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Background: Many hospitals introduced procalcitonin (PCT) testing to help diagnose bacterial coinfection in 
individuals with COVID-19, and guide antibiotic decision-making during the COVID-19 pandemic in the UK. 

Objectives: Evaluating cost-effectiveness of using PCT to guide antibiotic decisions in individuals hospitalized 
with COVID-19, as part of a wider research programme. 

Methods: Retrospective individual-level data on patients hospitalized with COVID-19 were collected from 11 
NHS acute hospital Trusts and Health Boards from England and Wales, which varied in their use of baseline 
PCT testing during the first COVID-19 pandemic wave. A matched analysis (part of a wider analysis reported 
elsewhere) created groups of patients whose PCT was/was not tested at baseline. A model was created with 
combined decision tree/Markov phases, parameterized with quality-of-life/unit cost estimates from the litera
ture, and used to estimate costs and quality-adjusted life years (QALYs). Cost-effectiveness was judged at a 
£20 000/QALY threshold. Uncertainty was characterized using bootstrapping. 

© The Author(s) 2024. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/ 
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Results: People who had baseline PCT testing had shorter general ward/ICU stays and spent less time on anti
biotics, though with overlap between the groups’ 95% CIs. Those with baseline PCT testing accrued more QALYs 
(8.76 versus 8.62) and lower costs (£9830 versus £10 700). The point estimate was baseline PCT testing being 
dominant over no baseline testing, though with uncertainty: the probability of cost-effectiveness was 0.579 with 
a 1 year horizon and 0.872 with a lifetime horizon. 

Conclusions: Using PCT to guide antibiotic therapy in individuals hospitalized with COVID-19 is more likely to be 
cost-effective than not, albeit with uncertainty.

Introduction
The COVID-19 pandemic has been a global health crisis, with mil
lions of cases and fatalities worldwide. One of the critical issues 
that has emerged during the pandemic is the inappropriate 
use of antibiotics in the management of individuals with 
COVID-19, particularly in those hospitalized.1 Determining whether 
COVID-19 patients have a bacterial coinfection and who there
fore may benefit from antibiotics is challenging, particularly be
cause many of the frequently used biomarkers of infection, such 
as C-reactive protein (CRP), are often elevated in individuals with 
COVID-19.2 Inappropriate and excessive use of antibiotics can 
contribute to antimicrobial resistance (AMR), which can cause 
infections that are difficult or impossible to treat, and therefore 
interventions to support appropriate antibiotic prescribing deci
sions are needed.

Procalcitonin (PCT) is an inflammatory biomarker, measured 
in the blood, that rises when bacterial infection is present 
and falls in response to effective antimicrobial treatment. A 
Cochrane meta-analysis has demonstrated that PCT can guide 
antibiotic therapy in non-COVID-19 acute respiratory infections 
with reduced antibiotic exposure and improved survival.3

During the first wave of the COVID-19 pandemic in the UK, 

many hospitals introduced PCT testing to help diagnose bacterial 
coinfection in individuals with COVID-19 and guide antibiotic 
decision-making.4 This was at odds with US and UK national 
guidelines on the management of community-acquired pneu
monia, which recommended against the use of PCT to guide 
antibiotic prescribing.5,6

The Procalcitonin Evaluation of Antibiotic use in COVID-19 
Hospitalised patients (PEACH) study evaluated whether the use 
of PCT testing to guide antibiotic prescribing safely reduced anti
biotic use among patients admitted to acute UK NHS hospitals 
with COVID-19.7 The study consisted of organization-level and in
dividual patient-level analyses, both investigating the utility of PCT 
for guiding antibiotic prescribing. An initial survey of 148 (of 151; 
98%) acute hospitals in England and Wales demonstrated in
creased use of PCT testing in emergency and acute admissions, 
which preceded development of the NICE guidance. The survey as
certained whether PCT testing was adopted during the pandemic 
and, if so, in which areas of the hospital, and factors relating to the 
test use and interpretation (e.g. cut-offs, testing algorithm).4 A 
retrospective analysis of organization-level data over time found 
that the introduction of PCT testing in emergency departments 
or acute medical admission units was associated with an initial, 
but non-sustained, reduction in total antibiotic use.8

Figure 1. Economic evaluation model. Patients who did and did not receive a PCT test followed the same pathway. This figure appears in colour in the 
online version of JAC and in black and white in the print version of JAC.
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The aim of this paper was to explore the cost-effectiveness 
of using PCT testing to guide antibiotic decisions in individuals 
hospitalized with COVID-19 based on a matched analysis of 
individual-level data collected from 11 UK NHS Trusts and 
Health Boards.

Materials and methods
All analyses were performed in R version 4.3.1.

Data
Retrospective individual-level data on patients hospitalized with COVID-19 
were collected from 11 NHS acute hospital Trusts and Health Boards 
from England and Wales, some of which used PCT testing routinely in 
COVID-19 patients during the first wave of the pandemic and some of 
which did not. In line with the study protocol,7 patient characteristics 
such as age, gender, ethnicity and comorbidities were recorded, along 
with hospital admission and discharge dates, ICU admission and dis
charge dates, and survival time. Information was gathered on whether 
PCT testing and other diagnostics were performed, as well as antibiotic 
and antiviral administration. Data for all patients 16 years old or over 

who were admitted to hospital between 1 February 2020 and 30 June 
2020 and who had a confirmed positive PCR COVID-19 test during this 
period were eligible for the study.5

Total length of stay was calculated as the days between either the 
date of positive COVID-19 test or the date of hospital admission, which
ever was later, and hospital discharge date. Length of ICU stay was cal
culated as the days between either a positive COVID-19 test result or 
ICU admission date, whichever was later, and ICU discharge date. 
General ward length of stay was found by subtracting ICU length of 
stay from total length of stay. After propensity score matching (PSM), par
ticipants with missing total or ICU length of stay were excluded. In add
ition, observations where the ICU length of stay was greater than the 
total length of stay or where either was greater than survival time were 
assumed to be erroneous and discarded.

Treatment was defined as having PCT tested at baseline, defined as 
the day of the first positive sample for COVID-19 (±1 day). Balance of 
important confounders between treatment and control groups was 
achieved using PSM. Full details of this procedure are available in our com
panion paper.9 Patients were matched on age, sex, ethnicity, number of 
comorbidities, smoking status, index of multiple deprivation decile, quick 
SOFA (qSOFA), national early warning score 2 (NEWS2), confusion, urae
mia, respiratory rate, blood pressure, age >65 score (CURB-65), 4C mor
tality score for COVID-19, early secondary bacterial infection, admission 

Table 1. Utility decrements and costs by component of COVID pneumonia admission pathway

Utility decrement Cost (£)

Value Source Value Source

General ward −0.36 Wilcox et al.16 £487.50 per day Metry et al.19

ICU −0.58 Hollmann et al.17 £2386 per day NHS Reference Costs20

PCT £15.20 per test NICE21

Antibiotics −0.05 Oppong et al.18 Varies, see methods eMIT;22 BNF23

AMR £2.12 per prescription Oppong et al.24

Table 2. Participant characteristics, weighted using propensity score-matching weights

All participants in original matched analysis (n = 5960) Participants included in health economic analysis (n = 5771)

Baseline PCT No baseline PCT Baseline PCT No baseline PCT

Mean (SE) Median (IQR) Mean (SE) Median (IQR) Mean (SE) Median (IQR) Mean (SE) Median (IQR)

Age (years) 70.0 (0.425) 73.0 (25.0) 72.4 (0.249) 76.0 (22.0) 70.0 (0.429) 72.5 (25.0) 70.1 (0.597) 71.5 (25.0)
Sex, % Male 56.4 (1.26) 55.3%(0.749) 56.4 (1.28) 58.6 (1.77)
Ethnicity, % White 79.3 (1.03) 76.6 (0.637) 79.1 (1.05) 80.6 (1.36)

Black 4.13 (0.506) 1.95 (0.208) 4.24 (0.519) 3.77 (0.777)
Asian 6.78 (0.639) 3.08 (0.260) 6.83 (0.649) 5.65% (0.83)
Mixed 0.711 (0.214) 0.793 (0.134) 0.663 (0.209) 1.03 (0.421)
Other 3.36 (0.458) 4.28 (0.305) 3.38 (0.465) 3.58 (0.552)

IMD decile 4.13 (0.0734) 4.00 (5.00) 4.50 (0.0452) 4.00 (5.00) 4.14 (0.0745) 3.50 (5.00) 4.14 (0.107) 2.50 (6.00)
Number of 

comorbidities
1.99 (0.0491) 2.00 (3.00) 2.65 (0.0297) 2.00 (3.00) 1.99 (0.0493) 1.50 (3.00) 2.06 (0.0546) 1.50 (2.00)

4C mortality score 
for COVID-19

9.73 (0.0967) 10.0 (5.00) 9.80 (0.0576) 10.0 (4.00) 9.73 (0.0981) 9.50 (5.00) 9.85 (0.137) 9.50 (6.00)

N 5960 5771

Means for included participants weighted using propensity score-matching weights. SE, standard error.
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to ICU at baseline, baseline lung imaging category, the logarithms of 
baseline CRP level, neutrophil count, white cell count, D-dimer and tropo
nin and indicator variables denoting missing blood test data.

Model structure
The model structure is shown in Figure 1. As with several previous studies 
of COVID-19-related interventions,10–12 the model had two phases. The 
first was a decision tree representing the acute phase following hospital
ization with COVID-19. Patients’ PCT levels were either initially tested or 
not. Hospitalization could either be in a general ward or ICU, or a mixture 
of both over the course of a patient’s stay. Patients either died in hospital 
or were discharged. The decision tree phase had a time horizon of 1 year. 
Patients still alive at 1 year then entered a Markov phase with a lifetime 
horizon. This had two states: alive and dead, with the latter being an ab
sorbing state. Results are reported separately for the decision tree phase 
alone and both decision tree and Markov phase combined.

Utilities
Quality-of-life data were not collected from patients, so previously pub
lished values were used to represent their utility. A review of the litera
ture13 revealed a paucity of relevant data on quality of life for people 
hospitalized with COVID-19. Baseline utilities were calculated using the 
age/sex-specific UK population norms used by McNamara et al.,14 and 
in line with previous studies15 each day in a general ward/ICU was as
signed a utility decrement. The disutility for general ward was taken 
from Wilcox et al.16 and that for ICU was taken from Hollman et al.17

Each day of antibiotic treatment was also assigned a decrement, taken 
from Oppong et al.,18 representing the potential for complications. 
Utility decrements are summarized in Table 1.

Costs
The daily cost of a general ward stay was taken from NICE guidance on 
economic evaluation for COVID-19 therapeutics.19 The latest figures 
were for 2019/20, so an inflation uplift of 2.5% was applied.25 The daily 
cost of an ICU stay was obtained from NHS reference costs for clinical 
care for 2020/21.20

The average unit price for PCT testing has previously been estimated 
by NICE, based on list prices of the tests and no discounts assumed. 
This estimate incorporates overhead costs, including capital, service 
and maintenance, and calibration costs.21 As the cost estimate was for 
2015/16, an inflation uplift of 10.4% was applied.20

To calculate the cost of antibiotics in our study, data on the name, dose 
and frequency of dose for antibiotics were collected. These data were inter
preted with the assistance of a clinician. Data on names of prescribed anti
biotics were provided in our dataset in two ways: as coded types of 
antibiotics for common types of antibiotic; and as free text. Inspection of 
the data showed that in many cases, the free text contained various differ
ent spellings of, shorthand versions of, and typographical errors in, names 

Table 3. Decision-tree phase transition probabilities for patients who had 
a PCT performed at baseline and those who did not

Transitions Probabilities

From state To state PCT at baseline No PCT at baseline

Hospitalized Dead 0.309 0.301
Discharged 0.691 0.699

Discharged Dead 0.385 0.395
Markov phase 0.615 0.605
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of both coded antibiotics and non-coded but common antibiotic types. It 
was furthermore established that some instances of free text referred to 
prescribed medication that was not an antibiotic.

As a result of this, regular expressions were used, where possible, to 
correct data contained in free text to standardized names of antibiotics. 
This reduced the number of unique values in the free text from 195 to 57. 
After removal of 19 non-antibiotics from this list, and merging with 49 
coded antibiotic names, 63 unique valid antibiotics remained.

Information on dose was also provided as free text. Regular 
expressions were again used to ensure that, as far as possible, numeric 
and dose measures were consistently coded—for instance, reformatting 
‘500 millilitres’ as ‘500 mL’.

Data on antibiotic name and dose were used to match observations in 
our dataset to publicly available data sources. As per NICE guidelines, 
medication was preferentially matched to a cost provided in the drugs 
and pharmaceutical electronic market information tool (eMIT)22 and, 
where this was not possible, to NHS indicative prices provided by NICE 
BNF records.23 An iterative process was followed to merge antibiotic re
cords to these two datasets in order to correct idiosyncratic errors, and al
low for instances where the prescribed dose was apparently unavailable 
but was present as a multiple of a recorded available dose in this costing 
data. This allowed the costing of 97.3% of antibiotic records in our data.

Excessive and inappropriate antibiotic administration raises the risk of 
AMR, with implication for future health expenditures. A per-dose cost 

Figure 2. Weighted histograms of ward/ICU stays and antibiotic days for patients receiving a PCT test at baseline, and associated QALY losses and costs. 
Crosses indicate the five highest values. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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representing the cost of AMR was estimated based on the method re
ported by Oppong et al.24

Transition probabilities
Transition probabilities for the decision-tree phase were estimated from 
patient data. For the Markov phase, age/sex-specific transition probabil
ities were taken from Office for National Statistics national life tables.26

Discounting
Utilities in the Markov phase were discounted at an annual rate of 3%, in 
line with NICE guidelines.27

Bootstrapping
Point estimates of quality-adjusted life years (QALYs), costs and incremen
tal cost-effectiveness ratios (ICERs), including and excluding the Markov 
phase, were calculated using the whole dataset. Bootstrapping with 
100 000 iterations was then used to generate 95% CIs. The bootstrap
ping results were also used to construct cost-effectiveness acceptability 
curves (CEACs) by estimating the probability of baseline PCT being cost- 
effective at cost-per-QALY thresholds between £0 and £50 000.

Robustness tests
Initial inspection of the data revealed that a number of individuals in the 
‘no PCT’ group spent an entire year in the general ward, whereas the 

Figure 3. Weighted histograms of ward/ICU stays and antibiotic days for patients not receiving a PCT test at baseline, and associated QALY losses and 
costs. Crosses indicate the five highest values. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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longest general ward stay in the PCT group was 158 days. As a robustness 
test, the bootstrapping analysis was repeated after removing those 
outliers.

Results
Data from 6173 individuals with a positive COVID-19 test were 
collected. After quality control (e.g. removal of individuals with 
a COVID-19 test date outside of the study timeline, removal of 
those with inconsistent hospital admission/discharge dates), 
6089 remained. Data from 5960 of 6089 (97.9%) people were 
used for the propensity-score-matched primary analysis, of 
whom 1548 (26.0%) had PCT tested at baseline and 4412 
(74.0%) did not. This quality control process and matched ana
lyses were conducted by the statistics team (D.G., P.P., R.W.) 
and are reported in more detail elsewhere.9

Due to missing data or inconsistencies in variables key to the 
health economic analysis, some further exclusions were neces
sary. Of those included in the primary matched analysis (n =  
5960), 47 observations had missing ICU length of stay, 78 had 
missing total length of stay, and 38 were missing survival time. 
In addition, there were five cases in which ICU length of stay 
was longer than total length of stay, and 38 where total length 
of stay was greater than survival time. After these exclusions, 
there were 5771 people included in the analysis, of whom 1509 
(26.1%) had PCT tested at baseline and 4262 (73.9%) did not. 
Table 2 summarizes the participants’ characteristics before and 
after these exclusions.

Table 3 gives decision-tree transition probabilities. The prob
ability of transitioning from hospitalized to discharged was a little 
over two-thirds, with a 0.008 lower probability for people admi
nistered PCT at baseline. Conditional on being discharged, there 
was a probability of around 0.6 of surviving to 1 year and entering 
the Markov phase. This probability was 0.1 higher for people ad
ministered PCT at baseline.

Table 4 shows the average days spent in a general ward and in 
ICU, days on antibiotics, and number of PCT tests, along with as
sociated QALY losses and costs. People who had a PCT test at 
baseline had shorter general ward stays, as well as shorter ICU 
stays, and spent less time on antibiotics, though note the con
siderable overlap in 95% CIs in each case. The ‘baseline PCT’ 
group received 1.5 more PCT tests on average compared with 
the ‘no PCT’ group. The biggest QALY losses were associated 

with general ward days, and the greatest costs were associated 
with general ward and ICU days, with these being orders of 
magnitude greater than the impacts of PCT testing and anti
biotic treatments. For example, in the ‘baseline PCT’ group, 
the QALY loss associated with being in a general ward was 
−9.15 × 10−3, which is 11 times greater than the loss of 
−8.45 × 10−4 associated with being on antibiotics. Similarly, in 
the ‘no baseline PCT’ group, the average cost of their ICU stay 
was £6400, which is 604 times greater than the £10.60 cost 
for PCT testing. Figures 2 and 3 show the distribution of general 
ward/ICU length of stay, and of antibiotic days, along with the 
associated QALY losses and costs. There are long tails in general 
ward and ICU distributions, with the extreme outliers being 
more prevalent in the ‘no baseline PCT’ group than in the ‘base
line PCT’ group.

In Table 5, the average survival time (capped at 365.25 days) 
was 2 days higher for people who had PCT testing at baseline, at 
234 days, though there was considerable overlap in 95% CIs. The 
baseline utility of each group was similar (0.767 versus 0.769), 
but people who had PCT testing at baseline accrued more 
QALYs, both when considering the decision-tree phase alone 
(0.486 versus 0.479) and when also including the Markov phase 
(8.76 versus 8.62). The total cost was also lower when people 
had a PCT test performed at baseline (£9830 versus £10 700). 
Figure 4 shows the distributions of total costs and QALYs, both in
cluding and excluding the Markov phase. For total costs, there 
was a long tail, with 90% of patients’ costs less than £15 000, 
yet at the same time, over 50 patients had costs in excess of 
£100 000, and the very highest costs were over £200 000. The 
distributions of QALYs were bimodal, with peaks for the decision 
tree alone occurring between 0 and 0.1 QALYs, and between 
0.7 and 0.8 QALYs. When including the Markov phase as well, 
peaks were observed between 0 and 2 QALYs, and between 18 
and 20 QALYs.

As baseline PCT testing resulted in more QALYs and lower 
costs, the point estimate of our analysis implies that baseline 
PCT testing is a dominant strategy against no baseline PCT test
ing. However, Figure 5 puts the point estimate in context by 
illustrating the results of the bootstrap analysis, demonstrating 
that there is a large amount of uncertainty around that conclu
sion. Figure 6 shows the CEACs, and with a cost-per-QALY 
threshold of £20 000 the probability of cost-effectiveness 
is 0.579 when considering only the decision-tree phase, which 

Table 5. Survival time, total QALYs and costs for patients who had a PCT performed at baseline and those who did not

Baseline PCT No baseline PCT

Mean 95% CI Mean 95% CI

Survival time (days) 234 (227–241) 232 (222–241)
Probability of 1 year survival 0.615 (0.596–0.634) 0.605 (0.578–0.630)
Baseline utility 0.767 (0.765–0.769) 0.769 (0.766–0.772)
Total QALYs (decision-tree phase only) 0.486 (0.472–0.501) 0.479 (0.460–0.498)
Total QALYs (decision-tree and Markov phases) 8.76 (8.44–9.09) 8.62 (8.15–9.08)
Total cost (£) 9830 (9040–10 600) 10 700 (8830–12 300)
ICER (decision-tree phase only) −117 000 (−1 300 000 to 1 180 000)
ICER (decision-tree and Markov phases) −5930 (−58 300 to 55 300)
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rises to 0.872 when considering both decision-tree and Markov 
phases.

There were 13 patients who spent the entire year of the 
decision-tree phase in a general ward in the ‘no baseline PCT’ 
group. After repeating the analysis with these outliers removed, 
the probability of baseline PCT testing being cost-effective rose 
to 0.753 when considering a 1 year horizon, and to 0.862 when 
considering a lifetime horizon. Full results are provided in Tables 

S1 and S2 and Figures S1 and S2 (available as Supplementary 
data at JAC Online).

Discussion
The results of this cost-effectiveness analysis demonstrate that 
using PCT to guide antibiotic decisions in individuals hospitalized 
with COVID-19 is more likely to be cost-effective than not, based 

Figure 4. Weighted histograms of total cost and QALYs. Crosses indicate the five highest values. (a) Participants with PCT tested at baseline. (b) 
Participants without PCT tested at baseline. This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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on a cost-per-QALY threshold of £20 000, with a considerable 
amount of uncertainty in this conclusion, however. Baseline PCT 
testing resulted in more QALYs and lower costs overall both in 
the short (1 year post-admission) and long-term (lifetime ana
lysis). However, a key driver of uncertainty in this analysis is the 
estimated QALYs; as an analysis largely based on matched retro
spective observational data, we did not have quality-of-life data 
directly available and had to rely on estimates from the literature 
for this crucial component of the model.

There have been some published studies that have looked at the 
impact of using PCT to guide antibiotic therapy in patients hospita
lized with COVID-19, all consistently concluding that PCT is a safe 
and simple way to reduce antibiotic use in patients hospitalized 
with COVID-19.28–31 On the other hand, the usefulness of PCT has 
been questioned when applied to patients treated with contempor
ary state-of-the-art immunomodulators.32 To our knowledge, this is 
the first study to examine whether the use of PCT to guide antibiotic 
prescribing in patients hospitalized with COVID-19 is a cost-effective 
strategy. Van der Pol et al.33 conducted a systematic review of eco
nomic analyses of diagnostics for respiratory tract infections and 
found three studies that evaluated the cost-effectiveness of PCT 
testing in a hospital setting (two studies focused on hospital in gen
eral and one on intensive care).33 All three of these studies con
cluded that PCT was likely to be cost-effective, but none of the 
studies were from a UK perspective.34–36 There are currently two 
randomized controlled trials in the UK in adults evaluating the use 
of PCT in individuals with sepsis: ADAPT-Sepsis in hospitalized adults 
(nearing completion); and PRONTO in adults with suspected sepsis 
presenting to the Emergency Department (recruitment com
pleted).37,38 Both of these studies include planned health econom
ics analysis, and it will be useful to compare their results with the 
findings from the current study.

Comparing the findings reported here with the companion pa
per of Sandoe et al.,9 they are consistent, as should be expected 
given that they both use the same data. Their main result was 
significantly fewer antibiotic days for those who had a PCT test 
at baseline compared with those who did not, which is also 
shown here. Sandoe et al. do not report statistically significant 
differences in length of stay and mortality (at 30 and 60 days) 
whereas here differences in those variables are key drivers in 
the central estimate that baseline PCT testing is cost-effective. 

Figure 5. Cost-effectiveness planes. The x-axis and y-axis show, respectively, the QALY and cost differences between patients given and not given PCT 
tests at baseline with a 1 year (left) and lifetime (right) horizon. This figure appears in colour in the online version of JAC and in black and white in the 
print version of JAC.

Figure 6. Cost-effectiveness acceptability curve. This figure appears in 
colour in the online version of JAC and in black and white in the print ver
sion of JAC.
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The results are not contradictory, and in both analyses, there are 
similar differences in the point estimates of the variables, but we 
do not test for statistical significance between those variables, as 
such tests are not relevant for our analytical approach. It is also 
possible for small and non-significant differences in a variables 
such as ICU length of stay to lead to greater differences in costs 
and QALYs due to the associated large unit costs and disutilities.

A key strength of our study is that it is based on ‘end-to-end’ 
individual-level data for a large, multiregional cohort of patients 
rather than having to rely heavily on a linked evidence approach, 
which is common for the economic evaluation of diagnostic 
tests. This limited the number of modelling assumptions that 
needed to be made to build the model, and means that the evi
dence on which we have based the model is reflective of real- 
world clinical practice. As an observational study, however, there 
is a risk that some unknown confounding factors may have influ
enced effectiveness estimates, which could not be adjusted for in 
the matched analysis. A sensitivity analysis conducted as part of 
the main statistical analysis indicated that this possibility of re
sidual confounding cannot be ruled out.9 The retrospective na
ture of the data collection also meant that we did not have 
individual-level quality-of-life data available, and we had to rely 
on generic utility decrements associated with being in general 
or ICU wards, and being on antibiotics, leading to high uncer
tainty in the incremental QALYs. This study was conducted in 
England and Wales, and judged cost-effectiveness according to 
the relevant Health Technology Assessment body for those coun
tries, i.e. NICE. Thus its findings will not necessarily translate to 
other contexts where not only may the patient population have 
different characteristics, but where different standards may be 
used for assessing cost-effectiveness.

This economic evaluation, based on a large cohort of retro
spective matched observational individual-level data from 11 
NHS Trusts and Health Boards in England and Wales, provides 
real-world evidence that using PCT to guide antibiotic therapy 
in patients hospitalized with COVID-19 is more likely to be cost- 
effective than not, albeit with considerable uncertainty.

Future work could usefully look at other respiratory diseases. 
Also, given that the mean ICU stay was relatively short, it could 
be that baseline PCT testing is more cost-effective in diseases 
with longer average ICU stays, and future research could address 
this. This study focused specifically on PCT testing at baseline, i.e. 
at the time when a positive COVID-19 result was returned. This 
means that many people in the control group had a PCT test at 
some point, and may well have ceased/not initiated antibiotic 
treatment on the basis of the result. The reason for choosing 
baseline testing as the treatment/control criteria is that baseline 
PCT testing represents a clear, implementable protocol for hospi
tals. Future work could usefully explore the (cost-) effectiveness 
of PCT testing later in the treatment pathway.
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