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Abstract:  

Research on Lower Limb Motion Recognition (LLMR) based on various wearable sensors 

has been widely applied in exoskeleton robots, exercise rehabilitation, etc. Typically, employing 

multimodal information tends to yield higher accuracy and stronger robustness compared to 

using unimodal information. Due to the inevitable reliance on feature engineering in shallow 

machine learning-based LLMR methods, this study leverages the powerful non-linear feature 

mapping capability of deep learning (DL) to construct several end-to-end LLMR frameworks, 

including: Convolutional Neural Networks (CNNs), CNN-Recurrent Neural Networks (RNNs) 

and CNN-Graph Neural Networks (GNNs). The effectiveness of the proposed frameworks is 

verified in distinct tasks, including the recognition of seven types of lower limb motions in 

healthy subjects and three types of motions in patients with stroke, as well as the phase 

recognition task during the sit-to-stand (SitTS) process in patients with stroke, achieving the 

highest mean accuracy of 95.198%, 99.784%, and 99.845%, respectively. Further research and 

integration of two transfer learning techniques, adaptive Batch Normalization (BN) and model 

fine-tuning, significantly enhance the applicability of the proposed frameworks in inter-subject 

prediction. Additionally, systematic analyses are conducted to assess the strengths and 

weaknesses of different models in terms of recognition performance, complexity, and 

adaptability to variations in the number of modalities and sensor channels. Experimental results 

indicate that the proposed frameworks hold promise in providing potential support for the 

development of human-robot collaborative lower limb exoskeletons or rehabilitation robots. 

Keywords: Multimodal information fusion; Lower limb motion recognition; Inter-subject 

prediction; Deep learning; Transfer learning. 

1. Introduction 

Exoskeleton is a kind of human-robot cooperative system connected with human body in 

a wearable way, which has been widely used in motion assistance, exercise rehabilitation and 

other fields [1-3]. Accurate recognition of the wearer’s motion intention is critical for realizing 

human-robot coordination and active rehabilitation training [4]. 

In recent years, many studies have emerged on the use of wearable sensors to recognize 

the motion types of wearers [5]. Depending on the signal type, they can be classified into two 
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categories: 1) To measure physical changes of human and robot motions by sensors such as 

goniometer (GON) and accelerometer (ACC) [6-8]. Due to the inherent measurement delay, it 

is impossible to predict motion before it occurs; 2) To recognize motion patterns by bioelectrical 

signals, such as Electroencephalogram (EEG) [9], Surface Electromyography (sEMG) [10-12], 

etc. sEMG signals generated by nerve impulses can be measured before motion occurs and also 

have the advantage of non-invasive acquisition [13]. However, an issue of concern is that the 

reliability and robustness of recognition system cannot always be guaranteed by only using 

single sEMG signals due to factors such as complex physiology and muscle fatigue [14]. 

Multimodal information fusion is one of the effective solutions for this issue, such as the 

fusion of EEG and sEMG [14, 15], the fusion of mechanical signals and sEMG [16, 17], etc. 

The advantages of utilizing multimodal information mainly include: 1) The complementarity 

of the information provided by different modalities can be used to characterize the subject’s 

motion intention more comprehensively; 2) The system robustness can be greatly enhanced, 

i.e., reducing the negative impact on recognition accuracy caused by abnormal or lost sensor 

information from a certain modality. Multimodal information fusion is mainly carried out at the 

data level, feature level or decision level [15, 18]. The first method usually involves the static 

weighted fusion of multimodal information, but it is difficult to determine reasonable weight 

parameters. The third way is the fusion of output decisions from multiple classifiers, and more 

classifiers mean more computational cost [16]. In contrast, dynamic information fusion at the 

feature level during the model training process is a more widely applied way [18]. 

In the past decade, an increasing number of studies have been dedicated to the pattern 

recognition of sEMG for upper limb movements [19]. However, due to factors such as thick fat 

and protruding cortex of lower body, the classification of sEMG in lower limbs is more 

challenging than that in upper limbs [20]. Recently, scholars have explored some LLMR 

methods using shallow machine learning algorithms [10, 12, 20-23]. Wei et al. combined the 

single-channel sEMG and Support Vector Machine (SVM), Linear Discriminant Analysis 

(LDA), etc., to recognize four types of lower limb motions [12]. Zhang et al. proposed a LLMR 

method using sEMG feature fusion and improved back propagation neural network [22]. 

However, the aforementioned studies still has some inherent drawbacks. Most notably, 

operations such as feature extraction and feature selection of sEMG inevitably rely on expert 

experience, which means that end-to-end LLMR cannot be achieved. 

DL, as an important branch of machine learning, has been demonstrated to possess 

powerful ability to automatically extract deep features, arousing great interest among scholars 

[11, 24-27]. Vijayvargiya et al. developed a voting-based one-dimensional (1D) CNN model 

for LLMR in healthy individuals and patients with knee joint injuries [11]. Si et al. constructed 

the sEMG texture maps, and combined with two-dimensional (2D) CNN to recognize five 

lower limb motions [24]. Lu et al. proposed two types of RNN models, including CNN-Long–

Short Term Memory (LSTM) and Bidirectional LSTM (BiLSTM), for identifying the jump 



 

3 

 

phases of lower limbs [25]. Wu et al. proposed a gait phase classification method using joint 

angle signals based on graph convolutional network, a variant model of GNNs [26]. Although 

these DL-based LLMR studies have greatly eliminated the subjectivity and uncertainty of 

manual feature extraction and achieved satisfactory recognition performance, there are still 

some research challenges that cannot be ignored, as described below: 

1) For LLMR frameworks constructed with different types of DL models, such as CNNs, 

RNNs and GNNs and their variants, it is a key to ensure that their feature extractors can fully 

fuse information from different sensors of different modalities. Traditional studies using simple 

linear fusion, i.e., feature splicing operation, may lose the importance relationship between 

sensor channels. Meanwhile, in most LLMR studies, only the recognition accuracy metric is 

simply evaluated [11, 24-27], lacking multi-dimensional evaluation of DL models, such as the 

evaluation of time complexity and space complexity metrics that are directly related to the 

computational efficiency and memory footprint [28]. Additionally, the model adaptability to 

variations in the number of modalities and sensor channels is also a concern. 

2) Nowadays, most researches only focus on the performance of classification models in 

intra-subject (Intra-S) scenario (a manner of subject-independent training and testing), while 

their effectiveness in inter-subject (Inter-S) scenario still require further investigation. Since the 

distribution of training samples is inconsistent with actual test samples, the model pre-trained 

using data from source domain subjects may be suboptimal or even inadequate when applied 

to a new target subject. Currently, some transfer learning techniques provide feasible solutions 

to enhance the domain generalization ability of the model. One is Adaptive BN (AdaBN) [29], 

whose principle is to use test samples from the target domain to update the mean and variance 

of the BN layers of the pre-trained model before testing. Since no backpropagation is performed, 

no additional parameters will be added and the computational cost is almost negligible. Model 

fine-tuning is another popular technique that aims to transfer knowledge learned from subjects 

of source domain to the target subject [30, 31]. In practical testing, only limited target domain 

data and training epochs, i.e., less data acquisition and model training time, are usually required 

to achieve satisfactory performance on the target subject. 

Based on the aforementioned analysis, this paper aims to explore feasible DL-based 

LLMR frameworks to achieve organic interaction and fusion of multimodal and multi-sensor 

information, thereby further realizing accurate and efficient LLMR to support the development 

of human-robot collaborative lower limb exoskeletons. The main contributions are summarized 

as follows: 

1) Four end-to-end LLMR frameworks are presented, including CNN-RNNs, CNN-GNNs 

and two types of CNNs, and appropriate attention mechanisms are embedded in different 

frameworks to enhance the feature learning ability of the model. In each framework, existing 

mainstream network architectures are compared and evaluated from several aspects such as 

classification performance, complexity and adaptability. 
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2) In CNN-GNNs framework, two novel graph generation methods, including K-Nearest 

Neighbor-based Graph (KNNG) and Musculoskeletal Biomechanics-based Graph (MBG), are 

designed to overcome the defect that multimodal signals have no inherent graph topology. 

Furthermore, a master nodes-based cross-modal information interaction method is presented. 

3) In order to enhance the domain generalization ability of the proposed frameworks in 

Inter-S prediction, two transfer learning techniques, AdaBN and model fine-tuning, are further 

integrated and evaluated in terms of recognition performance and time cost. 

4) Validation of effectiveness is conducted on datasets of both healthy subjects and patients 

with stroke, and the effect of using different modal data on recognition performance is analyzed. 

Additionally, the applicability of the proposed frameworks to the phase recognition task during 

the SitTS process in patients with stroke is investigated. 

The rest of this paper is organized as follows. Section II introduces the basic materials and 

methods. Section III outlines the proposed frameworks. Section IV presents experimental 

results and discussion. Section V describes the conclusion and research prospects. 

2. Materials and Methods 

2.1 Datasets 

(1) ENABL3S Dataset 

In this case, a publicly available benchmark dataset of bilateral neuromechanical signals 

called ENABL3S was adopted for experimental validation [32]. It contains the common motion 

types in community ambulation or daily life and abundant multimodal sensor signals. It was 

composed of 10 healthy and able-bodied subjects (denoted as S1-S10) from Northwestern 

University (7 males and 3 females; 174.8±11.5 cm; 69.4±13.7 kg; 25.5±2.1 years), including 

signals from mechanical sensors and sEMG electrodes placed in bilateral lower limbs. Fig. 1 

shows instrumental setup and the placement of sensors for dataset acquisition. 

 
Figure 1. Instrumental setup and the placement of sensors for ENABL3S dataset acquisition. 

Fourteen bipolar surface electrodes (DE2.1; Delsys, Boston, MA, USA) were used to 

measure sEMG signals from the same seven muscles in lower limb, including Tibialis Anterior 
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(TA), Medial Gastrocnemius (MG), Soleus (SOL), Biceps Femoris (BF), Semitendinosus (ST), 

Vastus Lateralis (VL), and Rectus Femoris (RF), which were amplified 1000 times, hardware 

band-pass filtered between 20-450 Hz, and then sampled at 1 kHz. Four 6-DOF (triaxial 

accelerometer: Ax, Ay and Az; and triaxial gyroscope: Gx, Gy and Gz) Inertial Measurement 

Units (IMUs) were placed bilaterally on the subjects’ thigh and shank, with another attached to 

the waist, and sampled at 500 Hz (MPU-9250; Invensense, San Jose, CA, USA). In addition, 

four GONs (SG150; Biometrics Ltd., Newport, UK) were used to collect joint angle signals 

from bilateral knees and ankles in the sagittal plane, and the sampling frequency was 500 Hz. 

Data post-processing procedures were as follows: 1) sEMG signals were high-pass filtered at 

20 Hz, low-pass filtered at 350 Hz, and notch filtered at 60, 180, and 300 Hz using sixth-order 

Butterworth filters, respectively; 2) IMU and GON signals were low-pass filtered at 25 and 10 

Hz using sixth-order Butterworths, respectively. It should be emphasized that only triaxial ACC 

signals in each IMUs were used in this study, and both they and GON signals were resampled 

to 1 kHz to align the time stamps of different sensors when splitting the samples [33]. 

During an experimental session, each subject was required to repeat two different 

sequences about 25 times, containing seven activities: Sitting (SIT), Standing (STA), Level 

Ground Walking (LGW), Ramp Ascending/Descending (RA/RD), and Staircase 

Ascending/Descending (SA/SD). In odd-numbered trials, the sequence consisted of SIT → 
STA → LGW → SA → LGW → RD → LGW → STA → SIT, while in even-numbered trials 

it consisted of SIT → STA → LGW → RA → LGW → SD → LGW → STA → SIT. True 

motion intention of each subject was labeled using a key fob. In this study, the post-processed 

data from each subject’s first 40 trials were selected as the original experimental dataset.  

Fig. 2 shows time-domain waveforms of multimodal signals in bilateral lower limbs 

acquired by subject S1 under the motion type of LGW in the first trail, including 14 channels of 

sEMG signals, 15 channels of ACC signals, and 4 channels of GON signals. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 2. Time-domain waveforms of multimodal signals acquired by subject S1 under the motion type of LGW in 

the first trail: (a) and (b) are sEMG signals of the left and right legs, respectively; (c)-(g) are the ACC signals of 

waist, left shank, left thigh, right shank and right thigh respectively; (h) shows GON signals of the knee and ankle 

joints of bilateral lower limbs. 

(2) Dataset of Patients with Stroke 

In this case, the sEMG and kinematic data of bilateral lower limbs of seven patients with 

stroke (denoted as P1-P7) were synchronously collected during rehabilitation training. The 

inclusion and exclusion criteria for patients can be found in our previous studies [34], details 

are presented in Table 1, where FMA-LE stands for Fugl-Meyer assessment of lower extremity. 

During each training session, they were required to perform three tasks, with an interval of 5-

10 seconds between tasks to reduce muscle fatigue: Task 1 was to walk on a level ground for 

about one minute at a comfortable pace (Gait); Tasks 2 and 3 required subjects to repeat the 

SitTS and stand-to-sit processes approximately 10 times in an adjustable height chair without 

any assistance. All experimental procedures were approved by the ethical committee of Tongji 

Medical College of Huazhong University of Science and Technology (No. [2020] S296-1). 

Table 1. Demographic and clinical characteristics of the subjects. 

Subject Gender 
Age 

(years) 

Height  

(cm) 

Weight 

(kg) 

Stroke  

Type 

Paretic  

Side 

FMA-LE  

Score (0-34) 

Days from 

Stroke Onset 

P1 M 45 175 70 HS R 14 71 

P2 F 54 160 60 IS R 10 40 

P3 M 53 176 73 HS R 14 50 

P4 M 49 173 66 IS L 12 44 

P5 M 47 170 64 HS R 12 70 

P6 M 45 168 62 IS L 16 23 

P7 F 33 160 40 IS R 12 90 

Mean (SD) / 46.6 (6.5) 168.9 (6.2) 62.1 (9.9) / / 12.9 (1.8) 55.5 (21.0) 

* M/F, Male/Female; H/I, Hemorrhagic Stroke/Ischemic Stroke; L/R, Left/Right; SD, Standard Deviation. 

The wireless Ultimu EMG system (Noraxon USA Inc., Scottsdale, AZ, USA) was used to 

collect the sEMG data of each subject’s bilateral lower limbs at a sampling frequency of 2 kHz, 

including: BF, Gluteus Medius (GM), MG, RF, ST, SOL, TA and VM. sEMG electrodes were 
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placed parallel to the muscle fibers and the skin was cleaned with alcohol wipes to reduce 

impedance. Kinematic data were collected synchronously using the IMU system (Noraxon 

USA Inc., Scottsdale, AZ, USA) at a sampling frequency of 200 Hz, and seven IMU sensors 

were placed on each subject’s pelvis, bilateral thighs, calves, and feet. It was worth mentioning 

that the angle data of the hip, knee and ankle joints of the subjects’ bilateral lower limbs were 

obtained by software post-processing (MR3 myoMUSULETM; Noraxon USA Inc., Scottsdale, 

AZ, USA). To be consistent with Case I, the sEMG and kinematic data were down-sampled 

and up-sampled to 1 kHz, respectively. 

2.2 Preprocessing 

(1) Data Normalization 

Given the re-sampled multi-channel signal xm(i, j) of modality m, where i = 1, 2, ⋯, Cm, 

and Cm denotes the number of channels for modality m; j = 1, 2, ⋯, L, and L denotes the signal 

length per channel; m = 1, 2, ⋯, M, and M denotes the number of modalities. The Min-Max 

normalization technique is used to normalize xm(i, j) to the range of [-1, 1], as follows: 

 
( ),

, ,

2 ( , ) min ( , )
( , ) 1

max ( , ) min ( , )

m i j m

m

i j m i j m

x i j x i j
y i j

x i j x i j

⋅ −
= −

−
. (1) 

This type of normalization preserves the relative size between the data of different 

channels in the same modality, and helps to improve the convergence speed and stability of the 

model. Then, the normalized data of different modalities are concatenated in the channel 

dimension to obtain the data Y = [y1; y2; ⋯; yM] for the subsequent sample segmentation. 

(2) Sample Segmentation 

As shown in Fig. 3, there are two types of sliding windowing methods for segmenting 

sample set, namely overlapping windowing and non-overlapping windowing, and the former is 

adopted in this study to ensure full utilization of limited information. 

 
Figure 3. Schematic diagram of two different sliding windowing techniques. 

Previous study has pointed out that there is an overall positive correlation between analysis 

window length (LW) and classification accuracy [15]. Additionally, Naik et al. suggested that to 

ensure the comfort of human-robot interaction and the real-time nature of control, the overall 
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system delay should not exceed 300 ms [20]. Therefore, for the motion classification task, the 

LW and overlapping window length (LO) are initially set to 256 ms and 25%×LW (i.e., 64 ms) 

respectively referring to existing studies [11, 20, 30], and the impact of different LO values on 

test accuracy will be discussed in Section IV. For the phase recognition task in Case II, due to 

the short duration of each phase in the SitTS process, a lower processing delay is required, so 

the LW is set to 32/48/64 ms, with LO set to 25%×LW. 

(3) Phase Segmentation of SitTS Motion 

The SitTS motion is essential for achieving walking and other mobility activities, and is 

often impaired and not readily recoverable after stroke [34, 35]. Therefore, the analysis of 

complex SitTS motion in patients with early subacute stroke is conducive to active 

rehabilitation training and exploration of potential neurobiological mechanisms. In this study, 

the event detection and phase segmentation of the SitTS motion are referred to the previous 

literature [35]. As shown in Fig. 4, a complete SitTS motion contains five events: 1) Event0, 

start of SitTS; 2) Event1, start of seat-off; 3) Event2, end of momentum transfer; 4) Event3, start 

of stabilization; 5) Event4, end of SitTS. Two adjacent events constitute a motion phase. Fig. 5 

presents the event detection results for the first SitTS motion of subject P4, and it should be 

noted that the outcomes are from the joint angle data of the affected limb, and the same is true 

for other subjects. Additionally, incomplete or abnormal STS motions are excluded by the 

visually identified 3D avatar animation generated by MR3 myoMUSULETM software [34]. 

 
Figure 4. Event detection criteria for the SitTS motion of patients with stroke, where θτ denotes the torso angle; θH, 

θA, and θK denote the hip angle, ankle angle, and knee angle of the affected limb, respectively, and they are 

complementary to the definitions in Ref. [35]; AP and ML denote the anterior-posterior and medial–lateral 

directions, respectively; PP denotes the Peak-to-Peak value. 

 
Figure 5. Event detection results for the first SitTS motion of subject P4 (the affected limb). 
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(4) Dataset Partitioning 

In this study, three scenarios are defined: 1) Intra-S, i.e., subject-independent training and 

testing; 2) Default Inter-S, i.e., directly using the data of target domain subjects to test the pre-

trained model; 3) Inter-S with AdaBN or model fine-tuning, aiming to further enhance the 

domain generalization ability of pre-trained model. Taking ENABL3S dataset as an example, 

the partitioning of training set and test set is presented in Table 2. Additionally, in each trail, 

10% of the training samples are randomly selected as the validation set to prevent overfitting. 

Table 2. Partitioning of training set and test set under different scenarios on ENABL3S dataset. 

Scenario Type  Model Pre-training Target Domain Model Tuning 
Target Domain 

Model Test 

Intra-S Without Randomly select 80% of samples of Si. 
The remaining 20% 

of samples of Si. 

Inter-S (Default) Randomly select samples 

of source domain subjects 

other than Si. 

Without 
The remaining (1-β) 

of samples of Si. Inter-S (AdaBN / 

Model fine-tuning) 

Randomly select a certain proportion 

(denoted as β) of samples of Si. 

* Si (i=1, 2, …, 10) represents the target subject. The effect of the variations in β value on recognition 

performance and time cost will be analyzed in Section IV. 

2.3 Deep Learning Models 

(1) CNNs (CNN and Its Variants) 

As one of the most representative DL algorithms, CNN and its variants have been widely 

applied in computer vision and other fields. As shown in Fig. 6(a), a basic CNN block designed 

in this study includes a convolutional (Conv) layer for feature extraction, a BN layer for 

accelerating model convergence, an activation function layer for enhancing model nonlinearity, 

a pooling layer for dimensionality reduction, and a dropout layer for preventing overfitting. As 

shown in Fig. 6(b), ResNet-V1 with a residual structure was proposed to solve the gradient 

vanishing and explosion problems in deep network training [36]. To reduce the parameter size, 

ResNet-V2 with a simplified network structure was further proposed [37]. As a representative 

of lightweight network, MobileNet-V1 replaced the standard Conv with depthwise separable 

Conv, greatly reducing the parameter size and operation cost [38], as shown in Fig. 6(c). Based 

on MobileNet-V1, a linear bottleneck block with inverted residual structure was proposed in 

MobileNet-V2 [39], as shown in Fig. 6(d). In MobileNet-V3 [40], the Squeeze-and-Excitation 

Network (SE-Net) [41] was inserted into the bottleneck block to make the module more focused 

on channel-sensitive features, and the Hard-Sigmoid and Hard-Swish activation functions were 

proposed to further lightweight the model, which are defined as follows: 

 

       0       ,   2.5

- [ ] 0.2 0.5,  2.5 2.5

       1       ,   2.5

ReLU6( 3) min(max(0, 3),  6)
- [ ]

6 6

x

Hard Sigmoid x x x

x

x x
Hard Swish x x x

< −
= + − ≤ ≤
 > −

+ +
= ⋅ = ⋅

. (2) 
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ShuffleNet-V1 [42] and ShuffleNet-V2 [43] were another lightweight network 

architectures, as shown in Figs. 6(e) and 6(f), in which a channel shuffle operation was 

introduced to realize cross-channel information interaction. Additionally, ShuffleNet-V2 

replaced the group Conv in ShuffleNet-V1 by a channel split operation. 

 

Figure 6. Different CNN-based blocks: (a) The designed basic CNN block; (b) Residual blocks in ResNet-V1 and 

ResNet-V2; (c) Depthwise separable Conv in MobileNet-V1; (d) Bottleneck blocks in MobileNet-V2 and 

MobileNet-V3; (e) Basic units in ShuffleNet-V1; (f) Basic units in ShuffleNet-V2. 

(2) RNNs (RNN and Its Variants) 

RNN is a commonly used network architecture for processing sequence data, with wide 

applications in tasks such as time series prediction. However, traditional RNN suffer from 

problems such as gradient vanishing and gradient explosion when dealing with long sequence 

data. In recent years, some variants of RNN have emerged, such as LSTM [25, 30, 31], BiLSTM 

[25], Gated Recurrent Units (GRU) [7] and Bidirectional GRU (BiGRU). LSTM introduces the 

gate mechanism and cell state to overcome the shortcoming of short-term dependence of RNN. 

However, it can only capture the influence of past states on future states. As an improvement, 

BiLSTM uses two-layer LSTM units to simultaneously perform forward and backward learning 

of sequence data. Compared to LSTM, GRU has a simpler structure and fewer parameters. 

Similarly, BiGRU is comprised of dual layers of GRUs. Detailed description of these RNN 

variants can be found in previous study [45]. 

(3) GNNs (GNN and Its Variants) 

Different from CNNs, GNNs are proposed to process graph data in non-Euclidean domain, 
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whose core idea is to iteratively aggregate and propagate feature information between nodes 

through edge connections. Graph data can be expressed as G = (V, E), where V = {v1, v2, ⋯, 

vn}∈ℝn×d is the set of nodes, n is the number of nodes, and d is the feature dimension of nodes; 

E = {(vi, vj)|i, j∈[1, n]} is the set of edges; A∈ℝn×n is the adjacency matrix representing the 

connection relationship between nodes, where Ai, j = 1 means (vi, vj)∈E, otherwise Ai, j = 0. 

Currently, GNNs have become one of the most prominent frameworks in the fields such 

as social networks, bioinformatics and fault diagnosis [46], which can be divided into spectral 

GNNs and spatial GNNs. The former achieve graph Conv through graph Fourier transform and 

inverse transform, while the latter perform Conv directly on the neighborhood of nodes. In this 

study, representatives of spectral GNNs and spatial GNNs, namely Chebyshev Network 

(ChebNet) [47] and Graph Attention Network (GAT) v2 [48], are chosen to construct the CNN-

GNNs framework. The core of ChebNet is to approximate the spectral graph Conv by truncated 

expansion of the Chebyshev polynomial, thereby reducing computational complexity. The 

recurrence of the Chebyshev polynomial can be expressed as follows: 

 1 1( ) 2 ( ) ( ),  k k kT x xT x T x k N +
+ −= − ∈ , (3) 

where T0 = 1 and T1 = x. Then, the kernel of spectral graph Conv can be expressed as follows: 

 
1

max0
( ) ( ),  2

K

k kk
g Tθ θ λ−

=
= = −∑ nIΛ Λ Λ Λ , (4) 

where Λ represents the diagonal matrix formed by the eigenvalues of Laplacian matrix L; λmax 

represents the largest eigenvalue in L; In represents the identity matrix of dimension n; θ∈ℝK 

represents the coefficient vector of the Chebyshev polynomial. GATv2 is an improvement on 

the original GAT, introducing static attention and dynamic attention in the process of node 

aggregation. The updating process of node features can be expressed as follows: 

 ( ),

, ,
i

i i i i i j jj N
h h hσ α α

∈
= +∑W W , (5) 

where hi and hi
,
 represent the raw and updated features of node i, respectively; Ni represents the 

set of neighbor nodes of i; W is the weight matrix and σ is the activation function; αi, j represents 

the attention weights between nodes i and j, generated by the multi-head attention [49]. 

2.4 Attention Mechanisms 

(1) Coordinate Attention for CNNs 

SE-Net was one of the most representative attention mechanisms in CNNs, but it neglected 

the modeling of location information [41]. Coordinate Attention Network (CA-Net) [50] 

embedded the location information into the channel attention, which enabled the network to 

acquire larger range of information while adding less computation. 

As shown in Fig. 7(a), for an input feature map xc(i, j) of size H×W×C, two spatial extents 

of pooling kernels (H, 1) or (1, W) are respectively used to aggregate the location information 

of each channel along the horizontal and vertical coordinates, and then a pair of direction-aware 
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feature maps are yielded. These two transformations enable the module to capture long-range 

dependencies along one spatial direction and preserve position information along another 

direction. Then, these two transformations are concatenated in spatial dimension, and a shared 

1×1 Conv is used to reduce the channel dimension to max(8, C/r), where r is a reduction ratio. 

Next, the spatial information in vertical and horizontal directions is encoded using BN and non-

linear. Afterwards, the encoded information is split, and two 1×1 Conv transforms are used to 

upgrade the channel number of two split feature maps to C, and then two sigmoid functions are 

used to generate normalized weights. Finally, the output yc(i, j) can be obtained as below: 

 ( , ) ( , ) ( ) ( )h w

c c c cy i j x i j g i g j= ⋅ ⋅ , (6) 

where g
c
h(i) and g

c
w(j) represent the attention weights of two spatial directions, respectively.  

(2) Multi-head Attention for RNNs and GATv2 

Multi-head attention is a self-attention mechanism, as shown in Fig. 7(b). For the input 

data X∈ℝn×d, a series of linear transformations are first performed to obtain the projections of 

query (Q), key (K) and value (V): Qi = XWi
Q

, Ki = XWi
K, Vi = XWi

V, where i∈{1, 2, ⋯, Nh} 

and Nh is the number of heads; Wi
Q

, Wi
K∈ℝ kd d×

, Wi
V∈ℝ vd d×

 are learnable weight matrices. 

Then, these projections are entered into the scaled dot-product attention [48] to obtain the 

attention score of the i-th head: 

 head Attention( , , )i = Q K Vi i i . (7) 

Finally, concatenate the output of each head and perform another linear transformation to 

obtain the final multi-head attention, expressed as follows: 

 1Multi-head( , , ) Concat(head , , head )
hN= Q K V W

O
, (8) 

where WO∈ h vN d d×  is a learnable weight matrix. In this study, Nh is set to 4 considering the 

computational complexity, and dk = dv = d/4. 

 
Figure 7. Structure diagrams of different attention mechanisms: (a) CA-Net; (b) Multi-head attention. 

2.5 Evaluation Framework 

(1) Classification Performance 

For class-imbalanced multi-classification tasks, it is difficult to objectively reflect the test 



 

13 

 

results by only using accuracy. Thus, evaluation of classification performance involves metrics 

such as accuracy, F1-Score (macro-averaged), and normalized confusion matrix. 

(2) Model Complexity 

The complexity of DL models involves space complexity and time complexity. In this 

study, the former is quantified by the number of parameters, while the latter is estimated by a 

commonly used metric, the Multiply-Adds (M-Adds) [38-40, 50]. 

(3) Model Adaptability 

Model adaptability reflects the impact of variations in the number of modalities or sensor 

channels on network structure and hyperparameters. Since it cannot be quantified, this study 

adopts subjective evaluation criteria to divide it into three grades: weak, medium and strong. 

3. Proposed Frameworks 

3.1 Graph Data Construction in CNN-GNNs Framework 

In the CNN-GNNs framework, multimodal signals need to be converted into graph data 

to serve as input to GNNs. Specifically, each channel of multimodal signal is regarded as a node 

to obtain the set of nodes (V); The shallow features extracted by CNN are regarded as node 

features to obtain the feature matrix (X); The connection relationships between channels (or 

nodes) are regarded as the set of edges (E), and then the adjacency matrix (A) can be obtained. 

Describing the relationships between signals of different channels in intra-modal and inter-

modal scenarios as reasonably as possible is the key to constructing A. Next, the ENABL3S 

dataset is used as an example to illustrate the proposed graph data construction methods, and it 

should be noted that it is stipulated that each node may have a self-connected edge. 

(1) Generation of KNNG without Master Nodes 

Currently, most studies construct graph topology by measuring the correlation or distance 

between node features [51]. The KNNG uses Euclidean distance to judge the adjacency 

relationship between nodes, and its distance metric can be expressed as: 

 
2

( ) ( )

, 1

d l l

i j i jl
D ν ν

=
= −∑ , (9) 

where Di, j represents the distance between nodes νi and νj; d represents the feature dimension 

of νi and νj; 
( )l

iv   and ( )l

jv   represent the l-th eigenvalue of νi and νj, respectively. The edge 

construction of KNNG can be expressed as: 

 , , ,KNN( ,  ,  ),  i j i j i i jA k D A= Ω ∈A , (10) 

where Ωi = {Di, 1, Di, 2, ⋯, Di, n} represents the set of distance between νi and all nodes; k is a 

hyperparameter representing the number of nearest neighbors, and k is initially set to ⌊0.3×n⌋ 
in this study, where n is the number of channels (nodes). If Di, j is the minimum of k in Ωi, 

KNN(∙) = 1, otherwise KNN(∙) = 0. Fig. 8(a) shows the construction process of KNNG without 

master nodes (denoted as KNNG-NoMN) in unimodal and multimodal scenarios. 
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(2) Generation of MBG without Master Nodes 

Another common method of graph topology generation is based on human physiological 

structure and spatial placement of sensors. For example, Wu et al. [26] and Massa et al. [52] 

constructed A based on the physiological connection between the four joints of bilateral lower 

limbs and the spatial relationship of high-definition sEMG sensors, respectively. Inspired by 

these studies, the construction process of MBG without master nodes (denoted as MBG-NoMN) 

in unimodal and multimodal scenarios is shown in Fig. 8(b): 1) When only unimodal sEMG 

data or kinematic (ACC or GON) data is used, the edge connection of MBG-NoMN is similar 

to the above studies, which is determined by the physiological structure of lower limb muscles 

and the spatial relationship between sensors; 2) When multimodal sEMG data and kinematic 

data are used simultaneously, the cross-modal edge connections of MBG-NoMN are 

determined by the biomechanical properties of lower limb joint motion; 3) It is specified that 

each node has a self-connected edge (not drawn in Fig. 8(b)). 

 

(a) 

 

(b) 

Figure 8. Different graph topology construction processes in unimodal and multimodal scenarios: (a) KNNG-

NoMN; (b) MBG-NoMN. 
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(3) Master Nodes-based Cross-modal Information Interaction 

Usually, the signal characteristics of the same modality are similar, while for different 

modalities they may vary greatly. Consequently, for graph topology determined by similarity 

or distance, edge connections may only exist between nodes of the same modality, and there 

may be no inter-modal information flow. In terms of this issue, this study further proposes graph 

data construction methods based on master nodes in multimodal scenarios, denoted as KNNG-

MN and MBG-MN, respectively. Taking any two modal information fusion as an example, the 

main steps are described below, and it can be easily extended to multimodal signals. 

Step 1: For normalized data ym of modality m (m = 1, 2), where the number of channels is 

n1 and n2, respectively, using CNN to exact node features to obtain feature matrices X1 and X2, 

and then the sets of nodes V1 = {v1, ⋯, vn1
} and V2 = {vn1+1, ⋯, vn1+n2

} can be obtained. 

Step 2: Generate the sets of intra-modal edge connections E1 = {(vi, vj)|i, j∈[1, n1]} and E2 

= {(vi, vj)|i, j∈[n1+1, n1+n2]} according to KNNG or MBG. 

Step 3: Add the set of master nodes V3 = {vn1+n2+1, vn1+n2+2}, and initialize the node feature 

matrix X3 to 0, and then the total set of nodes V = V1∪V2∪V3 can be obtained. 

Step 4: Add the edge connections between master nodes and nodes of specific modalities, 

denotes as E3 = {(vi, vj)|(i or j = [1, n1], j or i = n1+n2+1), (i, j = n1+n2+1)} and E4 = {(vi, vj)|(i or 

j = [n1+1, n1+n2], j or i = n1+n2+2), (i, j = n1+n2+2)}, and inter-modal edge connections E5 = 

{(vi, vj)|i, j = [n1+n2+1, n1+n2+2]}, and then the total set of edges E = E1∪E2∪E3∪E4∪E5 can be 

obtained, as well as the graph data G = (V, E). 

Step 5: In the update process of GNNs, the master nodes iteratively aggregate and 

propagate feature information through intra-modal and inter-modal edge connections, thereby 

realizing the dynamic interaction and fusion of multimodal information. 

3.2 Four Multimodal Information Fusion and LLMR Frameworks 

Based on the idea of multimodal and multi-sensor information fusion, four different 

LLMR frameworks are presented, as shown in Fig. 9. Taking the fusion of sEMG and ACC data 

on ENABL3S dataset as an example, their main architectures are outlined as follows: 

1) CNNs-V1 framework: Firstly, the samples of different modalities are concatenated in 

the dimension of sensor channel. Then, four 1D CNN blocks are used for time step-wise feature 

extraction, and two 1D CNN blocks are used for deep sensor channel-wise information fusion. 

Finally, the LLMR results are output by the classifier. In addition, the CNN blocks can be easily 

replaced with the other seven variant blocks shown in Fig. 6. 

2) CNNs-V2 framework: Three 2D CNN blocks are used for simultaneous feature 

extraction in both time step-wise and sensor channel-wise, mainly reflected in the change of 

parameters such as kernel size and stride of the Conv and pooling layers. 

3) CNN-RNNs framework: Three 1D CNN blocks and CA-Net are used for spatial feature 

extraction, and an RNN layer and a multi-head attention layer are used for temporal relationship 

modeling, and then the feature maps that aggregate the spatial-temporal information are used 
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for downstream classification tasks. 

4) CNN-GNNs framework: Similar to CNN-RNNs, four 1D CNN blocks and CA-Net are 

first used for shallow feature extraction, then the grid-type feature maps are embedded into the 

graph data combined with KNNG or MBG methods, and finally GNNs are used to extract deep 

graph features that aggregate global information for downstream classification tasks. 

 
Figure 9. Outline of the proposed four multimodal information fusion and LLMR frameworks. 

3.3 Transfer Learning Techniques for Inter-S Prediction 

In this study, AdaBN and model fine-tuning are employed to further enhance the domain 

generalization ability of the proposed LLMR frameworks in Inter-S prediction. Taking CNN-

RNNs model as an example, Table 3 presents the main flow of AdaBN [29]. 
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Table 3. AdaBN-based model parameter update procedure. 

Algorithm 1: AdaBN-based Model Parameter Update 

Input: 

Target domain data d; i-th neuron of a BN layer of the pre-trained CNN-RNNs model ( )i

tx d ∈x
i

t
, 

where { }(1), , ( )i i

t tx x n= x
i

t , and the scaling factor i

sγ  and the shift factor i

sβ  of the i-th neuron. 

Output: Updated target domain CNN-RNNs model. 

For Each neuron i and input data d in target domain, do: 

 Calculate the mean and variance of all samples in target domain: [ ]i

tµ ← E x
i

t
, [ ]i

tσ ← Var x
i

t ; 

 Calculate the output of the BN layer: ˆ ( ) ( ( ) )i i i

t t td x d µ σ= −x
i

t
, ˆ( ) ( )i i i

t s sy d dγ β= +x
i

t
. 

End for  

For the model fine-tuning, the weights of the pre-trained CNN-RNNs are assigned to a 

new CNN-RNNs, and then the new model is retrained using the target domain data until it 

converges. Specifically, a smaller initial learning rate (10-4) is used to fine-tune the feature 

extraction layers, aiming to preserve the learned general feature representations as much as 

possible. Meanwhile, a larger initial learning rate (10-3) is used to train the classifier, aiming to 

make it adapt to the target domain data more quickly. 

4. Results and Discussion 

The algorithm design was implemented using Python 3.9.18 and PyTorch 1.13.0 DL 

libraries. Experiment platform was a high-performance server configured with GeForce RTX 

3080Ti GPU, Intel® Xeon® CPU E5-2680 v4@ 2.40 GHz and 32G RAM. 

4.1 Case I: Experimental Results on ENABL3S Dataset 

4.1.1 In Intra-S Scenario 

In this subsection, the partitioning of training set, validation set and test set is described in 

Subsection 2.2.4. The Adam algorithm is employed as the optimizer, with an initial learning 

rate of 10−2, and the batch size and maximum training epochs is set to 32 and 100, respectively. 

In addition, the model training process is optimized by employing learning rate decay 

(ReduceLROnPlateau) and early stopping techniques. For each subject, five replicate 

experiments are performed, and each experiment will yield a different random number seed to 

ensure a different sample set partitioning result, so as to minimize the effect of accidental factors. 

In other words, for each model, a total of 50 test results will be yielded on 10 subjects. Table 4 

presents the means and SDs of test results for different models with the fusion of sEMG and 

ACC data, as well as the corresponding model complexity and adaptability. 

As can be observed from Table 4: 1) In CNNs-V1 framework, ResNet-V1 has the highest 

recognition accuracy (94.844±0.639%) and F1-Score (93.717±0.740%), as well as the highest 

complexity. MobileNet-V1 has the lowest complexity and classification performance, while 

ShuffleNet-V1 has a slight increase in complexity but also an improvement in classification 

performance. 2) Compared with CNNs-V1, the CNN-RNNs framework has better classification 

performance, especially the CNN-BiLSTM, reaching a mean accuracy of 95.198%, but RNNs 
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also bring more model parameters; 3) Compared with CNN-RNNs, the complexity of CNN-

GNNs framework is greatly reduced. For the two GNNs, the classification performance of 

MBG-NoMN is close to that of MBG-MN, indicating the rationality of MBG-NoMN to set the 

inter-modal edge connections according to the biomechanical properties of muscles. Compared 

with KNNG-NoMN, the classification performance of KNNG-MN is greatly improved, 

indicating that the proposed master nodes-based graph data construction method can effectively 

promote the interactive fusion of sEMG and ACC data. Combined with MBG-MN, CNN-

ChebNet achieves the highest mean accuracy of 94.035%. 

Table 4. Evaluations of classification performance using sEMG-ACC data on ENABL3S dataset, as well as 

complexity and adaptability of different models. 

Framework / 

(Adaptability) 
Block 

Graph 

Topology 

Classification Performance Model Complexity 

Accuracy (%) 

(Mean ± 1 SD) 

F1-Score (%) 

(Mean ± 1 SD) 

Number of 

Parameters 

M-Adds 

(106) 

CNNs-V1 /  

(Weak) 

 

Basic-CNN-V1 / 94.433±0.584 92.980±0.770 223,053 27.882 

ResNet-V1 / 94.844±0.639 93.717±0.740 614,253 79.738 

ResNet-V2 / 94.014±0.720 92.339±1.154 612,717 79.737 

MobileNet-V1 / 93.485±0.840 91.375±1.095 85,581 10.836 

MobileNet-V2 / 94.359±0.528 92.817±0.896 395,405 47.210 

MobileNet-V3 / 94.493±0.804 93.043±1.228 415,901 46.370 

ShuffleNet-V1 / 94.131±0.889 92.628±1.070 88,565 11.029 

ShuffleNet-V2 / 93.861±1.150 92.253±1.432 195,533 22.427 

CNN-RNNs /  

(Strong) 

LSTM / 95.008±0.976 93.393±1.360 3,348,749 46.731 

BiLSTM / 95.198±0.839 93.740±1.075 3,217,677 45.683 

GRU / 94.717±0.771 92.876±0.935 2,569,997 40.501 

BiGRU / 94.895±0.773 93.299±1.061 2,471,693 39.715 

CNN-GNNs /  

(Medium) 

ChebNet 

KNNG-NoMN 91.209±2.102 86.627±2.845 

106,525 26.395 
KNNG-MN 93.625±1.609 91.303±1.871 

MBG-NoMN 93.988±1.027 91.485±1.890 

MBG-MN 94.035±1.411 91.611±1.886 

GATv2 

KNNG-NoMN 89.454±2.299 83.419±3.501 

102,253 26.498 
KNNG-MN 93.471±0.937 90.541±1.868 

MBG-NoMN 93.497±0.916 90.817±1.477 

MBG-MN 93.615±1.134 90.987±1.283 

In addition, Fig. 10(a) presents the test accuracy distribution of using ResNet-V1, CNN-

BiLSTM, and CNN-ChebNet (MBG-MN) in five replicate experiments for each subject via 

half-violin plots, while Fig. 10(b) specifically presents the confusion matrices of test results 

using these three models on subject S1. For each half-violin plot, a bee colony plot reflecting 

the distribution location and number of data points distributed is shown on the left, a kernel 

density plot reflecting the probability density distribution of data points is shown on the right, 
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and the mean and SD of data points are shown on the middle right. 

Experimental results indicate that the proposed three frameworks all perform well in the 

LLMR task of healthy subjects. When both classification performance and model complexity 

are considered, the Basic-CNN-V1 and ShuffleNet-V1 strike a good balance, while CNN-

BiLSTM may be a better choice when the latter is ignored. In terms of model adaptability, 

CNNs-V1 and CNNs-V2 need to design the size of Conv and pooling kernels according to the 

number of sensor channels and sample length, especially for CNNs-V2, whose adaptability is 

the weakest; CNN-RNNs and CNN-GNNs are not affected by the change in the number of 

channels, but the latter needs to consider the construction of graph data. In practical applications, 

specific requirements such as recognition accuracy and hardware performance need to be 

considered comprehensively to select the most suitable LLMR model.  

 

(a) 

 

(b) 

Figure 10. Experimental results on ENABL3S dataset: (a) Test accuracy distribution in five replicate experiments 

for each subject using different models; (b) Confusion matrices of test results using different models on subject S1. 

4.1.2 In Inter-S Scenario 

In this subsection, taking CNN-BiLSTM as the model and S1 as the target subject, the 

experimental setups are as follows: 1) Randomly select five subjects other than S1 as source 

domain subjects, and use the source domain data to pre-train CNN-BiLSTM according to the 

settings in Subsection 4.1.1; 2) For AdaBN and model fine-tuning, a certain proportion (the β 

shown in Table 2) samples of S1 are used to further adjust the pre-trained CNN-BiLSTM 

according to the settings in Subsection 3.3, while no operation is required for the default Inter-

S scenario; 3) The remaining (1-β) samples of S1 are used to test the final CNN-BiLSTM. Fig. 
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11(a) presents the means and SDs of the classification performance metrics in five replicate 

experiments on S1 at different β values, and Fig. 11(b) shows the corresponding time costs. 

As can be observed from Fig. 11(a): 1) The mean recognition accuracy of the default Inter-

S scenario is more than 80% and is almost unaffected by the change in β values; 2) The mean 

accuracy with AdaBN is slightly increased (0.556-1.002%), while it is significantly increased 

with model fine-tuning. Specifically, when β ≥ 0.1, the mean accuracy has already exceeded 

90%, and when β ≥ 0.6, it surpasses 95%, outperforming the performance of CNN-BiLSTM in 

the Intra-S scenario shown in Fig. 10(a). As can be observed from Fig. 11(b): 1) The time cost 

of sampling is linearly related to the β value, and the time cost of AdaBN can be essentially 

ignored; 2) For model fine-tuning, a total time cost of at least 93.60 seconds (including sampling 

time and fine-tuning time) is needed to achieve a mean recognition accuracy of over 90%. 

Experimental results indicate that despite differences in data distribution between target 

domain and source domain subjects, the pre-trained CNN-BiLSTM itself possesses a certain 

domain adaptation ability and achieves satisfactory recognition accuracy without the aid of 

additional techniques. Furthermore, after model fine-tuning, a modest time cost investment can 

significantly enhance the generalization performance of the pre-trained CNN-BiLSTM. 

 

(a) 

 

(b) 

Figure 11. Experimental results using different techniques in Inter-S scenario (on target subject S1): (a) shows the 

changes of classification performance metrics at different β values, and (b) shows the corresponding time costs. 

4.1.3 Ablation Study 

Firstly, taking Basic-CNN-V1 and CNN-BiLSTM as examples, the effect of sensor 

modalities on recognition performance is discussed in Intra-S scenario. Different modal 
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combinations are used to generate different data subsets, including unimodal data (sEMG, ACC 

and GON) and multimodal data (sEMG-ACC and sEMG-GON). For Basic-CNN-V1, the 

parameters of the pooling layers in CNN Blocks 5 and 6 (Fig. 9), including kernel size and 

stride, need to be adjusted according to the number of input channels, while no changes are 

required for CNN-BiLSTM. All other experimental setups refer to Subsection 4.1.1. Figs. 12(a) 

and 12(b) show the distribution of different classification performance metrics of both models 

in five replicate experiments across all subjects, with the top of each plot showing the mean 

corresponding to the half-violin plot. It can be observed that: 1) Among the three types of 

unimodal data, sEMG performs the worst while GON performs the best; 2) The recognition 

performance of CNN-BiLSTM is superior to that of Basic-CNN-V1; 3) The recognition 

performance using multimodal data is superior to that using any unimodal data, and for CNN-

BiLSTM, the mean accuracy using sEMG-ACC data is improved by 3.195% and 0.805%, 

respectively, compared with using sEMG data and ACC data alone, while for sEMG-GON data, 

it is improved by 3.336% and 0.881%, respectively. 

Experimental results show that it is feasible to use only kinematic data to achieve LLMR 

of healthy subjects, exhibiting superior recognition performance compared to using sEMG, 

which may be caused by some motion-related feedforward signals in IMUs and GONs. A 

similar phenomenon has been reported in Ref. [53], where the mean accuracy of using unimodal 

sEMG data alone is less than 85%. Therefore, from the perspective of reducing the cost of data 

acquisition, the recognition performance can also be basically satisfied using only motion 

sensors. However, due to the anticipatory nature of sEMG measurements, it may be more 

suitable for predicting continuous motion intentions in advance, such as joint angles [30] or 

joint torques [31]. Furthermore, combining kinematic data with sEMG data is beneficial to 

further improve recognition accuracy and enhance the robustness of the recognition system. 

 

(a) 

 

(b) 

Figure 12. Distribution of different classification performance metrics in five replicate experiments across all 

subjects using different modal data (on ENABL3S dataset): (a) Accuracy; (b) F1-Score. 

Then, taking the unimodal sEMG data as an example, the effect of different LO values on 

recognition performance is analyzed in Intra-S scenario. The basic CNN blocks are used to 

construct CNNs-V1 and CNNs-V2 frameworks, to obtain the Basic-CNN-V1 and Basic-CNN-
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V2 models, respectively. The LW is maintained at 256 ms, and different data subsets are 

generated by setting different LO values (0/64/128/192 ms). All other experimental setups refer 

to Subsection 4.1.1, and Figs. 13(a) and 13(b) present the distribution of different classification 

performance metrics of both models in five replicate experiments across all subjects. It can be 

observed that the recognition performance of Basic-CNN-V1 is far superior to Basic-CNN-V2, 

and as LO decreases, the performance gap between the two becomes larger. In the case of non-

overlapping windowing (LO = 0), the mean accuracy of Basic-CNN-V1 still exceeds 90%, while 

the latter is only 82.152%. Specifically, as LO changes from 192 ms to 0 ms, the mean accuracy 

and mean F1-Score of Basic-CNN-V1 decreased by 7.232% and 9.867%, respectively, while 

the latter decreased by 12.285% and 18.931%, respectively. 

There may be two reasons for this phenomenon: 1) The number of training samples 

increases with the increase of LO, which means that the model can be trained more sufficient; 

2) Sample similarity will increase with the increase of LO, i.e., there may be more overlap 

between training and test samples. In this case, higher test accuracy is actually meaningless. 

Therefore, setting LO to 64 ms can minimize sample similarity while expanding sample size, 

thus obtaining more reasonable test results. In addition, in the CNNs-V2 framework, feature 

extraction in time step-wise and sensor channel-wise is carried out simultaneously via 2D Conv. 

In contrast, in the CNNs-V1 framework, the two operations are separated, and deep sensor 

channel-wise information fusion is carried out in the second stage, which seems to be a more 

reasonable way of model construction. Experimental results may provide a new perspective for 

the construction of DL models based on multi-channel data input in the LLMR field. 

 

(a) 

 

(b) 

Figure 13. Distribution of different classification performance metrics in five replicate experiments across all 

subjects at different LO values (on ENABL3S dataset): (a) Accuracy; (b) F1-Score. 

4.1.4 Comparison with State-of-the-Art Methods 

In this subsection, the proposed frameworks are compared with some state-of-the-art 

methods in the LLMR field. All comparative experiments uniformly use sEMG-ACC data and 

are conducted in Intra-S scenario according to the settings in Subsection 4.1.1. Specifically, this 

study compares several commonly employed shallow machine learning classifiers, namely 

KNN [10, 12, 17], LDA [12, 20, 23, 54], SVM [10, 12, 17, 54], and Random Forest (RF) [21]. 
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For each classifier: 1) Six time-domain features are extracted per sEMG channel, including 

Root Mean Square (RMS), mean absolute value, waveform length, average amplitude change, 

zero-crossing rate, and Willison amplitude. Six time-domain features are extracted per ACC 

channel, including RMS, mean, maximum, minimum, peak-to-peak value, and SD; 2) In total, 

a feature subset of 174 dimensions is obtained and subjected to Min-Max normalization for its 

use as input to the classifier; 3) The classifier’s hyperparameters are optimized by grid search 

algorithm. Experimental results are shown in Table 5, where SVM has the highest test accuracy 

(93.997±0.736%), and LDA performs the worst. These machine learning classifiers have lower 

complexity and faster computational efficiency than DL models. However, they rely on domain 

expertise for manual feature extraction and thus fail to achieve end-to-end LLMR. 

In addition, this study also compares several DL models applied on ENABLE3S dataset, 

namely CNN2DLSTM [55], CNN2DGRU [55], MSC-CNN [56] and MCD [53]. Table 5 

presents the number of parameters, M-Adds and test results of these models. In terms of test 

accuracy, CNN2DGRU performs the best but still slightly lower than the three proposed 

frameworks. In terms of model complexity, since MSC-CNN and MCD consider that pooling 

layers may lead to information loss, they only use Conv operations for feature dimension 

reduction, resulting in higher M-Adds values. In particular, MCD is an unsupervised DL model 

designed to achieve LLMR for target subjects whose signals are unlabeled. 

Table 5. Comparison with state-of-the-art methods using sEMG-ACC data on ENABL3S dataset. 

Type Method 
Number of 

Parameters 

M-Adds  

(106) 

Accuracy (%) 

(Mean ± 1 SD)  

Shallow 

Machine 

Learning 

KNN [10, 12, 17] / / 93.201±0.713 

LDA [12, 20, 23, 54] / / 89.400±1.254 

SVM [10, 12, 17, 54] / / 93.997±0.736 

RF [21] / / 93.484±0.957 

Deep 

Learning 

CNN2DLSTM [55] 49,877 21.392 93.470±1.439 

CNN2DGRU [55] 40,337 20.782 94.024±1.499 

MSC-CNN [56] 225,365 126.971 92.435±1.679 

MCD [53] 379,739 71.177 93.600±2.360 

Proposed 

ResNet-V1 (CNNs-V1) 614,253 79.738 94.844±0.639 

CNN-BiLSTM 3,217,677 45.683 95.198±0.839 

CNN-ChebNet (MBG-MN) 106,525 26.395 94.035±1.411 

4.2 Case II: Experimental Results on Dataset of Patients with Stroke 

4.2.1 Regarding the LLMR Task 

In this subsection, Basic-CNN-V1 and CNN-BiLSTM are adopted to further investigate 

the applicability of the proposed LLMR frameworks on patients with stroke. The LW and LO are 

set to 256 ms and 64 ms, respectively, and the other experimental setups refer to Case I. 
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Similarly, the effect of sensor modalities on recognition performance is analyzed in Intra-S 

scenario, and the distribution of different metrics of both models in five replicate experiments 

across all subjects are shown in Figs. 14(a) and 14(b). It can be observed that: 1) CNN-BiLSTM 

performs slightly better than Basic-CNN-V1 regardless of the variation of sensor modalities; 2) 

Slightly different from the experimental results on healthy subjects in Case I (Fig. 12), in this 

case, the recognition performance of these two models using unimodal sEMG data is superior 

to that using unimodal kinematic data (e.g., for CNN-BiLSTM, the mean accuracy improved 

by 1.725% and 1.155% compared to using ACC data and GON data), as well as surpassing the 

performance using multimodal data. 

The reason for this phenomenon may be that only the affected limb data of each patient 

was used for experimental validation. Unlike healthy subjects, patients with stroke have 

heterogeneity regarding lower limb motor dysfunction, which leads to instabilities and 

irregularities in kinematic data. In such cases, fusing kinematic data may degrade the 

performance of sEMG. Experimental results demonstrate the potential of bioelectric sensors 

such as sEMG for LLMR applications in patients with lower limb motor dysfunction caused by 

neurological diseases such as stroke. However, this finding still requires data from additional 

patients for further verification. Additionally, for relatively simple classification tasks, further 

research can be conducted on the selection of sEMG channels to enhance the comfort of 

subjects and reduce system costs. 

 

(a) 

 

(b) 

Figure 14. Distribution of different classification performance metrics in five replicate experiments across all 

subjects using different modal data (on dataset of patients with stroke): (a) Accuracy; (b) F1-Score. 

4.2.2 Regarding the Phase Recognition Task 

In this subsection, the effectiveness of Basic-CNN-V1 and CNN-BiLSTM on the phase 

recognition task during the SitTS process for patients with stroke is further investigated in Intra-

S scenario. As explained in Subsection 2.2.2, in this task, LW is set to 32/48/64 ms, respectively, 

and LO is still set to 25%×LW, i.e., 8/12/16 ms. Figs. 15(a) to 15(c) present the classification 

metrics of both models in five replicate experiments across all subjects at different LW and LO 

values. It can be observed that: 1) Overall, the recognition performance of both models with 

different modal data is slightly negatively associated with the LW and LO values, probably due 
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to the reduction in sample size; 2) Slightly different from the results in Subsection 4.2.1, both 

models perform better using ACC data than sEMG data regardless of the variation of LW and 

LO values, probably because the phase label segmentation is performed based on kinematic data; 

3) Both models achieve the highest phase recognition accuracy exceeding 99% when using 

sEMG-ACC data, slightly higher than that of using sEMG-GON data. 

Experimental results indicate that the proposed LLMR frameworks are also applicable to 

the phase recognition task during the SitTS motion process that require a lower processing delay. 

Additionally, for the gait-related phase recognition research driven by multimodal and multi-

sensor data, they may also offer some reference. 

 

(a) 

 

(b) 

 

(c) 

Figure 15. Variations in means and SDs of different classification performance metrics with different LW-LO (ms) 

values set across all tests of all subjects (on dataset of patients with stroke): (a) 32-8; (b) 48-12; (c) 64-16. 

4.2.3 Comparison with State-of-the-Art Methods 

In this section, the proposed frameworks are compared with the state-of-the-art methods 

mentioned in Case I. For the LLMR task, the unimodal sEMG data are uniformly used, with LW 

and LO set to 256 ms and 64 ms respectively. For the phase recognition task, the sEMG-ACC 

data are uniformly used, with LW and LO set to 32 ms and 8 ms respectively. Additionally, the 

relevant settings for feature extraction and hyperparameter optimization of the shallow machine 
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learning classifiers are described in Section 4.1.4. Experimental results are shown in Table 6. 

It can be observed from Table 6 that: 1) Among the shallow machine learning classifiers, 

SVM performs the best on the two tasks, while among DL models, MSC-CNN performs the 

best; 2) For the LLMR task, the performance of shallow machine learning classifiers is close to 

that of the proposed frameworks, while their performance on the phase recognition task is not 

ideal. Experimental results further verify the superiority of the proposed frameworks in patients 

with stroke-related LLMR or motion phase recognition tasks. 

Table 6. Comparison with state-of-the-art methods on dataset of patients with stroke. 

Type Method 

Accuracy (%) (Mean ± 1 SD) 

LLMR Task Phase Recognition Task 

Shallow 

Machine 

Learning 

KNN [10, 12, 17] 99.127±0.761 97.212±1.491 

LDA [12, 20, 23, 54] 99.247±0.651 96.160±2.199 

SVM [10, 12, 17, 54] 99.482±0.418 97.739±1.827 

RF [21] 98.934±1.017 96.559±1.765 

Deep 

Learning 

CNN2DLSTM [55] 98.973±0.928 99.412±0.390 

CNN2DGRU [55] 99.092±0.921 99.622±0.474 

MSC-CNN [56] 99.222±0.709 99.659±0.318 

Proposed 
Basic-CNN-V1 99.559±0.525 99.841±0.123 

CNN-BiLSTM 99.784±0.241 99.845±0.197 

5. Conclusion and Future Work 

In this study, several DL-based end-to-end LLMR frameworks are explored to achieve 

accurate LLMR via dynamically fusing multimodal and multi-sensor information. Specially, 

aiming at the defect of lacking inherent graph topology in multimodal signals, a novel master 

nodes-based graph data generation method is presented within the CNN-GNNs framework, 

enabling cross-modal information flow and fusion. Furthermore, incorporating the model fine-

tuning technique can significantly improve the domain generalization ability and recognition 

performance of the model in the Inter-S scenario at an acceptable time cost. Experimental 

results on two datasets demonstrate the outstanding performance of the proposed frameworks 

in both Intra-S and Inter-S LLMR tasks, for both healthy subjects and patients with stroke. 

Simultaneously, validation of effectiveness is also conducted on the phase recognition task 

during the SitTS process in patients with stroke. In terms of practical applications in lower limb 

exoskeletons or rehabilitation robots involving human-robot collaboration, requirements such 

as recognition accuracy, hardware performance, and computational efficiency need to be 

considered comprehensively to select the most suitable LLMR framework or model. 

Despite the promising results of this pilot study, there are still some limitations that warrant 

further investigation, as described below: 
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1) Current work only performed offline tests, and further online evaluation is needed. 

Since the development of hardware resources and lightweight networks, deploying the 

proposed LLMR frameworks on resource-constrained embedded devices is promising as long 

as the sampling frequency meets the requirements for online control. 

2) It is necessary to further investigate the applicability of the proposed frameworks in 

predicting continuous lower limb motion intentions, such as joint torques. Additionally, 

recognizing gait phases of healthy subjects and patients with stroke, and analyzing the 

differences in their gait patterns, is also one of the future works. 

3) Event detection of the SitTS motion is based only on joint angle data of the affected 

limb in patients with stroke. However, the onset time of different events in this process is 

slightly different between the affected and healthy limbs. In the following work, more in-depth 

research will be carried out to obtain more reasonable event detection results. 
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