r G taken as the typical limit (Alexander et al. 2014 ). By
omparison, the typical gas radii of protoplanetary discs are much 
arger, � 100 au (Barenfeld et al. 2017 ; Ansdell et al. 2018 ). 

Within the context of protoplanetary discs, a thermally driven 
isc wind, heated by the central star, is thought to be one of the
ey mechanisms to disperse the discs in a process known as ‘Internal
hotoe v aporation’. 1 Photoe v aporati ve winds are often fa v oured since
iscs are largely thought to disperse from the inside out (Koepferl
t al. 2013 ), but must do so rapidly since the fraction of so-called
ransition Discs that appear to be undergoing clearing is small ( ≤10
er cent Andrews & Williams 2005 ). The rapid clearing possible
nder direct irradiation could account for this observed behaviour 
n many discs (e.g. Owen, Ercolano & Clarke 2011 ; Picogna et al.
019 ), though competing ideas include planet–disc interactions. Due 
o their potential importance, and the abundance of material beyond 
 G where thermal forces can dominate, in this work we focus on
 In contrast, ‘External Photoe v aporation’ involves heating by primarily Far 
ltraviolet radiation from nearby O and/or B type stars and is most rele v ant 

n large, dense, star-forming regions. 
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hermal winds driven from large radii from discs with properties
ppropriate to protoplanetary discs. 

The primary radiation that is responsible for heating internally
riven winds is still a matter of debate (e.g. Alexander et al. 2014 ;
rcolano & Pascucci 2017 ), with different bands having distinct
ffects on the ionization state, density, temperature and velocity of
he outflow and hence its mass-loss rate. For example, the earliest

odels considered heating due to the ionizing extreme ultraviolet
EUV) radiation (Shu et al. 1993 ; Hollenbach et al. 1994 ). These
ypically create fully ionized, low density winds that are roughly
sothermal at 10 4 K (i.e. sound speeds of 10 km s −1 ). 

Later models consider X-rays to be the predominant heating
echanism (Owen et al. 2010 , 2011 ; Owen, Clarke & Ercolano

012 ; Picogna et al. 2019 ). X-rays lead to only partially ionized
ows (of much higher density than the EUV winds) in which EUV
hotons would be absorbed at small radii (Ercolano & Owen 2010 ;
wen et al. 2012 ) before reaching the bulk of the wind. The deeper
enetration of the X-rays allows flows from larger radii, so while
he result is a cooler, and hence some what slo wer, wind (with sound
peeds of c S ≈ 3–5 km s −1 ) the mass-loss rates can be considerably
igher (Ercolano, Clarke & Drake 2009 ). 
Not only does the temperature of the wind depend on various

eating mechanisms, but also how they are offset by cooling. Using
 modest chemical network, Wang & Goodman ( 2017 ) found that
ith different cooling mechanisms, X-rays were unable to heat the
as sufficiently and hence they recovered an EUV driven wind with
ower mass-loss rates. In this scenario, the X-rays would act more like
he non-ionizing far -ultra violet (FUV) radiation which may chiefly
id mass-loss by heating a layer below the wind (Owen et al. 2012 )
nd puffing up the wind base so that it intercepts more of the radiation
hat is capable of heating the flow to abo v e the escape velocity (Wang
 Goodman 2017 ). The FUV itself is more challenging to include due

o the complicated photochemistry of the photodissociation regions
o the first models to treat it used very simplified models for the
ydrodynamics of the wind (Gorti & Hollenbach 2009 ). Due to lower
emperatures to which the FUV heats the gas, on its own it is only
f fecti ve at driving a flow at very large radii, although at suitably
igh metallicities, Nakatani et al. ( 2018 ) found that the FUV could
rive a substantial neutral flow. 
In order to understand the true significance and viability of

hotoe v aporati ve winds, it is important to attempt to disentangle
hese effects using observational constraints. The mass-loss rates in
inds are hard to measure directly, but constraints from disc demo-
raphics imply that relatively low rates are more typical (Alexander
t al. 2014 ; Sellek, Booth & Clarke 2020 ; Somigliana et al. 2020 ).
o we v er, demographics hav e not been able to discriminate strongly
etween the different heating mechanisms due to uncertainties in the
lluminating flux. 

A better probe is to measure the velocities of the outflowing gas
sing the aforementioned optical and infrared forbidden lines. In
articular, the [Ne II ] 12.81 μm and [O I ] 6300 Å are potential tracers
f a wind. They show blueshifted profiles which may typically consist
f High Velocity and Low Velocity Components (HVC and LVC,
espectively) (Hartigan et al. 1995 ) where the former is usually
ttributed to a magnetohydrodynamic jet. Modelling of the blueshifts
nd widths of these components has been used to constrain the origin
nd heating mechanism of the flows. 

The [O I ] 6300 Å LVC has been suggested to trace a disc wind
e.g. Hartigan et al. 1995 ). Font et al. ( 2004 ) made the first attempt
o model this emission as a thermal wind: while several lines
rom ionized species detected by Hartigan et al. ( 1995 ) could be
xplained by an EUV driven wind, the neutral [O I ] 6300 Å was not
NRAS 506, 1–20 (2021) 
onsistent with the observed line luminosities. Ercolano & Owen
 2016 ) suggested that this blueshifted [O I ] emission is instead a
smoking gun’ of X-ray photoe v aporation, though found it was not
uitable for measuring the mass-loss rates as the size of the emission
egion is also determined by the contribution of EUV to the heating.

ore recent observations suggest that two components make up the
VC (Simon et al. 2016 ) – a broad component (BC) and a narrow
omponent (NC) – the former of which is too broad to trace a thermal
ind and more likely probes a magnetically driven wind at small

adii. Banzatti et al. ( 2019 ) further argued that since the properties
f the NC were found to correlate with those of the BC, then both
omponents of the LVC should have a magnetic origin, though Weber
t al. ( 2020 ) suggested a mechanism by which the NC could still
esult from a thermally driven wind. 

The [Ne II ] 12.81 μm emission has been successfully explained by
 thermal wind (Alexander 2008 ; Pascucci & Sterzik 2009 ; Ercolano
 Owen 2010 ; Pascucci et al. 2011 ; Alexander et al. 2014 ). Most

ecently, Pascucci et al. ( 2020 ) showed that the [Ne II ] LVC was more
trongly present in discs with larger inner cavities (in contrast to the
O I ] which diminishes as the inner disc clears) and argued that this
oints to an origin outside the cavity. This suggests a picture where
hotoe v aporati ve winds are particularly rele v ant at large radii in
iscs with cavities undergoing clearing – whose line profiles demand
inds driven from well outside r G – with full discs possessing an

nner magnetohydrodynamic wind that blocks the ionizing radiation
eeded to drive a thermal wind at large radii. 

Modelling these observational diagnostics has typically required
ydrodynamic simulations to self-consistently calculate the thermal
tructure and generate the streamline morphology (e.g. Font et al.
004 ; Ercolano & Owen 2010 ; Picogna et al. 2019 ) because in
eneral no analytic solution exists. Ho we ver, including both radiative
ransfer and hydrodynamics makes such simulations e xpensiv e (par-
icularly if multiple parameters are to be studied) and consequently
omewhat limited in their domain, which can compromise the line
rofiles derived from such simulations. Consequently, in parallel with
fforts to impro v e the v erisimilitude of wind simulations (focusing
or example on detailed microphysics surrounding disc photochem-
stry, ionization, and magnetically driven winds, e.g. Wang, Bai &
oodman 2019 ; Grassi et al. 2020 ), we take an alternative approach.

n this paper, we explore the large scale kinematics and morphology
f thermally driven winds in cases where the wind temperature
tructure and the density profile at the flow base are simply prescribed
with dependencies moti v ated by the results of radiation hydrody-
amic simulations) to investigate to what extent we can separate
hese kinematics and morphology from the microphysics. 

The simplest approach is to model winds as isothermal, which
s a decent first approximation as the temperature gradients found
n simulations tend to be small (e.g. Nakatani et al. 2018 ; Picogna
t al. 2019 ). This approach enabled Clarke & Alexander ( 2016 )
o develop a self-similar model for isothermal winds in which the
treamline morphology is set by a balance between pressure gradients
nd inertial forces from the streamline curvature. They argued that
ravitational and centrifugal effects are subdominant since they
ancel at the base of the wind and decline more rapidly along the
treamlines (as 1/ r 2 and 1/ r 3 , respectively) than the pressure or inertial
orces. They thus obtained self-similar solutions for power-law base
ensity profiles in which the wind launches at a constant velocity
 b ; for a given density profile, while there were a range of self-
onsistent solutions to their modified ‘de Laval nozzle’ problem,
here was a maximum Mach number M b , max for which the solution
ould a v oid a singularity in the equation at some point along the
treamline and thus remain smooth. When these solutions were
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enchmarked against scale-free 2D hydrodynamic simulations, they 
ound that the solution adopted by the wind was in good agreement
ith the maximal allowed solution launched at M b , max . Moreo v er,

v en when the y reintroduced gravity and rotation, this solution was
ell-reco v ered at radii r � r G and was even a good description at radii

s low as 0.5 r G , so long as the radius of curvature of the streamlines
as small, thereby justifying neglecting gravity and rotation. Thus, 
larke & Alexander ( 2016 ) concluded that in general one should
xpect thermal winds to launch at M b , max . 

These self-similar solutions enabled Ballabio, Alexander & Clarke 
 2020 ) to model the blueshifted [O I ] emission lines observed by
anzatti et al. ( 2019 ), as well as literature data for [Ne II ]. They

howed that the blueshifts were most sensitive to the sound speed; 
hile the [Ne II ] preferred a fast wind with c S ∼ 10 km s −1 as

ppropriate to an EUV wind, the [O I ] was more consistent with
 slower wind with c S ∼ 3–5 km s −1 . On the other hand, the full
idth at half maximum (FWHM) of the [Ne II ] lines also fa v oured
 high sound speed whereas for [O I ] a larger sound speed was
enerally better but did not reproduce the widths well. In all this
mplies potentially different origins for the [Ne II ] and [O I ] emission
n agreement with Pascucci et al. ( 2020 ). 

The solutions of Clarke & Alexander ( 2016 ) are, ho we ver, limited
o power-law winds launched perpendicularly from the midplane, and 
n an isothermal atmosphere. If self-similar solutions are to be used 
o approximate the results of radiation hydrodynamics simulations 
nd accurately interpret observational data, the results of Clarke 
 Alexander ( 2016 ) must be tested with these four assumptions

elaxed. The first two of these – midplane launches and perpendicular 
aunches – are needed as in general simulations such as those by 

ang & Goodman ( 2017 ), Picogna et al. ( 2019 ) show streamlines
riginating from ele v ated bases, sometimes at less than right angles.
oreo v er, as discussed, winds would not be expected to remain

erfectly isothermal. Finally, the restriction to power laws in density 
eglects the fact that a single power law can only apply over a limited
ange – for example Hollenbach et al. ( 1994 ) propose two different
ower-la w re gimes either side of r G . 
In this work, we thus seek to further understand the applicability 

f the self-similar solutions to modelling thermal disc winds. In 
ection 2, we summarize the hydrodynamics behind the winds and 
utline our extension of self-similar solutions to winds launched from 

le v ated bases, non-perpendicularly, and with scale-free temperature 
rofiles. In Section 3, we calculate maximum launch velocities using 
ur generalized solution, 2 showing that for realistic temperature 
 ariations, the ef fects on the streamline morphology and launch 
ach number are negligible. In Section 4, we show that in all of

hese cases, the scale-free hydrodynamic simulations still predict 
aunch velocities corresponding to the maximum values predicted 
y the self-similar solutions and we provide an argument as to why
his is based on these solutions being space-filling in Section 5. 

e reintroduce gravity and centrifugal forces in Section 6 and in 
ection 7 we investigate the effects of imposing a double power 

aw in density of the form used by Font et al. ( 2004 ) at the
ase. We discuss the implications of our results – for both the 
nterpretation of hydrodynamic simulations and application to other 
roblems – in Section 8, before summarizing our conclusions in 
ection 9. 
 We have made the code we used public so that others may easily use the 
olutions as part of their own modelling: https://github.com/AndrewSellek/ 
elfSimilarThermalWinds . 
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 H Y D RO DY NA M I C S  O F  W I N D  L AU N C H I N G  

OLUTI ONS  

e first describe the forces and fluid equations that go v ern the flow in
he self-similar assumption, before going to describe how we extend 
he treatment of Clarke & Alexander ( 2016 ) to winds that are (a)
aunched from ele v ated bases, 3 (b) launched non-perpendicularly to 
heir launch plane, (c) subject to scale-free temperature profiles. 

The momentum equation describing the forces on the gas in either
he wind or the underlying disc may be written in spherical polar
oordinates (radius r ) in terms of the density ρ, pressure P , and
ravitational force from the central star −GM ∗

r 2 
as 

∂ � u 

∂t 
+ � u · ∇ � u = − 1 

ρ
∇P − GM ∗

r 2 
ˆ r . (2) 

Rather than balancing forces in coordinates set by the global 
eometry, we follow Clarke & Alexander ( 2016 ) who demonstrated
hat equation (2) may be written in a local coordinate system, which
n the steady state, when resolved perpendicular to the streamlines 
in the direction with unit vector ˆ l ), gives 

u 

2 

R eff 
= 

1 

ρ
ˆ l · ∇P , (3) 

here R eff is the radius of curvature. Thus, in the self-similar wind
odel, the pressure gradients normal to the streamlines balance an 

f fecti ve inertial/centrifugal force due to the streamline curvature. 
In writing equation (3), two important forces have been neglected: 

entrifugal force due to rotation in the φ direction (which forms part
f the inertial term � u · ∇ � u ) and gravity. In the underlying disc at
he midplane – which is cold and thin – these two forces balance,
ince the pressure gradient is subdominant [by a factor ( H / R ) 2 ]. The
aterial that supplies the wind flows vertically through the cold, 

hin, disc and eventually passes through the wind base, where it is
eated and strongly accelerated. The gravitational and centrifugal 
orces are barely changed compared to their midplane values, but 
nce in the wind region, which is much hotter than the underlying
isc, the pressure gradient has greatly increased. Since all quantities 
n the wind solution vary o v er a length scale of order r or less, the
agnitude of the acceleration associated with the pressure gradient, 

1 
ρ

∂P 
∂r 

≈ c 2 
S 

r 
, exceeds gravity and centrifugal force at the wind base, so

ong as 
c 2 
S 

r b 
> 

GM ∗
r 2 b 

. I.e. so long as r > r G (as defined in equation 1)

e can make this approximation. Physically, this represents a regime 
here the thermal energy exceeds the gravitational energy and 
ence the material is unbound. As one mo v es to larger radii, the
ravitational and centrifugal terms decline much faster (as 1/ r 2 and
/ r 3 , respectively) than the pressure gradient (1/ r in an isothermal
isc) and thus the approximation is strengthened. 
Since the velocities are of the order of c s , the curvature term also

ominates o v er gravity (and centrifugal force) if r > 

R eff 
r 

r G 

(Clarke
 Alexander 2016 ). The solutions are typically sufficiently curved 

ear the base that R eff < r ≈ r b , making the approximation reasonable
ven for winds launched from r b somewhat inside r G . 

The self-similar solutions by construction do not therefore include 
he cold disc; ho we ver, one can separately compute the velocity
tructure matching the mass and momentum flux across the wind 
ase implied by the self-similar wind solutions (see e.g. Hutchison 
 Clarke 2021 ). In practice, this has limited effect on the vertical
 Hutchison & Clarke ( 2021 ) also performed such a calculation for their 
pecific case of interest. 

MNRAS 506, 1–20 (2021) 
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4 Note that therefore from equation (8), φ = φ( ̃ s ) so the solution at a given 
normalized arc length along the streamline could equally be thought of as the 
solution at given angle from the midplane. 
5 Note that this condition results from the balance of heating and cooling at 
each location, and not from the wind material being adiabatic with γ ≈ 1, 
which would instead imply material kept the temperature at its base. 
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tructure of the underlying disc, which is in a state of near-hydrostatic
quilibrium, so we are not concerned with it in this paper. 

The key conservations in this problem are momentum and mass
long the streamlines. Momentum conservation gives us the follow-
ng relationship between the velocity and pressure gradients (which
an equi v alently be thought of as the conservation of the Bernoulli
unction) along the streamline: 

 

∂u 

∂s 
+ 

1 

ρ

∂P 

∂s 
= u 

∂u 

∂s 
+ c 2 S 

∂ ln ( ρ) 

∂s 
+ 

∂c 2 S 

∂s 
= 0 , (4) 

here ∂ 
∂s 

is the directional deri v ati ve along the streamline and the
econd form is achieved by expanding in terms of the density and
sothermal sound speed c 2 S = ( ∂P 

∂ρ
) T = 

R 

μ
T . 

Meanwhile mass conservation implies a constant mass flux 

˙
 = ρuA, (5) 

here A is the area of a streamline bundle. Hence by differentiating
nd using equation (4), we may write 

∂ ln ( A ) 

∂s 
= −∂ ln ( ρ) 

∂s 
− ∂ ln ( u ) 

∂s 
(6) 

= 

(
u 

2 

c 2 s 
− 1 

)
∂ ln ( u ) 

∂s 
+ 

∂ ln ( c 2 S ) 

∂s 
. (7) 

his demonstrates a nozzle effect where the wind is accelerated
o long as we have a conv erging-div erging flow. In the isothermal
ase, the sonic surface coincides with a minimum in the area of the
treamline bundle; temperature gradients can offset this slightly. 

In Appendix A, we provide a more detailed description of how the
ressure and temperature gradients are calculated in our self-similar
odel, and how the radius of curvature, R eff , may be e v aluated once

he rate of change of area is known. Combining equations (A5)–(A8)
nd (A11) representing these gives the single ordinary differential
quation given in Section 2.2. 

.1 Description of the wind base 

n the approximation described abo v e, since gravity is neglected,
hen r G cannot enter the solution – instead, the sole length scale is
he radius at the base of each streamline, r b , and so our solutions
ill be self-similar. This means any quantities with dimensions of

ength must scale linearly with r b , for example the spherical radius,
 , scales as r = r b ̃  r ( ̃ s ) (where ̃  s is the normalized arc length along the
treamline). Similarly, since the problem we solve is an initial value
roblem, other quantities, such as the density and velocity, are most
ensibly expressed in terms of their values at the base i.e. ρ = ρb ̃  ρ( ̃ s )
nd u = u b ̃  u ( ̃ s ), respectively. 

Clarke & Alexander ( 2016 ) showed that for the globally isothermal
ase to display self-similarity, u b must be the same for all streamlines.
n this work, we argue that more generally, when the sound speed
temperature) varies along the wind base, the Mach number at
he base M b = u b /c S must be the same for all streamlines (see
ppendix A). 

.1.1 Geometry 

o describe the wind geometry at the base, we first define the angle
as the angle between a point on a streamline and the midplane i.e. 

tan ( φ) = 

z( ̃ s , r b ) 

R( ̃ s , r b ) 
= 

˜ z ( ̃ s ) 
˜ R ( ̃ s ) 

, (8) 
NRAS 506, 1–20 (2021) 
here R and z are the radial and vertical coordinates in cylindrical
olar coordinates and ˜ R , ˜ z are the equi v alents normalized to r b . 4 φb 

s then the ele v ation of the wind base. 
Similarly, we define the angle between a streamline tangent and

he midplane as 

tan ( θ ) = 

d z 

d R 

= 

d ̃ z 

d ̃  R 

, (9) 

nd for ease further define the angle χ as 

= θ − φ, (10) 

uch that χb = θb − φb represents the angle with which the wind
aunches relative to the plane from which it launches. 

While Clarke & Alexander ( 2016 ) assumed φb = 0 and χb = θb 

 π /2, in Section 3 we explore the parameter space 0 ◦ ≤ φb ≤ 72 ◦

nd 0.25 π ≤ χb ≤ 0.5 π in order to show how the launch Mach
umbers M b depend on these parameters. For most of the paper,
o we ver, we focus on an ele v ation of φb = 36 ◦ – which typical of
hotoe v aporation models (Wang & Goodman 2017 ; Picogna et al.
019 ) – and a launch angle of χb = π /2 since simulations show
aterial reaching the base with very low velocities, and only being

ccelerated perpendicularly (see further discussion in Section 6). 

.1.2 Imposed profiles of flow variables 

n order to seek a self-similar solution, we require that the density at
he base of the wind ρb is a power law (which has no characteristic
cale) in base radius r b : 

b = ρ0 

(
r b 

r 0 

)−b 

, (11) 

here b is simply the power-la w inde x for which Clarke & Alexander
 2016 ) consider values in the range 0.5–2. We focus throughout much
f this paper on b = 1.5 since this most closely resembles the density
radient at the base in Picogna et al. ( 2019 ), as well as the density
rofile for r < r G found by Hollenbach et al. ( 1994 ). This value also
etter reproduces the [Ne II ] line luminosity Pascucci et al. ( 2011 )
easured for TW Hya (Ballabio et al. 2020 ). Note that since ˜ s and
are interchangeable, then at an y fix ed ele v ation ρ and u (or M )

hould scale in the same way as at the base, e.g. ρ ∝ r −b . 
We impose a fixed temperature T at each location, i.e. use a

ocally isothermal equation of state P = 

R 

μ
ρT . 5 For convenience,

e express this temperature structure in terms of the isothermal sound
peed; the sound speed profile must also be scale free, meaning it
an be written in a separable form in terms of r and φ, where the
ependence on r is that of a power law: 

 

2 
S ( r, φ) = c 2 S, b ( r b ) ̃ c 

2 
S ( ̃ r , φ) = c 2 S, b ( r b ) ̃ r 

−τC( φ) . (12) 

here c 2 S, b ( r b ) ∝ r −τ
b and the angular dependence is normalized such

hat C( φb ) = 1. τ is defined (analogously to b ) as the power-law slope
f the temperature profile. For disc temperatures, commonly used
rofiles have τ = 0.5 assuming a simple blackbody equilibrium dust
emperature, or a slightly lower τ ≈ 0.43 if one includes the effects
f the disc flaring (Chiang & Goldreich 1997 ). While the heating
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echanisms are very different in the wind , the principles of geometric
ilution (Owen et al. 2012 ) and disc flaring (Wang & Goodman
017 ) are still important and simulations suggest similarly modest 
utward temperature gradients (e.g. 0.28 < τ < 0.4 depending on 
he metallicity, Nakatani et al. 2018 ). We thus investigate fiducial 
on-isothermal cases with τ = 0.25 and τ = 0.5. 

.2 General equations for self-similar winds 

n Appendix A, we solve the above problem to derive an equation
elating the velocity gradient to the cylindrical coordinates of a point 
n the streamline ( ̃  R and ˜ z ), the direction of the streamline tangent
ot ( θ ) = 

˜ R 

′ = 

d ̃ R 
d ̃ z and the velocity ˜ u . 

d ̃  u 

d ̃ z 
= 

g 1 + g 2 

f 1 + f 2 
(13) 

 1 = −M 

2 
b ̃  u 

(
M 

2 
b 

˜ u 

2 

˜ c 2 S 
− 1 

)
( ̃  R − ˜ z ˜ R 

′ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 ( ̃  R 

˜ R 

′ + ̃  z ) 
(14) 

 2 = M 

2 
b ̃  u 

˜ R 

˜ R 

′ + ̃  z 

(1 + 

˜ R 

′ 2 ) 1 / 2 ( ̃  R − ˜ z ˜ R 

′ ) 
(15) 

 1 = ( b + τ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 

( ̃  R − ˜ z ˜ R 

′ ) 
˜ c 2 S (16) 

 2 = −M 

2 
b ̃  u 

2 ( ̃  R − ˜ z ˜ R 

′ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 

×
( ˜ R 

′ 

˜ R ( ̃  R 

˜ R 

′ + ̃  z ) 
+ 

1 

( ̃  R 

2 + ̃  z 2 ) 

(
τ − ∂ ln ( C) 

∂φ

( ̃  R − ˜ z ˜ R 

′ ) 
( ̃  R 

˜ R 

′ + ̃  z ) 

))
. 

(17) 

e will refer to f 2 and g 1 as pressure related terms and f 1 and g 2 
s curvature related terms since they arise from the right and left-
and sides of equation (A5), respectively. Compared to Clarke & 

lexander ( 2016 ), f 2 is unchanged as it represents the change in
ressure due to the Bernoulli effect, which is unchanged by geometry 
r temperature gradients. g 1 represents the radial pressure gradient 
nd hence is affected by the additional radial temperature gradient 

and scales with the sound speed normalized to the base ˜ c 2 S . f 1 
akes on a very different form – this is because we calculated ˜ A 

′ in
 different way to Clarke & Alexander ( 2016 ). 6 Finally, g 2 picks up
dditional terms due to the variation of temperature with both radius
nd latitude. 

 N U M E R I C A L  SOLUTION  

he maximum launch Mach numbers M b , max were calculated by 
larke & Alexander ( 2016 ) by numerically solving their equi v alents

o equations (13) to (17) using an Euler method, iterating to find
olutions that a v oided f = f 1 + f 2 → 0. We apply the same method
o investigate more general geometries for isothermal winds, and the 
ffects of temperature profiles that follow radial power laws. 

At each point ˜ z along the streamline, we track ˜ u , ˜ R , and ˜ R 

′ .
he velocity gradients are calculated using equation (13). Then 
e can find the gradient of the area of a streamline bundle using

quation (A11) and hence ˜ R 

′′ from equation (A7). Finally, ˜ u , ˜ R , and 
˜ 
 

′ can be advanced to locate the next point on the streamline and its
elocity: 
 In that work, they used ˜ A ( ̃ u ) to calculate ˜ A 

′ , but this can only be solved 
xplicitly in the isothermal case (by using the conservation of the Bernoulli 
unction). We have checked that the alternate form of the term presented here 
eco v ers the same solution in the isothermal case. 

7

a
s
d

˜  i+ 1 = ˜ u i + ˜ u 

′ 
i � ̃ z (18) 

˜ 
 i+ 1 = 

˜ R i + 

˜ R 

′ 
i � ̃ z + 

1 

2 
˜ R 

′′ 
i ( � ̃ z ) 2 (19) 

˜ 
 

′ 
i+ 1 = 

˜ R 

′ 
i + 

˜ R 

′′ 
i � ̃ z . (20) 

.1 More general geometries 

e first consider isothermal winds, for which we expect that the
aximum launch Mach numbers can now be a function of the angles
b and χb as well as the density gradient b . Hence we proceed

o solve our re vised dif ferential equation across this 3D parameter
pace, finding M b , max ( b, φb , χb ) for a regular grid covering density
ower-law slopes 0.5 ≤ b ≤ 1.75, ele v ation angles 0 ◦ ≤ φb ≤ 72 ◦,
nd launch angles 0.25 π ≤ χb ≤ 0.5 π . 

For each model, we integrate out to ˜ z = 1000; so long as we do
ot encounter f → 0, we then increase the Mach number by 0.1 until
uch a singularity is encountered. Once this scenario arises, we then
eturn to highest safe value and repeat, first increasing M b by 0.01
nd then repeating a third time increasing by 0.001 such that M b is
ound to 3 decimal places. The results are presented as the contour
lots in Fig. 1 . 
The trends in Fig. 1 can largely be understood by considering the

elationship between M b and the (radius of) curvature at the base.
irst, as found by Clarke & Alexander ( 2016 ), the Mach number at the
ase is generally a decreasing function of the density power-law slope
 . This is because a stronger pressure gradient provides a stronger
orce to push the streamlines o v er, meaning that they curve more
trongly i.e. with a smaller radius of curvature; more strongly curved
inds are associated with a slower v elocity. Moreo v er, as we increase
b , there is a strong decrease in M b , max . This is because the winds
ave to turn to become radial and outward flowing in a tighter space,
eaning they must curve more strongly and consequently launch 
ore slowly . Finally , as we decrease χb , such that the streamlines

re flatter to the base, the flow is already more radial and does not
ave to turn so quickly, hence can launch faster. Alternatively, we
onsider that since the streamlines are more closely aligned to the
ressure gradients, the component of the pressure gradient acting on 
he streamline to curve it is less. 

F or most re gions of parameter space, including those most ap-
ropriate to describing photoe v aporati ve winds, it is apparent that
he ele v ation of the wind base is likely to be the most important
arameter in setting the streamline curvature and the launch velocity. 
nly in cases of very extreme ele v ation, more than are considered
ere, would the launch velocity be suppressed to < 0.1 c S . 
Note that here we do not provide Mach numbers for b ≥ 2, as

nlik e Clark e & Alexander ( 2016 ) we find that there is no possible
elf-similar solution for these values. 7 Physically this represents the 
act that if the density drops off as fast or faster than r −2 , then the wind
ust be diverging faster than spherical to ensure mass conservation, 

nd thus would have to flow into the launch plane. Whereas, if the
ensity drops off slower than r −2 , then the wind must converge
elative to the spherical case and can flow out of the launch plane as
equired. We provide a more mathematical discussion in Section 5. 
 Clarke & Alexander ( 2016 ) were able to report a value since when integrating 
 solution out to a finite distance, there is al w ays some velocity for which the 
ingularity lies beyond that point. Ho we ver, for b ≥ 2, the maximum velocity 
oes not converge as we extend the domain of our integration. 

MNRAS 506, 1–20 (2021) 
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Figure 1. The maximum allowable Mach number at the base M b , max as a function of the density power-law slope b , the elevation angle of the wind base φb 

(in degrees) and the angle with which the wind is launched relative to this plane χb (in radians). The left-hand panel shows the dependence on b and φb for 
perpendicularly launched winds, while the right-hand panel shows the dependence on the two angles for a fixed density profile with b = 1.5. The lighter, yellow 

colours at low b , low φb , and low χb represent faster winds, while the darker blue colours represent slower velocities. 

Table 1. The mass weighted average launch Mach numbers measured for 
a range of non-isothermal models. 

M b 

φb Temperature Analytic Isothermal u constant M constant 

0 r −0.25 0.522 0.555 0.528 0.522 
0 R 

−0.25 0.506 0.555 0.512 0.507 
36 r −0.25 0.322 0.327 0.330 0.329 
36 R 

−0.25 0.300 0.327 0.309 0.308 
0 r −0.5 0.472 0.555 0.495 –
0 R 

−0.5 0.449 0.555 0.467 –
36 r −0.5 0.305 0.327 0.318 –
36 R 

−0.5 0.270 0.327 0.282 –
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.2 Radial temperature profiles 

aving sho wn ho w self-similar streamlines may be generated for
on-isothermal cases in a more general geometry abo v e, we in-
 estigate two representativ e cases of radial power la ws, where the
emperature depends on either the spherical or cylindrical radius
espectively as 

 ∝ r −τ (21) 

 ∝ R 

−τ ∝ cos ( φ) −τ r −τ . (22) 

e provide explicit versions of equations (13) to (17) for these two
ases in Appendix B and mo v e straight to summarizing our results. 

.2.1 Results 

he resulting maximum Mach numbers are listed as the analytic
alues in Table 1 . For comparison, we include the value for the
sothermal case with the same b and φb . In each case, the effect of
NRAS 506, 1–20 (2021) 
he temperature gradient is to lower the Mach numbers by no more
han 10 per cent when τ = 0.25, and up to 10–20 per cent for τ = 0.5.
 decrease is to be expected – the temperature gradient at the wind
ase increases the outward pressure force, which makes the radius
f curvature smaller and the velocities lower. Correspondingly, this
ffect is stronger the greater the value of τ ; additionally, we see
tronger decreases when temperature scales with cylindrical radius. 

To determine the effect of non-isothermality on the streamline
orphologies, we plot as an example a comparison of different

treamlines in the φb = 36 ◦ case in Fig. 2 . We show the appropriate
treamline in the cylindrical case with τ = 0.25 and its maximum
ach number 0.300. We also include the streamline for b = 1.5 in the

sothermal case, with its appropriate Mach number 0.327. Finally,
n order to isolate the effects of the temperature gradients from the
esultant slower launch, we show an isothermal streamline with the

ach number reduced to match the non-isothermal case. 
It can be seen that both of the slower streamlines curve more

trongly at the base, resulting in the streamlines passing through
 lower z at a given R . Indeed, the effect of non-isothermality is
lmost completely explained by the reduction in Mach number:
he isothermal case does not seriously o v erestimate the radius of
urvature at the base, and further deviations only set in at rather
arge radii when the non-isothermal solution curls upwards relative
o the isothermal streamline in order to fill the spatial domain (cf.
ection 5). Note that the streamlines are also more vertical for the
le v ated base than for to midplane launches (see Clarke & Alexander
016 ). 
Overall, we conclude that for realistic temperature variations, the

mpact on the launch Mach numbers and morphologies of the flow is
ather small, and hence the validity of our results should be relatively
nsensitive to the heating and cooling uncertainties and thus the finer
icture of the thermal structure of the wind (save for any role these
rocesses play in setting the ele v ation of the base). 

art/stab1693_f1.eps
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Figure 2. Comparison of the isothermal and non-isothermal ( τ = 0.25) 
analytic streamline for φb showing the relatively weak effects of temperature 
gradients. The blue dashed line is the isothermal streamline for the isothermal 
M b , max = 0 . 327, while the red dotted line indicates the non-isothermal 
streamline at its appropriate M b , max = 0 . 300. We also show, as the purple 
dot–dashed line, the isothermal streamline M b = 0 . 300. 
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 H Y D RO DY NA M I C  SIMULATIONS  O F  

CALE-FREE  W I N D S  

aving established new predictions for the launch velocities of 
elf-similar winds for more general base geometries and non- 
sothermal temperature profiles, we wish to benchmark these against 
ydrodynamic simulations. We therefore present FARGO3D (Ben ́ıtez- 
lambay & Masset 2016 ) simulations in order to assess whether the

esult that scale-free winds adopt the solution with M b , max applies for 
eneric values of the angles φb and χb and for temperature gradients 
> 0. 

.1 Description of FARGO3D setup 

ince for a direct comparison, we desire a scale-free scenario, our 
etup uses no gravitational forces, with the azimuthal velocity set to 
 to eliminate centrifugal forces arising from orbital motion. 
We used a 2D spherical grid with 220 cells logarithmically spaced 

n r between r = 0.01 and r = 10 and 50(1 − φb /90 ◦) cells spaced
inearly between θ = 0 and θ = 90 − φb (where θ is now the usual
olatitudinal angle), such that the grid cells are approximately square 
nd we have a fixed constant angular resolution. While this is lower
han the resolution of Clarke & Alexander ( 2016 ), we tested that this
id not affect our results. Note that since these simulations are scale
ree then here the radius values quoted have no particular meaning 
ut are simply relative. 

The launch plane at θ = 90 − φb was treated by having 
onstant perpendicular velocity across the boundary, with the parallel 
omponent set to 0 and the density set to ρ = r −b . When χb �= π /2,
he perpendicular velocity u θ at the launch plane is still imposed to be
onstant across the boundary. We then use its value to set the parallel
omponent u r = −u θ cot ( χb ) (the sign accounts for the fact that the
ositive θ direction is directed into the plane; we are interested in 
inds where u θ < 0, u r > 0. At the polar axis, we used a reflecting
oundary. 
For both radial boundaries, we required that the components of 

elocity should be constant across the boundary but that the density 
ollow the same imposed power-law slope as at the base. We argue
hat this is the correct boundary condition to use if we wish to seek
erfect agreement with the self-similar solution since, as mentioned 
n Section 2, at a fixed angle we probe equi v alent points on adjacent
treamlines and so the density should simply scale with the density
t their bases. Likewise the velocity profile is constant at the base
nd thus should be at all angles. We checked that our setup reco v ered
he perpendicular, ‘flat plane’ ( φb = 0), cases, and found that these
oundary conditions have the effect of reducing the deviations from 

elf-similarity near the boundaries (cf. Clarke & Alexander 2016 , fig.
). This is also apparent in Fig. 3 , where the Mach numbers remain
xactly flat for all r . 

FARGO3D allows two equations of state: an adiabatic case (in 
hich it evolves the energy), and a locally isothermal one. We use

he latter, in which FARGO3D stores the sound speed (such that the
ressure is calculated as P = c 2 S ρ), which it does not evolve in time;
ts value is fixed as part of the initial conditions. For our globally
sothermal cases (i.e. τ = 0), we set c S = 1 everywhere, while for
ur power-law temperature profiles, we follow equation (12). 

.2 Generalized geometry 

n Figs 3 and 4 , we examine the launch Mach number M b and
treamlines, respectively, of winds launched from a base ele v ated by
b = 36 ◦ to the midplane. We again choose this illustrative value

o match photoe v aporation models (e.g. Wang & Goodman 2017 ;
icogna et al. 2019 ) since the qualitative results were found not to
ary with elevation. 

Fig. 3 shows the M b of a subset of our simulations as a function of
adius at a range of times. We focus on the three cases of b examined
n Clarke & Alexander ( 2016 ): 0.75,1.00,1.50 which are shown from
eft to right. For b = 1.5, we also show in the right-most panel a
odel that is not launched perpendicularly; we choose an illustrative 

alue of χb = 0.25 π , motivated by the approximate extreme value
hown by the innermost streamlines in the simulations of Picogna 
t al. ( 2019 ) and Wang & Goodman ( 2017 ). 

It is apparent that for all density profiles, the winds converge to
 constant M b value (represented by the dark grey band) from the
nside out on a time-scale approximately proportional to r . Moving to
n ele v ated base has not degraded the result that the hydrodynamic
imulations converge to a value of M b that matches the M b , max 

redicted from self-similar models (which is typically much lower 
han that of the winds launched from the midplane: light grey dashed
and). Any small differences can be attributed to the fact that the
imulation outputs plotted are derived at the centre of the grid cell
losest to the base, when the base itself is at the imposed angle, which
e confirmed by increasing the resolution and seeing that the M b 

ndeed converges more closely towards the predicted value. 
Moreo v er, this agreement holds for the non-perpendicularly 

aunched wind in the right-most panel of Fig. 3 . Note that for a direct
omparison (and as would be rele v ant to interpreting mass-loss rates),
e plot only the component of velocity perpendicular to the plane.
herefore, though the Mach number is increased mildly abo v e the
 b , max for the perpendicular case, the enhancement is smaller than 

ould be immediately inferred from Fig. 1 , which shows the total
elocity. We confirmed that the agreement shown here between the 
redicted M b , max and the M b found in the hydrodynamic simulations 
eld for a range of χb , both for winds launched from the midplane
nd the ele v ated base. 

In Fig. 4 , we show a comparison of the streamlines integrated from
he hydrodynamic simulations shown in Fig. 3 to those obtained in
ection 3 (scaled by the base radius), for the appropriate M b, max .
he agreement is excellent for all streamlines showing that the self-
MNRAS 506, 1–20 (2021) 
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Figure 3. Comparison of the launch Mach numbers M b for scale-free wind models in our generalized geometry. From left to right: winds launched 
perpendicularly from ele v ated bases ( φb = 36 ◦) with density power-law slopes b = 0.75, 1.00, 1.50, and a wind with b = 1.5 launched at χb = 0.25 π from a 
base ele v ated by φb = 36 ◦. The coloured dashed lines indicate output hydrodynamic simulations at various times. The darker grey band represents the predicted 
M b , max from the self-similar models and the grey label shows its value. To emphasize the reduction that the elevation of the base causes, we also illustrate the 
M b , max for winds of the same b launched perpendicularly from the midplane as the lighter grey, dashed, band. 

Figure 4. Comparison of the streamline morphology for wind models in our generalized geometry demonstrating complete agreement of scale-free hydrodynamic 
simulations with self-similar solutions. From left to right: winds launched perpendicularly from ele v ated bases ( φb = 36 ◦) with density power-law slopes b = 

0.75, 1.00, 1.50, and a wind with b = 1.5 launched at χb = 0.25 π from a base ele v ated by φb = 36 ◦. The solid green lines are the streamlines retrieved from 

the final outputs of the hydrodynamic models, whereas the black dashed lines are those found by numerical integration of equations (13)–(17) for τ = 0, C = 1. 
The gold dash–dotted line shows the sonic surface. The background is coloured according to the velocity in the φ direction. 
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imilarity is adopted throughout the domain. Moreo v er, the sonic
urface is a surface of constant φ. It is clear from these models that
s described in the previous section, the higher the value of b , the
ore rapidly the streamlines curve over. 
The conclusions of Clarke & Alexander ( 2016 ) for scale-free

inds thus also apply to ele v ated bases and non-perpendicular
aunches: self-similar solutions with M b , max are generally applicable
or any scale-free isothermal wind, regardless of base geometry. 

.3 Radial temperature profiles 

aving derived and computed self-similar solutions in Section 3.2
or temperature profiles that are power laws in either spherical radius
equation 21) or cylindrical radius (equation 22), we also benchmark
he behaviour of equi v alent hydrodynamic simulations. 

In Fig. 5 , we observe that the Mach number – measured with
espect to the local sound speed – achieved in the simulations (as
epresented by the blue dashed line) is indeed nearly constant in
adius – for both the spherical and cylindrical power laws and for
oth values of τ – as we have argued is appropriate in the self-
imilar case. In the outer disc at ˜ r � 1, the Mach number appears to
orrespond well with the values predicted from self-similar models
s listed in Table 1 . M b does ho we ver, seem to increase as we mo v e
NRAS 506, 1–20 (2021) 
owards the inner disc. This is an artefact of the boundary conditions,
ince these are designed to impose constant velocity components
cross the radial boundaries of the simulation grid. Therefore, we
eran the models with τ = 0.25 8 with a boundary condition designed
o impose constant Mach numbers across the radial boundaries. The
esults are presented as the orange lines in Fig. 5 and indeed eliminate
he deviation from constant M b in the inner disc. 

We see that the coloured lines from the hydrodynamic simulations
re very close to the predictions of the corresponding non-isothermal
nalytic solutions (dark grey lines), which involve slightly smaller
aunch velocities than in the isothermal case (pale grey lines). To
uantify the agreement further, we measure the mass-weighted
verage M b from each simulation and report the values for both
ets of boundary conditions in Table 1 ; we also include values for
inds with φb = 0. The Mach numbers are generally within 0.01–
.02 of the predicted values, and thus, as expected, typically decrease
y of the order of 10 per cent from the isothermal values; any small
iscrepancies are due to boundary effects. 
We also check the morphology of the streamlines for our non-

sothermal models, by plotting the τ = 0.25 simulations with the

art/stab1693_f3.eps
art/stab1693_f4.eps
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Figure 5. Comparison of the launch Mach numbers M b (measured with respect to the local sound speed) for non-isothermal winds with density power-law 

index b = 1.5 and temperature power-law index τ = 0.25 (first and second panels, spherical and cylindrical, respectively) and τ = 0.5 (third and fourth panels, 
spherical and c ylindrical, respectiv ely) for discs with wind bases ele v ated by φb = 36 ◦. The blue lines show simulations with constant velocity imposed at the 
radial boundaries; the orange lines use a constant Mach number. The darker grey band represents the predicted M b , max from the self-similar models and the 
grey label shows its value, while the lighter grey, dashed, band shows the M b , max for isothermal winds with otherwise equivalent parameters. 
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onstant Mach number boundaries and the τ = 0.5 simulations in 
ig. 6 . This shows that for both power laws and gradients we also
av e e xcellent agreement between the hydrodynamic simulations 
nd our model predictions. 

 D O M A I N  FILLING  

aving demonstrated that no matter the location of the wind base, 
ngle of launch, or temperature structure, the hydrodynamic solution 
atches the self-similar solution with M b = M b , max , we now 

onsider why this must be the case. As we shall demonstrate, this
olution corresponds to the one for which the streamlines asymptote 
o the maximum possible angle, π /2, with the midplane; consequently 
or M b < M b , max , the winds cannot fill the computational domain. 

As ˜ r → ∞ , the angle with the midplane, φ, which is bound to lie
etween 0 and π /2, cannot change indefinitely. Hence, at large radii, 
e expect the streamlines to become asymptotically straight lines of 

onstant φ = φ∞ 

. Since the streamlines become straight, then note 
hat in this regime the radius of curvature | ˜ R eff | → ∞ . 

Since the domain of the problem – and hence both our FARGO3D 

imulations and those carried out by Clarke & Alexander ( 2016 ) –
xtends all of the way to the z -axis at φ = π /2, this means that were all
he streamlines to asymptote to φ∞ 

< π /2, the wind could not fill the
omain. The regions at φ > φ∞ 

would thus end up empty and provide
o resistance to being filled by the wind. In the limit that | ̃  R eff | → ∞
s φ → φ∞ 

, the pressure gradient perpendicular to the streamlines 
right-hand side of equation A5) should be 0 in the self-similar model.
o we v er, the empty re gion thus creates a discontinuity in the density;

n other words this creates strong perpendicular pressure (density) 
radients at φ∞ 

that would curve the streamlines upwards into the 
mpty region. We thus expect φ∞ 

< π /2 to be unstable. We provide
n illustrative example for a model of a self-similar wind launched 
rom the midplane with M b = 0 . 4 < M b , max in Fig. 7 , for which
he wind only fills φ � 36 ◦. We note that instead if the wind extends
p to φ = π /2, there must by default be no pressure gradient in
he angular direction due to the symmetry about the z -axis, which
s consistent with the self-similar picture. Thus, we conclude that 
elf-similar streamlines with φ∞ 

< π /2 would not be self-consistent. 
Therefore, we wish to know what φ∞ 

any particular streamline 
ith M b ≤ M b , max tends to as ˜ r → ∞ . Ho we ver, since the integra-

ion we performed was o v er a finite range (up to ˜ y = 1000), we need
 way to extrapolate these streamlines to infinity from the largest ˜ r 
nd φ achieved. 
.1 Limiting behaviour of streamline morphology 

e conduct this analysis for the simpler case of an isothermal wind,
nd start by considering the limiting behaviour of the streamline 
orphology. Since χ measures the angle between the streamline 

angent at a given point and the radial direction, if χ �= 0 then φ is
hanging; the relation between the two is 

 ̃ r tan ( χ ) = ˜ r d φ. (23) 

ence for asymptotically straight streamlines, we must have 
in ( χ ) ≈ tan ( χ ) = 

d φ
d ln ̃ r → 0 as ˜ r → ∞ . 

As described abo v e, in the radial limit, the pressure gradient
erpendicular to the streamlines must also be 0. From equation (A5),
his is the condition that 

b 

˜ r sin ( χ ) 
− M 

2 
b ̃  u 

d ̃  u 

d ̃ z 
cot ( χ ) sin ( θ ) = 0 . (24) 

ince as χ → 0 we may assume that cos ( χ ) ≈ 1 then d ̃ z =
 ̃ s sin ( θ ) ≈ d r sin ( θ ), and this rearranges to give 

d ̃  u 

2 

d ln ( ̃ r ) 
= 2 

b 

M 

2 
b 

, (25) 

hich integrates to give the asymptotic form of the velocity 

˜  2 ∼ 2 b 

M 

2 
b 

ln ( ̃ r ) . (26) 

In the isothermal case, when equation (4) integrates to give to
he constancy of the Bernoulli function, Clarke & Alexander ( 2016 )
howed that the density could be expressed as 

˜ = exp 

(
−M 

2 
b 

2 
( ̃  u 

2 − 1) 

)
. (27) 

ubstituting equation (26) in equation (27), the asymptotic behaviour 
f the density becomes ρ ∝ r −b , in agreement with our statement in
ection 2 about the variation at fixed φ: 

˜ ∼ exp 

(M 

2 
b 

2 

)
˜ r −b . (28) 

sing equation (5) (in its self-similar form), we then proceed to write
he angular terms as 

sin ( χ ) cos ( φ) ∼ sin ( χb ) cos ( φb ) 
1 √ 

2 b 
M b exp 

(
−M 

2 
b 

2 

)
˜ r b−2 

√ 

ln ( ̃ r ) 
. 

(29) 

ote that since cos ( φ) is bounded, to achieve sin ( χ ) → 0, it is
ecessary to have b < 2 such that the right-hand side is a decreasing
MNRAS 506, 1–20 (2021) 
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Figure 6. As with the b = 1.5 case in Fig. 4 but for the models in Fig. 5 which include additional temperature gradients. The black dashed lines are the analytical 
streamlines for the corresponding Mach numbers reported in Table 1 . 

Figure 7. The density contours inferred from a self-similar wind model 
which launches more slowly than the maximum Mach number, with various 
streamlines o v erplotted as the black dashed lines. The streamlines asymptote 
to an angle ≈36 ◦ with the midplane, leading to a sharp discontinuity in the 
density at this angle. 
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of M b ≤ M b , max . The right-hand axis (dotted lines, crosses) plots the angle 
φf → 0 at which self-similar solutions with M b > M b , max encounter a sin- 
gularity. The black dashed line represents a limiting expression (equation 32) 
which approximates φ∞ 

for winds with low M b (and thus works particularly 
well for φb = 36 ◦). 
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unction of ˜ r at large radii. 9 This demonstrates why we cannot have
 self-similar solution for b ≥ 2: for such values, the streamlines
annot tend to be straight but must increase in curvature, 10 which
einforces the physical argument made in Section 3 that they have to
iverge in order to conserve mass. 
Approximating tan ( χ ) ≈ sin ( χ ), we now combine equations (23)

nd (29) and integrate (by substitution t = 

√ 

(2 − b) ln ( ̃ r ) ) using the
oundary condition φ → φ∞ 

as ˜ r → ∞ . This gives us the polar
quation of our streamlines at large radius: 

sin ( φ) ∼ sin ( φ∞ 

) − A sin ( χb ) cos ( φb ) erfc 
(√ 

(2 − b) ln ( ̃ r ) 
)

, (30) 

 ( b, M b ) = 

√ 

π

2 b(2 − b) 
M b exp 

(
−M 

2 
b 

2 

)
. (31) 
 Note, ho we ver, that this is not a sufficient condition for sin ( χ ) → 0 yet since 
f φ → π /2, then cos ( φ) → 0 also. 
0 Strictly speaking, for b = 2 here we do have a decreasing function of ˜ r , 
ut the small correction to the velocity gradients due to curvature forces 
estabilizes this case too. 

i  

d  

T  

w  

fi  

t  

a  

NRAS 506, 1–20 (2021) 
.2 Morphology of slow winds 

ow, as desired, for any streamline calculated for a gi ven v alue
f M b ≤ M b , max , we use equation (30) to estimate sin ( φ∞ 

) from
he maximum ˜ r and φ reached in our integration. The results are
resented in Fig. 8 for isothermal cases with b = 1.5, χb = π /2 and
b = 0, 36 ◦ in blue and orange, respectively. sin ( φ∞ 

) plotted on the
eft-hand axis using triangle markers and solid lines. 

We see clearly that for both values of φb , as M b is reduced from
ts maximal permitted value, the φ∞ 

reached by the streamlines
ecreases from π /2, with φ∞ 

= π /2 if and only if M b = M b , max .
hat is to say that the slower the wind the lower (in φ) the surface to
hich it asymptotes. Physically this happens since when the domain
lled by the wind is restricted, the winds must curve more strongly as

he y hav e less room in which to become radial, just as in the case of
n ele v ated base. Therefore, the reason that M b , max is the preferred
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aunch Mach numbers is because it is the only solution which fills
he full domain. 

Fig. 8 also includes black dashed lines representing a limiting 
xpression found by e v aluating equation (30) at the base ˜ r = 1, φ =
b and assuming χb = π /2, for each φb being considered: 

sin ( φ∞ 

) = sin ( φb ) + cos ( φb ) 
√ 

π

2 b(2 − b) 
M b exp 

(
−M 

2 
b 

2 

)
(32) 

his is useful as it provides a good estimate of the relationship
etween M b and φ∞ 

in the case that the domain filled by the wind
s restricted, either because of an ele v ated base φb = 36 or a slow
aunch. This comes about because these initially more highly curved 
olutions become radial more quickly, while still near the base. 

.3 Relationship with invalid solutions 

e can also use this framework – considering the rate of change of φ,
xpressed in terms of sin ( χ ) ≈ tan ( χ ) – to understand why the Mach
umber abo v e which there are no valid solutions coincides with that
or which the solutions fill the domain. At a given (large) radius and

, sin ( χ ) ∝ M b exp 
(
−M 

2 
b 

2 

)
, which is an increasing function of

 b in the subsonic regime. Thus for lower Mach numbers than the
omain filling solution, the rate of change of φ would be too small to
each φ = π /2. Conversely for any faster launch the solution would 
ry to curve up too steeply to reach impossibly large sin ( φ) > 1. 

Practically, these solutions must therefore break down; instead 
hey encounter the critical point where f 1 + f 2 = 0 and the velocity
radient diverges (Clarke & Alexander 2016 ). The connection 
etween f → 0 and high sin ( χ ) can be made explicit by considering
n equi v alent criterion expressed in terms of the ratio of the two
erms: 

 = 

| f 1 | 
f 2 

= 

(
M 

2 
b ̃  u 

2 − 1 
)

tan 2 ( χ ) , (33) 

uch that F → 1 represents the singularity. Note that since ˜ u will
e monotonically increasing (though potentially very mildly) then 
or F to remain less than 1, tan ( χ ) = 

d φ
d ln ̃ r must be monotonically

ecreasing towards 0 – again we see the validity of the solution is
etermined by the streamlines becoming asymptotically radial. 
For comparison therefore, we also plot the value of φ where these 

olutions with M b > M b , max reach the singularity on the right-hand 
xis of Fig. 8 using crosses and dotted lines. We see that indeed the
aster the wind is launched, the larger sin ( χ ) becomes and so the
ooner the singularity is encountered (Clarke & Alexander 2016 ). 

.4 Hydrodynamic simulations on a restricted domain 

lthough with the simulations presented so far, the winds must 
dopt φ∞ 

= π /2, we can imagine a scenario, such as some separate
agnetic or stellar outflow from smaller radii, that acts to provide 

he geometrical constraint on the region occupied by disc winds. For
xample, Hollenbach et al. ( 1994 ) and Richling & Yorke ( 1997 )
onsider the effects of a strong stellar wind (as appropriate for
/B type stars) on the EUV irradiation – and consequent ionization 
alance and wind base density profile. In this scenario, pressure 
quilibrium is established between the ram pressure of the stellar 
ind, and the pressure of the disc atmosphere/wind (e.g. at a ‘laminar

lip’ boundary; Hollenbach et al. 1994 ). 
To simulate such a scenario here, we simply mo v e our reflecting

oundary in our FARGO simulations from the z -axis to some lower φ
alues φmax = 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1 π , noting that
his approach neglects any shear effects between the constraining 
egion and the thermal wind; while this may not be entirely realistic,
e use this to illustrate the validity of our interpretation of the

low winds using the most appropriate boundary conditions for the 
olutions. We assume winds launched from the midplane i.e. φb 

 0. Otherwise this set of simulations are the same as those in
ection 4. The values of M b that resulted (calculated as a mass
eighted average across the base) are shown as the green dots in
ig. 8 . These agree well for large enough φmax , and apparently down

o sin ( φmax ) = 0.4–0.5. Ho we ver, more detailed inspection of the
imulations shows that for φmax < 0.25 π the results progressively 
eviate from steady, self-similar, solutions, but display oscillations 
t small radii. We were unable to bring these into agreement with the
xpected self-similar solutions by increasing the resolution in either 
patial direction or in time. Nor does there appear to be some critical
ngle or M b , consistent across choices of b and φb , below which this
ehaviour manifests. Since it is not clear that such strongly restricted
cenarios are realistic, we don’t consider or try to explain them any
urther. 

We have thus shown that the solution with M b , max is a robust
rediction for self-similar thermal winds, since it is the unique valid
olution that fills the spatial domain (Fig. 8 ). It is only if the domain
s reduced by somehow constricting the wind that self-similar winds 
re expected to launch more slowly than M b , max . 

 H Y D RO DY NA M I C  SI MULATI ONS  WI TH  

R AV I T Y  A N D  C E N T R I F U G A L  F O R C E  

eyond the agreement of the scale-free simulations with the self- 
imilar model with maximal M b , which we have shown to apply
o more general scale-free winds, Clarke & Alexander ( 2016 ) also
emonstrated that this model provided a good prediction for the outer
egions of discs even once gravity/centrifugal forces were included. 

e thus repeat the e x ercises from Section 4 with gravitational
otential included. Although we still assume axisymmetry and do 
ot model the azimuthal direction, in order to provide the centrifugal
orce we set a non-zero azimuthal velocity at the base equal to the
 eplerian v alue at that cylindrical radius inherited from the disc
aterial 

 azimuthal = R 

−1 / 2 . (34) 

ote that this is applied regardless of the ele v ation of the wind base
ince the corrections (Nelson, Gressel & Umurhan 2013 ) due to
le v ation abo v e the midplane, which depend on the disc’s density
nd temperature structure, are small. Note further that we use units
here GM ∗ = 1 and c S = 1, such that the radius is now expressed in
nits of r G . In addition, we found that we now needed to use twice
he resolution as in the previous section in order to a v oid spurious
eaks in M b at small radii. 

.1 Elevated bases 

igs 9 and 10 show the launch Mach numbers and streamlines,
especti vely, for ele v ated wind bases with φb = 36 ◦. In all cases

b = π /2. The outputs of the simulations are av eraged o v er a range
f times in order to average out small fluctuations. 
Fig. 9 illustrates that as found by Clarke & Alexander ( 2016 )

he launch Mach numbers are roughly constant in the outer disc
here r > r G (i.e. r > 1 on the plots) with values that are well-
redicted by M b , max . Clarke & Alexander ( 2016 ) argued that the
urvature dominates o v er gravity/centrifugal forces when ( r / r G ) ×
 / r eff � 1; consequently, we see the closest agreement in the b = 1.5
ases where the wind is most strongly curved at the base. Moreover,
MNRAS 506, 1–20 (2021) 
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Figure 9. Comparison of the launch Mach numbers M b as a function of radius (in units of the gravitational radius) for winds (with gravity/centrifugal forces 
included) launched perpendicularly from a base ele v ated by φb = 36 ◦ with density power-law slopes b = 0.75, 1.00, 1.50 from left to right. The blue dashed 
lines indicate the output from hydrodynamic simulations averaged over a range of times to smooth the effect of oscillations since the solutions are not perfectly 
steady, especially at small radii. The grey bands are as in Fig. 3 . Note the switch to a linear x -axis scale as per Clarke & Alexander ( 2016 ) since the solution is 
no longer scale-free, allowing us to highlight the region over which the self-similar solution is a good approximation. 

Figure 10. As with Fig. 4 but for the wind models in Fig. 9 with gravity/centrifugal forces included. The hydrodynamic simulation outputs have been averaged 
o v er the same range of times as Fig. 9 . The self-similar solutions are still very decent representations of the streamline morphology. 
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aterial continues to be launched somewhat inside the gravitational
adius, albeit more slowly (Font et al. 2004 ; Clarke & Alexander
016 ). 
The self-similar streamlines continue to provide a good model for

he morphology of the streamlines in Fig. 10 , especially in regions
f high curvature. Equation (34) strictly balances centrifugal force
ith gravity at the midplane. As z is increased at the ele v ated wind
ase, gra vity weakens b ut the centrifugal force is not affected. Thus,
entrifugal force dominates o v er gravity at our wind base, resulting
n a net outward force. For the low b winds, the streamline curvature
s small so this net force has a more significant effect and pushes
he streamlines to a larger R ( z). In the b = 1.5 case this effect is
ubdominant to the existing curvature. Instead in this case, since there
s no flow from small r b , the region near the z -axis is poorly supplied
ith material. Thus, there are much stronger density gradients in

he φ direction, which cause the streamlines to curl upwards more
trongly to fill the spatial domain. 
a  

NRAS 506, 1–20 (2021) 
In the simulations described abo v e, we use boundary conditions
esigned to impose u r = 0 such that the winds should launch
erpendicularly. Ho we v er, just abo v e the base, the flow develops
on-zero u r due to the streamline curvature. As M b → 0 for r �
 G , then at small radii, the angle the wind makes with the base χb 

 0 also. By r ≈ 0.2 r G , the launch velocity drops sufficiently that
when measured just abo v e the wind base) χb ≈ π /4 which we deem
ufficient to explain the non-perpendicular streamlines in the inner
isc in the simulations of e.g. Picogna et al. ( 2019 ). For this reason,
e do not further impose a non-perpendicular launch. 

.2 Radial temperature profiles 

e now present our most complete models by reintroducing non-
sothermal effects. Since material is not launched from the inner grid
adius anyway, it should not matter which boundaries conditions are
pplied, so for consistency we use a constant velocity across the

art/stab1693_f9.eps
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Figure 11. As with Fig. 5 but including gravity/centrifugal forces (hence r is in units of the gravitational radius). The blue dashed lines indicate the output from 

hydrodynamic simulations averaged over a range of times. The grey bands are as in Fig. 5 . 

Figure 12. As in the b = 1.5 panel of Fig. 4 , a wind launched from φb = 36 ◦ but including gravity, centrifugal force and temperature gradients of varying 
steepness and direction. Once again, the self-similar solutions are still very decent representations of the streamline morphology. 
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oundaries, rather than constant Mach number. We plot the Mach 
umber at the base as a function of radius in Fig. 11 . 
The resulting M b profiles are consistent with the results found 

n previous sections. The effect of gravity is still to stifle mass-loss
t small radii. Ho we ver, when compared to the isothermal case, the
ind is a little more readily launched from smaller radii the larger

he temperature gradient. This is because although the gravitational 
adius has been fixed, the ratio of thermal energy to gravitational 
nergy declines more slowly (as r 1 −τ

b ) with decreasing radius due 
o the higher temperatures at smaller radii so there is more thermal
nergy to drive the wind. Moreo v er, the reduced launched velocities
ean that the radius of curvature is smaller, further pushing us into

he regime where ( r / r G ) × r / r eff � 1 (Clarke & Alexander 2016 ).
onsequently, the profiles of M b are very flat, and in good agreement
ith the predicted values for non-isothermal winds (Table 1 ). 
Thus, while the temperature gradients do lower the launch ve- 

ocities, the y also hav e the effect of mitigating against gravity and
entrifugal force, thus reducing the deviations from self-similarity. 
his can also be seen in the streamlines, which we plot in Fig. 12 .

n particular, comparing the two left-most panels ( τ = 0.25) and the
wo right-most panels ( τ = 0.5) the steeper temperature gradients, 
ave closer agreement between the streamlines in the hydrodynamic 
imulations and the self-similar models. In this case, even the 
eviations at large radii are less apparent, because the additional 
hermal energy assisting the launch at small radii means that the 
egion near the z -axis is no longer slightly inflowing and hence not
o depleted of material. Again, whether the temperature depends 
M  
n the spherical radius (first and third panels) or cylindrical radius
second and fourth panels) has no bearings on the results. 

Therefore, we conclude that the effects of gravity/centrifugal 
orces do not strongly modify the launch velocities or streamlines 
t suitably large radii compared to r G for ele v ated wind bases. This
ehaviour is only reinforced by the presence of radial temperature 
radients. At small radii, � r G , it can become harder to drive an
utflow and the launch velocities are lowered; correspondingly the 
inds no longer launch quite perpendicularly (note that this effect is
ppositely directed to the scale-free case where non-perpendicular 
aunches act to raise the Mach number at the base). This does
ot impact on the validity of the self-similar solution near the
ase at radii beyond the gravitational radius, but weakened flow 

rom small radii can result in a stronger upward curvature at large
adii in the case of weak temperature gradients. Thus as found by
larke & Alexander ( 2016 ), the self-similar solutions have general
pplicability to describe the launch velocity and streamline structure 
f thermal winds when gravitational and centrifugal forces are 
ncluded and this agreement is only strengthened by introducing 
 moderate temperature gradient (see third and fourth panels of 
ig. 12 ). 

 D O U B L E  POWER  L AW S  

ur final consideration is that a power law of infinite extent will
ever completely describe the density in the upper layers of discs.
ost simply, at some point, there must be a cut-off at the edge of the
MNRAS 506, 1–20 (2021) 
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Figure 13. As with Fig. 3 but for a double power-law density profile with 
b 1 = 1.5, b 2 = 1.75 in both the steepening and flattening cases. The two 
dark grey bands now represent the expected value of the Mach number for a 
self-similar wind with b = 1.5 or b = 1.75. In addition, the green dotted line 
shows the Mach number that would be expected for the local value of the 
density gradient b eff = 

∂ ln ( ρb ) 
∂ ln ( r b ) 
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isc. Moreo v er, the density structure at the wind base is dependent on
he mechanics of the heating; for example Hollenbach et al. ( 1994 )
rgued that the power-law slope transitions from 1.5 at r < r G to 2.5
or r > r G as the origin of the dominant diffuse ionizing photon flux
ransitions from material directly abo v e the wind base to material at
 G . 11 Regardless of the reason for the transition, if a disc is described
y dif ferent po wer laws at small/large radii, we expect the appearance
f the transition radius r t to break self-similarity, and this may affect
he applicability of the self-similar solutions. 

To see how these deviations from self-similarity manifest, we
onsider double power laws both of the form used by Font et al.
 2004 ), and an inverse equi v alent: 

∝ 

(
2 

r/r t 
5 b 1 + r/r t 

5 b 2 

)1 / 5 

, (35) 

∝ 

(
r/r t 

−5 b 1 + r/r t 
−5 b 2 

2 

)1 / 5 

. (36) 

or clarity, we will al w ays choose b 2 > b 1 ; then the former of these
rofiles is used for a profile that transitions to a steeper power law at
arge radii, whereas the latter transitions to a shallower power law. 

We consider the following three combinations of b in and b out :
.50/1.75, 1.75/1.50, 1.50/2.50. In the first two cases (power-law
ransitions to b < 2), we expect that on their own, both the inner and
uter regions of the disc could launch a self-similar wind. In the latter
ase (power-law transitions to b > 2), we would not expect a self-
imilar solution to exist for the outer disc. That said, a single power
aw with b = 2.5 may still permit a non-self-similar wind solution
Font et al. 2004 ); in particular the requirement for such a case to be
iverging faster than spherical may be circumvented by suppressing
he contribution from streamlines with small r b ; contributions to this
n Font et al. ( 2004 ) include gravity impeding the launch for r b < r G ,
nd their use of a reflecting inner boundary condition which prevents
aterial launched from r b < r in entering the simulation domain. 
In each case, we will assume r t = 1: first without gravity (in which

ase there is no physical significance to this value), and with gravity
or the case with b 2 = 2.5 (in which case we use units of r G such
hat r t = r G ). We thus use a grid that now extends from r = 0.01 to
 = 100, in order to have an equal two decades in radius either side
f the transition. Moreo v er, two decades are enough to ensure that
he slope of the density profile at the edges of the grid should differ
rom the rele v ant limiting v alue by less than 1 per cent of difference
n the b values in all cases. 

.1 Power-law transitions to b < 2 

irst, we consider cases where in either extreme, the density profile
ould permit a self-similar wind model, i.e. b 1 , b 2 < 2. We consider

wo cases, one that scales like r −1.5 in the inner disc and r −1.75 in the
uter disc (steepening case), and one where these values are reversed
flattening case). The Mach numbers at the base are shown in Fig. 13
or the ele v ated base with φb = 36 ◦. 

In both the steepening and flattening cases, Fig. 13 shows that for
adii r � 1 the launch Mach numbers (blue lines) are those that we
ould expect given the density gradient at these radii. Beyond r =
, the velocities smoothly transition towards the value appropriate
or the outer disc and appear to be asymptoting to that value at r �
0. Therefore, regardless of whether the inner or the outer disc is
1 Ho we ver, in hydrodynamical simulations that do not impose a base profile, 
uch a transition to a steep b > 2 power law does not apparently occur at r = 

 G (Yorke & Kaisig 1995 ; Wang & Goodman 2017 ). 

p  

o  

r  

T  

i  
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he steeper, there is an asymmetric behaviour about the transition
oint between the two regimes of the density profile, with the launch
 elocity relativ ely unaffected within the inner disc, but the outer disc
eeling the effects o v er 1 to 2 orders of magnitude. 

In previous sections, we have shown that the launch velocity is
ainly set by the value of b and the ele v ation of the wind base. Thus,
e also show the Mach number that would be expected for the local
alue of the density gradient b eff = 

∂ ln ( ρb ) 
∂ ln ( r b ) 

as the green dotted line.
his shows a very similar shape to the Mach numbers that result

n the hydrodynamic simulation, but simulation profile is shifted to
igher radii by a factor of roughly 3–4. Since this wind flows from
maller to larger radii, this is consistent with a picture of outwardly
irected causality, where the outer disc retains some memory of the
aunch velocity appropriate to the inner disc over a significant radial
ange. 

Thus, a steep density gradient at small radii, which launches a wind
ore slowly, can suppress launch velocities at intermediate radii. We

ote the similarities between this scenario, where the inner wind is
ore curved and is ef fecti vely acting to constrain the streamlines

n the outer disc somewhat, with the restriction of the domain we
erformed in Section 5. Ho we ver, in each extreme, particularly in
he inner disc, the self-similar model is still applicable. 

.2 Power-law transitions to b > 2 

ow, we consider a base density profile described by equation (35)
ith b 1 = 1.5 and b 2 = 2.5, i.e. the same case studied by Font et al.

 2004 ) following Hollenbach et al. ( 1994 ). This scenario has a density
radient in the inner disc which would be suitable for being described
y a self-similar model. In the outer disc, the density gradient is too
teep for our self-similar models, but as discussed abo v e, may still
ermit a wind to be launched; Font et al. ( 2004 ) find there is some
ontribution to the wind from this region, though most of the mass
s lost from inside the transition. We consider both the case without
ravity and a case where the transition radius r t corresponds to r G .
ote that the former case may be seen as equi v alent to the extreme

imit of r t � r G . 
We investigate this scenario using two sets of boundary conditions.

irst, we allow for a free perpendicular inflow or outflow at the launch
lane. The Mach numbers at the base are shown in the left most panel
f Fig. 14 for the case with no gravity. We see that at small radii r <
 G , the flow adopts the expected value from the self-similar solution.
his is in line with the two-regime winds studied above where the

nner disc is not strongly affected by the outer disc. The transition
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Figure 14. Comparison of the launch Mach numbers M b for a double power-law density profile with b 1 = 1.5, b 2 = 2.5 launched from φb = 36 ◦. The odd 
panels have a free outflo w/inflo w at the launch plane while the even panels have a reflecting boundary to pre vent inflo w for r > 1.9 r G . The darker grey band 
represents the predicted M b , max from the self-similar models with b = 1.5 and the grey label shows its value. 
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rom b = 1.5 to b = 2.5 is centred on r = 1 (at which location
 eff ≡ − ∂ ln ρb 

∂ ln r b 
= 2); in the vicinity of this point, the flow feels the

ffect of the more strongly declining density and begins to deviate 
rom self-similarity before dropping off rapidly. Thus, at radii r �
.9, the velocities change sign and for there is a flow back into
he launch plane. While this flow is subsonic, its velocities are not
nsignificant and are of the order of the sound speed. 

Since we do not model the underlying disc, it is unclear how much
esistance this might provide to such a back flow. We therefore also
onsider the extreme opposite situation (such that our two boundary 
onditions ought to bracket the ‘true’ behaviour), where for r > 

.9, 12 the launch plane becomes reflecting to prevent this flow back 
nto the disc. The resulting Mach numbers for this ‘semi-reflecting’ 
etup are shown in the second panel of Fig. 14 ; the inner disc is
naffected by this change in boundary conditions while in the outer 
isc the flow instead becomes radial along the disc surface. We note
hat the small velocities in the outer region are not perfectly steady
ut the oscillations are very small and average out smoothly. We also
ttempted to set the boundaries self-consistently using a diode based 
n the sign of the velocities but found this was unstable and showed
arge deviations from the steady state. 

Having established that a wind is only possible within r � r t , we
eran the models with both boundary conditions including gravity 
nd centrifugal force – the Mach numbers are shown in the third
nd fourth panels of Fig. 14 , respectively. We again set r t = r G =
 in line with Hollenbach et al. ( 1994 ). In the inner disc, the Mach
umbers greatly resemble the trends observed in the case of a single
 = 1.5 power law when gravity is included (right-hand panel, Fig. 9 ,
n that there is no outflow inside of r ≈ 0.1, and the velocities rise
n the range 0.1–1.0, beginning to flatten off as r → 1 though not
uite yet reaching the self-similar value of 0.327. Beyond r ≈ 2, the
ehaviour appears identical to the left-hand panels of Fig. 14 and we
nd either a strong and smooth flow back into the disc, or no flow
epending on our boundaries. Thus, we find that where b > 2, winds
nly originate from a very limited range of radii in the vicinity of r t ,
nd centrifugal forces do not assist the launch of such a wind. This
s in agreement with the results of Font et al. ( 2004 ) who found that

ost of the mass-loss in such a scenario comes from 0.1 < r / r G < 2.
The large-scale morphology of these winds would be expected to 

e very different from the self-similar models since either a radial 
ow or a flow back into the disc occurs at large radii. This means a
2 We tested other locations in the range 1 ≤ r ≤ 2 for the change in boundary 
onditions and found that r = 1.9 reduced any overshooting of the velocities 
ear the change. 

w  

b  

o
p
Y  
ack of supply of material to support the streamlines which instead
url back towards the base. To emphasize this behaviour, Fig. 15
hows the streamlines in polar coordinates i.e. φ as a function of r . 

For the models without gravity, the innermost parts of the stream-
ines near their bases agree well with the self-similar models and
he morphology is independent of the boundary condition choice at 
arger radii. Somewhere near r = 1, they begin to flatten off and the
le v ation peaks in the range 1 � r � 3. Beyond this point there are
w o possible f ates. In the case of free outflo w, the ele v ation decays

most rapidly for the lower streamlines and more slowly for the
igher streamlines, until they reintercept the launch plane. When 
he boundaries are reflecting, the streamlines cannot cross it, and 
he material following them remains in the grid. This provides an
pwards pressure gradient, self-consistently reducing the downward 
elocities of the wind, resulting in the ele v ation of each streamline
e velling of f again such that they become radial as expected. A whole
ange of asymptotic ele v ations are possible, so there is no particular
pening angle of the wind and not all material returns near to the
ase. This means that there are no particularly e v acuated regions of
ensity, moreo v er at any radius, we found the density contours to be
oughly spherical in agreement with Font et al. ( 2004 ). In both cases,
he streamlines are concave upwards. Despite these differences close 
o the midplane, the qualitative picture of declining φ holds for both
ets of the boundaries, thus we expect to see streamlines curling back
owards the disc regardless of where the correct boundary conditions 
ie relative to the two extremes shown here and hence we are confident
hat the ‘true’ behaviour is reasonably well captured by these models.

The polar streamline plots in the presence of gravity (two right-
and panels of Fig. 15 ) illustrate that as seen in the launch velocities,
he large scale morphology at r > r G is little affected by gravity. The
treamlines do reach slightly higher ele v ations – analogously to the
pward curling seen at large radii in the b = 1.5 models with gravity.
ithin the transition radius, the streamlines follow the self-similar 

olution for launch radii � 0.3 r G . 
In the particular example given, where r t = r G , this implies that the

elf-similar solution is only approximately valid o v er a factor 3–10
n radius around r t = r G , with deviations at small radii caused by the
ole of gravity and at large radii by the transition to a steeper density
rofile. More generally, the self-similar solutions can describe the 
egion r G � r � r t ; we emphasize that although (Hollenbach
t al. 1994 ) argued that r t = r G for EUV-driven photoevaporative
inds, the location of any turnover in the density profile may
e sensitive to details of the radiation transfer such as the roles
f direct/diffuse radiation field (dependent on shielding/scattering 
rocesses). Radiation hydrodynamic simulations (e.g. Richling & 

orke 1997 ; Wang & Goodman 2017 ) suggest that r t > r G and hence a
MNRAS 506, 1–20 (2021) 
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Figure 15. The ele v ation φ (degrees) of the streamlines as a function of radius for the ‘single-regime’ models shown in Fig. 14 . The streamlines are shown for 
r b = 0.1–1.6 in steps of 0.3. It is apparent that due to the steep density drop-off, larger deviations between the self-similar solutions and the FARGO3D results are 
present than for winds with base densities described by single power laws as the wind curves back towards its base. The gold dot–dashed line shows the sonic 
surface, demonstrating that the wind remains supersonic in this region at r � r G ; hence the material here is unbound. 
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arger role for self-similar solutions in describing EUV-driven winds
han our results would suggest. 

 DISCUSSION  

he deri v ation of the self-similar solutions and their comparison
o hydrodynamic simulations is moti v ated by both theoretical and
bservational considerations. Theoretically, they form a robust toy
odel for more complicated scenarios, which allows us to better

nderstand what determines the launch velocities of photoe v apora-
ive winds – which contribute to setting the mass-loss profiles found
y radiation hydrodynamic models – and how these are affected by
ifferent forces acting on the wind. Observationally, their relative
ase of application allows us to interpret, for example, forbidden
ine spectra without needing dedicated radiation hydrodynamic
imulations of photoe v aporation (Ballabio et al. 2020 ). 

.1 Comparison to photoevaporation simulations 

e have demonstrated that the effects of gravity and centrifugal
orce make only a small impact on the launch velocity and streamline
orphology of thermal winds and that radial temperature gradients

annot decrease M b by much more than ∼10 per cent compared to
he isothermal case. The key determinant of the launch Mach number
s the ele v ation of the wind base, combined with the requirement of
he asymptotic morphology of the streamlines at large radii to be
pace-filling, and our simple hydrodynamic simulations follow these
redictions. Therefore, as long as, for example, the wind base isn’t too
trongly flared, we should reasonably expect more detailed radiation
ydrodynamic simulations such as those of Wang & Goodman ( 2017 )
nd Picogna et al. ( 2019 ) to show velocities that agree with the self-
imilar models. 

Wang & Goodman ( 2017 ) find that the wind region is situated
bo v e z/ R ≈ 0.6, corresponding to a launch plane at φb ≈ 30 ◦. By
nspecting Fig. 1 , we see that this corresponds to a Mach number

 b � 0 . 4 assuming b ≈ 1.5 (as for the Hollenbach et al. 1994 wind
odel at r ≤ r G ). In their fig. 2, Wang & Goodman ( 2017 ) also

how the Mach number as a function of distance along streamlines
riginating from R = 5 and R = 15 au, which correspond to around
.5 and 1.5 gravitational radii (equation 1). In both cases, at the base
he Mach number appears to be tending towards a value in the range
.3–0.4 in good agreement with our estimate. This is despite their
imulations suggesting a significant role for adiabatic cooling in the
hermodynamics of the wind. 
NRAS 506, 1–20 (2021) 
On the other hand, the simulations of Picogna et al. ( 2019 ) appear
o agree with these predictions less well. Their wind base is well
tted by φb = 36 ◦, with ρ ∝ r −1.5 but the average Mach number
ere is more like 〈 M b 〉 = 0 . 1 across a wide range of radii (Franz,
ri v ate communication), whereas we would expect a value of 0.327.
o we ver, the Mach numbers quickly rise to around 0.3 within a

ouple of degrees of the base, much faster than do the self-similar
olutions. This is likely due to the impact of their definition of the
ase lying in a region of steep vertical temperature gradient normal to
he base; abo v e the base as the temperature gradients become smaller,
he solution reverts to what we would expect would be appropriate
o fill the domain. 

While thermal winds can also be driven from protoplanetary
iscs by an external source of FUV radiation, these have a larger
ravitational radius such that in the usual, ‘subcritical’ regime, the
ass-loss is dominated by the least bound material at the disc

dge (e.g. Adams et al. 2004 ; Haworth & Clarke 2019 ). This
trong dependence on a characteristic radius means our self-similar
olutions have limited applicability to externally photoe v aporating
iscs. 

.2 Disc clearing 

nside-out clearing of protoplanetary discs is backed by observations
uch as discs with inner cavities – many with negligible accretion
ates (Owen & Clarke 2012 ) – and the distribution of discs in colour–
olour diagrams (Koepferl et al. 2013 ). It naturally occurs when
he mass-loss rates �̇ ∝ ρb u b [ ∝ r −( b + τ ) in the scale-free models],
ecline faster than the disc surface density � (often assumed to be
 r −p ; p = 1 and p = 1.5 are popular models). This minimizes

he depletion time-scale near the critical radius, inside of which
ravity impedes launching a wind. A gap opens and allows the inner
isc to drain rapidly, while photoe v aporation continues to erode the
uter disc from the inside-out (Clarke, Gendrin & Sotomayor 2001 ;
lexander, Clarke & Pringle 2006b ). 
Since our ‘two-regime’ models suggest that sufficiently outside

 density transition, the wind can forget the inner disc conditions
nd become approximately self-similar, we might expect even in this
ase, the self-similar solution to be a good approximation. We caution
hat a severely depleted inner disc is a much stronger deviation from
he density profile than considered here. Ho we v er, Ale xander, Clarke
 Pringle ( 2006a ) do note that – while fluctuating considerably –

here was no evidence for a strong radial dependence in the launch
elocities of their directly EUV-irradiated discs, a feature we see
epeatedly in our models as a hallmark of self-similarity. This result
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Figure 16. Comparison of the [Ne II ] 12.81 μm line profiles for self-similar winds launched from φb = 0 ◦ (blue) and φb = 36 ◦ (orange) at various inclinations. 
The profiles have each been normalized by their maximum value. 
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s thus useful if we wish to apply self-similar solutions to clearing
iscs. This may be when thermal winds are most important: Pascucci 
t al. ( 2020 ) suggest an evolutionary picture where in full discs, an
nner MHD wind blocks the radiation required to launch a thermal 
ind from the outer disc thus preventing such winds for much of the
isc’s lifetime, while an outer thermal wind may be present for discs
ith an inner hole that are likely in the process of clearing. 

.3 Implications for line profiles from discs 

t is also worth considering what, if any, effect our more generalized
elf-similar models would have on the inference of wind properties 
rom blueshifted forbidden emission line profiles, such as in the 
ork by Ballabio et al. ( 2020 ). In that work, they found that the
eak and centroid velocities of the blueshifted lines were most 
trongly determined by the sound speed, with the density gradient 
nd normalization less important. On the other hand, when it came to
he FWHM of the lines, not only was the sound speed important, but
f there was more emission from small radii – as in cases with higher
 or lower Ṁ w (such that the point where the density exceeds the
ritical density for producing forbidden lines mo v ed inwards) – then 
here would be additional emission at large blueshifts, increasing the 
ine width. 

While Pascucci et al. ( 2011 ) and Ballabio et al. ( 2020 ) noted that
aunch from an ele v ated base can reduce the blueshift of the line peak
y 1 km s −1 , we present in Fig. 16 emission profiles for the [Ne II ]
2.81 μm line at different viewing inclinations in order to compare 
irectly winds launched from the midplane with those launched from 

b = 36 ◦. We followed the equations used in Ballabio et al. ( 2020 )
nd used the same set of atomic constant for the line transition
Glassgold, Najita & Igea 1997 ). Briefly, the level populations for
e II are calculated with a density dependent prescription taking into

ccount the critical density for the transition (Glassgold et al. 1997 )
nd the optically thin line profile includes both thermal broadening 
nd Doppler shift due to the local line-of-sight velocity. We calculate 
he emission on a spherical grid spanning radii r = [0.03, 10] r G 
nd ele v ations φ = ±[ φb , 75 ◦]. The density at ( r , φ) = ( r G , φb ) is
ormalized to the same number density n G = 2.8 × 10 4 cm 

−3 . We
ssume that in the disc, dust provides the dominant source of opacity
nd blocks the receding portion of the wind, which is consistent with
bservations of net blueshifted [Ne II ] emission arising exterior to
ust cavities (Pascucci et al. 2011 , 2020 ). Therefore, for simplicity,
e assume that the disc midplane is infinitely opaque, and all other
aterial is optically thin, when determining which parts of the wind

re visible at any inclination. 
The most striking effect is on the FWHM: the width of the line

hen the base is ele v ated is greater for discs which are viewed face
n, but the lines become narrower at high inclinations; this largely
ipes out the dependence of the FWHM on viewing inclination 
redicted for winds launched from the disc midplane (Ballabio et al.
020 ). This occurs since the morphology of the streamlines is more
ertical when the base is ele v ated (e.g. Fig. 2 ), meaning that near the
ase the v elocity v ectors are directed more along the polar direction
 i = 0 ◦) than towards high inclinations ( i � 90 ◦). Moreo v er, we note
hat our profiles are normalized; the absolute luminosities in the line
ings are relatively insensitive to the launch height, but there is a

trong loss of luminosity near-zero velocity when the wind launches 
rom an ele v ated base. This results from a lack of emission close to
MNRAS 506, 1–20 (2021) 
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he disc midplane which no longer hosts an ionized wind when the
ind base is ele v ated. Whereas, near the polar axis and at large radii

n the wind, where the highest velocity material exists, the absolute
 elocity is insensitiv e to the launch speed at the base – and hence
ts ele v ation – so the line wings are relati vely unaf fected, especially
or face on discs when this material flows along the line of sight.
lthough the resulting differences are only a few km s −1 , the error
ars on the [Ne II ] FWHM data used by Ballabio et al. ( 2020 ) tend to
e comfortably � 5 km s −1 , so this should be taken into account in
uture for a more accurate interpretation of the FWHM as a function
f inclination, particularly if the aim is to discriminate between sound
peeds which differ between EUV X-ray winds by a few km s −1 . 

Since the self-similar models are applicable near the base even
n the presence of gravity/centrifugal forces, or double power-law
ensity profiles, we should expect that these effects should only
odify the line profiles weakly, especially for high critical density

orbidden lines such as the [Ne II ] 12.81 μm and [O I ] 6300 Å for
hich the emission mainly traces regions of higher density near the
ind base. Moreo v er, due to the small volumes concerned, the line
rofiles are not strongly dependent on the inner radius of the grid
this implies that the effect of gravity in preventing launch at r <

.1 r G will not be significant. 
On the other hand, changing from the isothermal to the non-

sothermal streamlines may have a stronger impact on the results.
e find the Mach numbers at the base are only a little smaller

Table 1 ) and there was relatively little difference in either these or
he streamline morphology (Fig. 2 ). Ho we ver, the dominant factor
etting the shift of the lines is the sound speed (Ballabio et al. 2020 ),
hus the fact that the sound speed would vary significantly with strong
emperature gradients should likely be taken into account in future
ork. The development of self-similar models for the non-isothermal

ase makes this significantly more tractable. 

.4 Implications for dust transport 

nowing the launch velocity of the wind is a crucial part in
nderstanding which grains may be lost to the wind since the critical
ize of dust grain for which a reasonable flux reaches the wind is
hat which has a positive upwards adv ection v elocity in the disc due
o the gas supplying the wind (Booth & Clarke 2021 ; Hutchison &
larke 2021 ); this size is proportional to the wind launch velocity

f the disc temperature, height of ionization front and density at the
ind base are held constant (Booth & Clarke 2021 ). Ho we ver, gi ven

he rather narrow range of Mach numbers that result for the most
easonable models discussed in this paper, and the robust predictions
ade by self-similar models (as were applied by Hutchison & Clarke

021 ), the effect of the wind kinematics on the entrained grain size
s largely subdominant compared with uncertainties in the density
t the wind base. Ho we ver, where b > 2 in the outer disc, no wind
s launched (and consequently no dust is remo v ed). Instead, we see
treamlines return towards the base may which have implications for
ust rain-out (Franz et al. 2020 ; Hutchison & Clarke 2021 ). Since the
utward radial velocity of the re-entering gas exceeds the local escape
elocity, it is not clear whether any dust returning to the midplane
ould be retained in the disc and we reserve further investigation for

uture work. 

 C O N C L U S I O N S  

n this work, we have extended the previous studies of self-similar
olutions for thermal disc winds by Clarke & Alexander ( 2016 ) so as
o derive a more general set of scale-free wind solutions. Specifically,
NRAS 506, 1–20 (2021) 
e relax the assumptions of isothermal gas and perpendicular
aunch from the disc midplane and derive solutions for generalized
aunch geometry and power-law temperature profiles. We validate
hese solutions using hydrodynamic simulations and furthermore
se hydrodynamic simulations to explore non-scale-free conditions,
uch as imposition of a disjoint power law for the wind base density
rofile and the inclusion of gravitational and centrifugal forces. 
We have analysed these models principally in terms of the

treamline morphology and the Mach numbers with which the winds
re launched (which control the mass-loss rates). In doing so we
ave shown that self-similar solutions have widespread and general
pplicability to describing thermal winds launched from discs at
easonably large radii (beyond the gravitational radius). This is
ppropriate for protoplanetary discs where outflows consistent with
hermal winds are seen to originate in the outer disc (Pascucci et al.
020 ). This is important for works that seek to apply self-similar
odels, for example to interpret line spectra (Ballabio et al. 2020 )

r study dust transport (Hutchison & Clarke 2021 ). In particular, we
nd that: 

(i) Scale-free temperature profiles, including radial temperature
radients, still permit self-similar solutions that have a constant Mach
umber at the base, the value of which depends on the detail of the
rofile. Ho we ver, for temperature scaling as the inverse root of the
spherical or cylindrical) radius, the Mach number is decreased by
nly around 10–20 per cent compared with the isothermal case. 
(ii) Instead, the parameter which most strongly influences the

aunch velocity of the winds is the ele v ation of the wind base to
he midplane. The higher the winds originate, the more rapidly they

ust curve and so the more slowly they are launched. 
(iii) Scale-free hydrodynamic simulations adopt the maximum
ach number at the base for which the solution a v oids any singu-

arities in the fluid equations (Clarke & Alexander 2016 ) even when
he winds are launched from ele v ated bases, non-perpendicularly to
heir base or in the presence of temperature gradients. 

(iv) This preference for a maximal launch Mach number may be
xplained by the fact that solutions with lower Mach numbers do
ot completely fill the computational domain. In such a scenario,
he region near the z -axis would thus be inaccessible to the wind
nd provide no resistance to the pressure in the wind region; the
treamlines would spread out to fill it, allowing the wind to launch
aster. Ho we ver, if a reflecting boundary, representing some other
onstraint on the wind, is placed at lower latitude, then simulations
dopt a lower launch velocity commensurate with a self-similar
olution which asymptotes to the angle set by the reflecting boundary.

(v) When gravity and centrifugal force are included, the stream-
ines and M b predicted by self-similar models remain a good
pproximation to the true streamlines, particularly at large radii
r when the radius of curvature is small. Introducing temperature
radients tends to increase the accuracy because these solutions have
 smaller radius of curvature and therefore pressure plays a more
mportant role compared to gravity and centrifugal forces. 

(vi) The predictions of self-similar winds can also be used to
escribe the launch velocities of density profiles which are double
ower laws. The velocities vary smoothly between the values
ppropriate to the density gradient in each limit of the profile, with
he launch velocity from inner disc unaffected by the changes in
ensity at larger radius. 
(vii) Density gradients that are steeper than r −2 do not have a

alid self-similar wind solution, though may give rise to non-self-
imilar outflo ws. Ho we ver, we find that when the density gradient
teepens beyond this point in the outer disc, an outflow is largely



General applicability of self-similar winds 19 

p  

a  

l
d  

r  

a

a  

b
u

A

W  

h
u
v
c
a
a
S
U
(
C
w
f  

C
p
E
E
v
F

D

T
s
χ

l
r
n  

g  

s  

i

R

A
A
A
A
A  

A
A
B
B  

B  

B
B

B
C
C
C
E
E
E
E
F  

F
G
G
G
G  

H
H
H  

H
H
K
K  

L  

M
N  

N
O
O  

O
O
P
P
P
P  

R
R  

S
S
S  

S  

W
W
W  

Y

A
S
N

F  

m  

a
T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/506/1/1/6298241 by guest on 01 July 2024
rev ented: the re gion of wind launching e xtends by no more than
 factor ∼2 beyond the radius where the base profile attains this
imiting gradient. Instead, streamlines originating from the inner 
isc curl down towards the wind base at radii beyond the transition
adius. This material is, ho we ver, unbound and so does not provide
 return flow of material into the inner disc. 

(viii) Recent models of protoplanetary disc photoe v aporation such 
s those by Wang & Goodman ( 2017 ) and Picogna et al. ( 2019 ) are
roadly consistent with our findings. This illustrates the value in 
sing self-similar models to capture key behaviours of winds. 
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he code used to calculate the maximum launch Mach number and 
elf-similar streamline structure for user specified values of b , φb , 
b , and τ (spherical and cylindrical cases) is available from the 

ead author’s GitHub: https:// github.com/AndrewSellek/ SelfSimila 
ThermalWinds or in a Zenodo release: https:// doi.org/ 10.5281/ ze 
odo.4579868 . Also included are the table from which Fig. 1 was
enerated and the streamline solution files used to plot the self-
imilar streamlines in Figs 2 , 4 , 6 , 10 , 12 , and 15 and the line profiles
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PPENDI X  A :  D E R I VAT I O N  O F  SELF-SIMILAR  

OLUTI ON  F O R  SCALE-FREE  

O N - I S OTH E R M A L  CASE  

ollowing on from the discussion in Section 2, we provide in
ore detail our deri v ation of the differential equations go v erning
 self-similar streamline in a more general non-isothermal case. 
hroughout, primes represent differentiation with respect to ˜ z . 
In dimensionless form, the equations of motion (3) and (4) are 

M 

2 
b ̃  u 

2 

˜ R eff 
= 

r b 

ρb c 
2 
S, b ̃  ρ

ˆ � l · ∇P , (A1) 
MNRAS 506, 1–20 (2021) 
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2 
b ̃  u 

d ̃  u 

d ̃ s 
+ 

1 

ρc 2 S, b 

∂P 

∂ ̃  s 
= 0 . (A2) 

ince the second term in equation (A2) is independent of streamline,
hen M b must be to ensure the first term is too. 

The pressure gradient term can be resolved in terms of changes
etween streamlines ( r b ) and along the streamlines ( ̃ s ) 

1 

ρ
ˆ l · ∇P = 

1 

ρ

d P 

d l 

= − 1 

ρ

( 

1 

r b 
cot ( χ ) 

(
∂P 

∂ ̃  s 

)
r b 

+ 

1 

˜ r sin ( χ ) 

(
∂P 

∂r b 

)
˜ s 

) 

, (A3) 

here d l is an infinitesimal step in the perpendicular direction ˆ l . 
The first term in equation (A3) (due to variation between points

n a given streamline), is evaluated by eliminating ( ∂P 
∂ ̃ s 

) r b using
quation (A2). The second term in equation (A3) (due to variation
etween streamlines) is e v aluated by expanding the pressure as

d P 
ρ

= c 2 S d ln ( ρ) + d c 2 S : 

− 1 

ρ

1 

˜ r sin ( χ ) 

(
∂P 

∂r b 

)
˜ s 

= 

c 2 S, b 

r b 

b + τ

˜ r sin ( χ ) 
˜ c 2 S . (A4) 

Thus, combining equations (A1), (A3), (A4), and (A2), we get an
quation relating the streamline curvature and the velocity gradients: 

M 

2 
b ̃  u 

2 

˜ R eff 
= 

b + τ

˜ r sin ( χ ) 
˜ c 2 S − M 

2 
b ̃  u 

d ̃  u 

d ̃ z 
cot ( χ ) sin ( θ ) = 0 . (A5) 

n the case of τ = 0 and C = 1, the first term reco v ers the first term
f equation (11) of Clarke & Alexander ( 2016 ). Moreover, so long
s the resulting pressure is scale free, the form of the second term
oes not depend on the exact temperature structure. 
Our generalized geometry makes a simple fundamental change;

he area of a streamline bundle normalized to its base becomes 

˜ 
 = ˜ r 2 

sin ( χ ) cos ( φ) 

sin ( χb ) cos ( φb ) 
, (A6) 

hich we use to relate the area and shape of the streamlines,
n particular the radius of curvature ˜ R eff , through the following
quations 

˜ 
 

′′ = 

(1 + 

˜ R 

′ 2 )( ̃  R − ˜ z ˜ R 

′ ) ̃  R 

′ 

˜ R ( ̃ z + 

˜ R 

˜ R 

′ ) 
− (1 + 

˜ R 

′ 2 ) 3 / 2 

˜ R ( ̃ z + 

˜ R 

˜ R 

′ ) 
˜ A 

′ cos ( φb ) sin ( χb ) , 

(A7) 

1 
˜ R eff 

= 

˜ R 

′′ 

(1 + 

˜ R 

′ 2 ) 0 . 5 
, (A8) 

n which ˜ A 

′ is given by our nozzle equation (A9), 

d ln ( ˜ A ) = 

(
M 

2 
b 

˜ u 

2 

2 
− 1 

)
d ln ( ̃  u ) + 

d ln ( ̃ c 2 S ) . (A9) 

d ̃ z ˜ c s d ̃ z d ̃ z 
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f we expand d ̃ c 2 S ( ̃ r , φ) = ˜ r −τC( φ) using the chain rule, 

d ̃ c 2 S 
d ln ( ̃ r ) 

= ˜ c 2 S 

(
−τ + 

∂ ln ( C) 

∂φ
tan ( χ ) 

)
, (A10) 

e obtain a final relation between the variation of the area, the veloc-
ty gradient, and the imposed self-similar temperature structure 13 : 

˜ A 

′ 

˜ A 

= 

(
M 

2 
b 

˜ u 

2 

˜ c 2 S 
− 1 

)
d ln ( ̃  u ) 

d ̃ z 
+ 

(
−τ + 

∂ ln ( C) 

∂φ
tan ( χ ) 

)
cos ( χ ) 

˜ r sin ( θ ) 
. 

(A11)

Combining equations (A5)–(A8) and (A11) gives equations (13)–
17). 

PPENDI X  B:  E QUAT I O N S  F O R  POWER-LAW  

EMPERATURE  PROFILES  

1 Spherical power law 

hen T ∝ r −τ , C( φ) = 1, such that we have 

 1 = −M 

2 
b ̃  u 

(
M 

2 
b ̃  u 

2 ( ̃  R 

2 + ̃  z 2 ) τ/ 2 − 1 
) ( ̃  R − ˜ z ˜ R 

′ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 ( ̃  R 

˜ R 

′ + ̃  z ) 
(B1) 

 1 = ( b + τ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 

( ̃  R − ˜ z ˜ R 

′ )( ̃  R 

2 + ̃  z 2 ) τ/ 2 
(B2) 

 2 = −M 

2 
b ̃  u 

2 ( ̃  R − ˜ z ˜ R 

′ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 

( ˜ R 

′ 

˜ R ( ̃  R 

˜ R 

′ + ̃  z ) 
+ 

τ

( ̃  R 

2 + ̃  z 2 ) 

)
. (B3) 

2 Cylindrical power law 

hen T ∝ R 

−τ , C = ( cos ( φ) 
cos ( φb ) 

) −τ in which case ∂ ln ( C) 
∂φ

= τ tan ( φ), such
hat we have 

 1 = −M 

2 
b ̃  u 

(
M 

2 
b ̃  u 

2 
˜ R 

τ

cos τ ( φb ) 
− 1 

)
( ̃  R − ˜ z ˜ R 

′ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 ( ̃  R 

˜ R 

′ + ̃  z ) 
(B4) 

 1 = ( b + τ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 

( ̃  R − ˜ z ˜ R 

′ ) ̃  R 

τ
cos τ ( φb ) (B5) 

 2 = −M 

2 
b ̃  u 

2 ( ̃  R − ˜ z ˜ R 

′ ) 
(1 + 

˜ R 

′ 2 ) 1 / 2 

×
( ˜ R 

′ 

˜ R ( ̃  R 

˜ R 

′ + ̃  z ) 
+ 

τ

( ̃  R 

2 + ̃  z 2 ) 

[
1 − ˜ z ( ̃  R − ˜ z ˜ R 

′ ) 
˜ R ( ̃  R 

˜ R 

′ + ̃  z ) 

])
. (B6) 

3 Note that when e v aluated in this way, ˜ A 

′ ∝ 

˜ A , such that the
˜ 
 

′ cos ( φb ) sin ( χb ) term in equation (A7) is actually independent of φb and

b , which therefore do not appear in our final expressions. 
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