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Abstract: Previous studies have demonstrated the association between antibiotic use and severe
COVID-19 outcomes. This study aimed to explore detailed antibiotic exposure characteristics among
COVID-19 patients. Using the OpenSAFELY platform, which integrates extensive health data and
covers 40% of the population in England, the study analysed 3.16 million COVID-19 patients with at
least two prior antibiotic prescriptions. These patients were compared to up to six matched controls
without hospitalisation records. A machine learning model categorised patients into ten groups based
on their antibiotic exposure history over the three years before their COVID-19 diagnosis. The study
found that for COVID-19 patients, the total number of prior antibiotic prescriptions, diversity of
antibiotic types, broad-spectrum antibiotic prescriptions, time between first and last antibiotics, and
recent antibiotic use were associated with an increased risk of severe COVID-19 outcomes. Patients
in the highest decile of antibiotic exposure had an adjusted odds ratio of 4.8 for severe outcomes
compared to those in the lowest decile. These findings suggest a potential link between extensive
antibiotic use and the risk of severe COVID-19. This highlights the need for more judicious antibiotic
prescribing in primary care, primarily for patients with higher risks of infection-related complications,
which may better offset the potential adverse effects of repeated antibiotic use.

Keywords: antibiotics; COVID-19; primary care

1. Introduction

The COVID-19 pandemic has had an overwhelming impact worldwide. A meta-
analysis reported that the global pooled case fatality rate was 1% among the general
population in 2020 [1]. However, it is estimated that COVID-19 still caused 18.2 million
excess deaths during the period from 2020 to 2021 [2].

According to Trougakos’s (2021) review, COVID-19 is a two-phase disease associated
with mild or severe outcomes [3]. The first phase involves the virus spreading within
the respiratory and gastrointestinal tracts, and the second phase may trigger a signifi-
cant immune response in the hosts, where individual diversity (e.g., age and sex) drives
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the severity of the immune reaction. However, some potential factors related to severe
outcomes may still be unknown.

To date, several studies have observed altered gut microbiota accompanied by dysfunc-
tional immune or metabolic responses related to severe COVID-19 infections in hospitalised
patients [4–6]. Although there was no significant change in the gut microbiota for mild
COVID-19 patients, virulence factors and antimicrobial resistance genes (ARGs) were found
to have higher expression levels [7], which may lead to gut dysbiosis in these populations.

Antibiotics are one of the major factors that can cause perturbation of the gut mi-
crobiome. A systematic review indicated that long-term dysbiosis may result from a
combination of antibiotic types [8]. The administered antibiotic spectrum, route, and du-
ration also influence the resilience of the gut microbiome [9]. Both our previous findings
and research from Spain have shown frequent antibiotics might be correlated to COVID-19
severity [10], suggesting that antibiotic-associated alterations in the gut microbiota make
the host susceptible to new infections. Although previous research analysed the volume
and recent exposure timing of antibiotics, detailed prescribing patterns were not evaluated,
which may help to understand how antibiotics impact the gut microbiota. This observed
relationship may, in part, be confounded by a patient’s overall ill health, leading to a higher
antibiotic prescribing history (e.g., in those who are immunosuppressed).

Therefore, the aim of this study was to build upon our previous research, which evalu-
ated the effects of prior antibiotics on the severity of COVID-19 infection outcomes [11],
to explore the relationship between COVID-19 infection severity and exposure to two or
more prior antibiotic prescriptions. The primary goal was to more accurately describe the
characteristics of antibiotic prescribing and its association with severe COVID-19 outcomes,
taking into account various risk factors such as increased comorbidities in this population,
age, sex, and ethnicity.

2. Results
2.1. Study Participants

From 1 February 2020 to 31 December 2022, 3.2 million patients were identified as
incident COVID-19 patients, and 889,850 (28.2%) patients had more than two antibiotic
prescriptions in the 3-year exposure period. After matching, a balanced distribution in age,
sex, region, and index date between case and control was achieved, resulting in 67,515 cases
and 375,330 controls in the analysis (Supplementary Table S3). Table 1 shows that controls
consisted of a healthier population at baseline. Cases had a higher proportion of unhealthy
weight, presence of comorbidity, smoking history, and deprivation than controls.

Table 1. Baseline characteristics for cases and controls stratified by outcome.

Case (n 1 = 67,515) Control (n 1 = 375,330)

n 1 % n 1 %

Age group
18–29 1665 2.5 9115 2.4
30–39 3205 4.7 18,350 4.9
40–49 4735 7.0 27,040 7.2
50–59 8310 12.3 48,065 12.8
60–69 11,070 16.4 63,885 17.0
70–79 16,535 24.5 94,630 25.2
80+ 21,995 32.6 114,245 30.4
Sex
male 36,555 54.1 207,450 55.3
female 30,960 45.9 167,880 44.7
Ethnicity
White 57,400 85.0 305,410 81.4
South Asian 5495 8.1 28,565 7.6
Black 1310 1.9 4135 1.1
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Table 1. Cont.

Case (n 1 = 67,515) Control (n 1 = 375,330)

n 1 % n 1 %

Mixed 560 0.8 2605 0.7
Other 1145 1.7 4760 1.3
Unknown 1600 2.4 29,860 8.0
BMI category 2

Healthy weight (<18.5 kg/m2) 13,490 20.0 82,845 22.1
Underweight (18.5–24.9 kg/m 2) 1580 2.3 7275 1.9
Overweight (25–29.9 kg/m 2) 16,935 25.1 109,010 29.0
Obese (≥30 kg/m2) 24,730 36.6 112,190 29.9
Unknown 10,780 16.0 64,010 17.1
CCI group 3

No comorbidities (0) 19,830 29.4 164,015 43.7
Low (1–2) 36,765 54.5 177,195 47.2
Medium (3–4) 9685 14.3 30,845 8.2
High (5–6) 1185 1.8 3085 0.8
Very high (≥ 7) 50 0.1 195 0.1
Smoking status 4

Never 22,425 33.2 142,935 38.1
Current 6145 9.1 34,385 9.2
Former 38,790 57.4 196,805 52.4
Unknown 160 0.2 1215 0.3
IMD 5

1 (least deprived) 9370 13.9 62,170 16.6
2 11,470 17.0 70,280 18.7
3 13,420 19.9 77,720 20.7
4 14,380 21.3 77,020 20.5
5 (most deprived) 17,605 26.1 79,830 21.3
Unknown 1265 1.9 8305 2.2
Care home residents 3010 4.5 31,875 8.5
COVID-19 vaccine 6 29,100 43.1 181,090 48.2
Flu vaccine 7 46,285 68.6 261,090 69.6

1. The counts of patients were rounded to the nearest five numbers in line with disclosure controls. 2. BMI, or
body mass index as most recent recorded within the previous 5 years. 3. CCI, Charlson Comorbidities Index,
measured from 17 weighted conditions, including Myocardial infarction, Congestive heart failure, Peripheral
vascular disease, Cerebrovascular disease, Dementia, Chronic pulmonary disease, Connective tissue disease, Ulcer
disease, Mild liver disease, Diabetes, Hemiplegia, Moderate or severe renal disease, Diabetes with complications,
Any malignancy (including leukaemia and lymphoma), Moderate or severe liver disease, Metastatic solid tumour,
and AIDS. 4. Smoking status and care home residents identified from the most recent clinical records. 5. IMD
(Index of Multiple Deprivation) quintile measured from patient-level postcode. 6. COVID-19 vaccine has been
identified since the vaccination programme started. 7. Influenza vaccine identified in the previous 2 years.

Supplementary Table S4 shows that cases had more antibiotic prescriptions (mean
counts, 9.7 vs. 6.9), a longer antibiotic exposure period (mean days, 614.7 vs. 542.7), and
more recent antibiotics received (mean days, 275.0 vs. 325.9). Over half of the control group
received the lowest level of antibiotic types compared to cases (level 1, control 57.5% vs. case
49.5%), and most of the controls were not prescribed broad-spectrum antibiotics (level 1,
control 73.9% vs. case 68.4%). Cases experienced shorter intervals between prescriptions,
and controls showed less variability in prescribing intervals.

2.2. Antibiotic Exposure and Severe COVID-19 Outcome

The prescribing interval average, recent antibiotic exposure, prescribing interval devi-
ation, and exposure period were the most important variables in the random forest (RF)
model (Figure 1). The RF model utilised antibiotic exposure data to stratify COVID-19
patients into decile groups based on their risk of hospitalisation. Higher decile groups,
sharing similar antibiotic histories, have an increased risk of severe COVID-19 (Table 2). The
adjusted conditional logistic regression (CLR) model revealed that those in the highest risk
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decile were approximately five times more likely to experience severe COVID-19 compared
to those in the lowest risk decile. (adjusted model 4.8 [4.6–5.0]).
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Figure 1. Variable importance plot based on the RF model. All antibiotic exposure variables were
assessed in the prior 3 years, which started with 3 years plus 6 weeks before COVID-19 outcome
and completed the whole 3-year observation. Antibiotics in the 6 weeks before the COVID-19 onset
were excluded from the study design. Antibiotic-related variables included: 1. The prescribing
interval was estimated for each individual by collecting the number of days between each antibiotic
prescription. The average of prescribing intervals was shown as the mean. 2. time from the last
antibiotic prescription until COVID-19 onset. 3. The prescribing interval was estimated for each
individual by collecting the number of days between each antibiotic prescription. The deviation
of prescribing intervals was shown as the standard deviation. 4. time between the first prescrip-
tion and the last antibiotic prescription. 5. count of the total number of antibiotic prescriptions.
6. count of unique types of prior antibiotic prescriptions. 7. count of prior broad-spectrum antibi-
otic prescriptions.

Table 2. Association of prior antibiotic exposure levels and COVID-19 outcomes.

Probability of COVID-19
Hospitalisation

Conditional Logistic
Regression Model 1

Risk Level RF Estimated Observed OR 95% CI

Decile 1 (lowest) 0.09 0.08 ref
Decile 2 0.11 0.10 1.3 1.2–1.3
Decile 3 0.12 0.11 1.5 1.4–1.5
Decile 4 0.13 0.12 1.6 1.5–1.7
Decile 5 0.14 0.13 1.7 1.6–1.8
Decile 6 0.15 0.14 1.9 1.8–2.0
Decile 7 0.16 0.16 2.1 2.1–2.2
Decile 8 0.17 0.18 2.6 2.5–2.7
Decile 9 0.19 0.22 3.1 3.0–3.2
Decile 10 (highest) 0.25 0.30 4.8 4.6–5.0

1. adjusted for ethnicity, BMI category, CCI group, smoking status, IMD, care home residents, COVID-19, and
influenza vaccine.

Total antibiotics, antibiotic types, broad-spectrum antibiotics, and exposure period
were found to increase with risk decile (Figure 2a–d), while recent antibiotics decreased
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(Figure 2e). Both the prescribing interval average and deviation presented rising and falling
trends. However, the result shows that there was still a large amount of variability within
each decile group.
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(first to last antibiotics) (days); (e) recent antibiotics (days); (f) prescribing intervals average (days);
(g) prescribing intervals deviation (days). All antibiotic exposure variables were assessed in the
prior 3 years, which started from 3 years plus 6 weeks before the COVID-19 outcome and completed
the whole 3-year observation. Antibiotics in the 6 weeks before COVID-19 onset were excluded
from the study design. Antibiotic-related variables included: (a) count of total number of prior
antibiotic prescriptions. (b) count of unique types of prior antibiotic prescriptions. (c) count of prior
broad-spectrum antibiotic prescriptions. (d) time between the first prescription and the last antibiotic
prescription. (e) time from the last antibiotic prescription until COVID-19 onset. (f,g) The prescribing
interval was measured for each individual by collecting the number of days between each antibiotic
prescription, and the mean and standard deviation were estimated. The black line showed the median
value within each decile group; the blue line showed the 25th and 75th percentiles; and the red line
showed the 5th and 95th percentiles.

Table 3 summarises the combination of antibiotic characteristics by risk decile groups.
Most patients in the lowest risk decile received the lowest level of total antibiotic pre-
scriptions (73.1%), antibiotic types (91.9%), and broad-spectrum antibiotics (91.1%), and
around 60% of patients had a shorter exposure period. On the other hand, patients in
the highest risk decile received the most antibiotic prescriptions (92.8%), antibiotic types
(66.5%), broad-spectrum antibiotics (41.9%), longest exposure period (79.5%), and most
recent antibiotics (82.8%).

Figure 3 lists the 10 most common antibiotics: amoxicillin, nitrofurantoin, doxy-
cycline, flucloxacillin, trimethoprim, clarithromycin, azithromycin, co-amoxiclav, phe-
noxymethylpenicillin, and cefalexin. The proportion of each type prescribed in each decile
was measured. The consumption of different antibiotic types was closer in the highest
decile group than in other deciles. Approximately 32.9% of the prescriptions prescribed
in decile 1 were for Amoxicillin. Nitrofurantoin (13.8% to 16.4%) and Doxycycline (12.9%
to 15.4%) were highly used and remained stable across the decile. It was noticeable that
Azithromycin remained the lowest percentage from decile 1 to decile 9 (0.2% to 2.9%) but
surged to 14.3% in decile 10. Trimethoprim presented an upward trend from 5.2% to 13.5%
when decile increased.

Table 3. Antibiotic characteristics by RF decile groups.

Variables 1,2,3
Decile 1
(Lowest

Risk)
Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9

Decile 10
(Highest

Risk)

Total antibiotics
(count) 4

2
(2, 3)

2
(2, 3)

3
(2, 3)

3
(2, 4)

3
(2, 5)

4
(3, 6)

5
(4, 7)

7
(5, 9)

10
(7, 14)

20
(13, 35)

Level 1 (2) (lowest) 73.1% 58.5% 48.8% 38.8% 26.4% 15.1% 7.6% 2.1% 0.2% 0%
Level 2 (3) 25.6% 37.7% 43.3% 45.9% 45.3% 41.4% 30.3% 16.6% 5.6% 0.6%
Level 3 (6) 1.3% 3.5% 7.2% 13% 22.3% 32% 39.5% 38.6% 68.5% 6.6%
Level 4 (13) (highest) 0% 0.3% 0.6% 2.3% 6% 11.5% 22.6% 42.7% 23.7% 92.8%
Antibiotic types
(count) 5

2
(1, 2)

2
(1, 2)

2
(1, 2)

2
(2, 3)

2
(2, 3)

2
(2, 3)

2
(2, 3)

3
(2, 4)

3
(3, 4)

4
(3, 6)

Level 1 (2) (lowest) 91.9% 83.9% 78.7% 73.6% 64.1% 53.8% 44.9% 33.7% 23.7% 14.8%
Level 2 (3) 7.2% 14.1% 17.2% 19.3% 23.4% 28.8% 31.5% 31.6% 27.3% 18.7%
Level 3 (4) (highest) 0.8% 2.0% 4.2% 7.1% 12.5% 17.4% 23.6% 34.8% 49.0% 66.5%
Broad-spectrum
antibiotics (count) 6

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 0)

0
(0, 1)

0
(0, 1)

0
(0, 1)

1
(0, 3)

Level 1 (0) (lowest) 91.1% 85.3% 83.5% 82.6% 80.6% 77.0% 71.5% 64.0% 55.9% 39.3%
Level 2 (1) 7.2% 12.1% 13.3% 13.6% 14.3% 15.8% 17.3% 19.9% 21.4% 18.8%
Level 3 (3) (highest) 1.7% 2.6% 3.2% 3.8% 5.1% 7.2% 11.3% 16.1% 22.7% 41.9%

Time between (day) 7 120
(11, 367)

264
(58, 478)

325
(116, 561)

419
(180, 666)

539
(268, 472)

615
(402, 797)

686
(477, 864)

785
(583, 925)

899
(743, 991)

1010
(897, 1057)

Level 1 (75) (lowest) 63.1% 48.9% 42.0% 32.9% 23.9% 15.4% 10.3% 7.3% 4.0% 2.1%
Level 2 (423) 24.9% 33.2% 35.1% 34.9% 31.8% 30.7% 26.3% 17.9% 9.3% 6.2%
Level 3 (728) 10.0% 14.5% 18.5% 25.9% 32.5% 36.4% 37.0% 36.6% 26.9% 12.1%
Level 4 (977) (highest) 2.0% 3.4% 4.4% 6.3% 11.8% 17.4% 26.3% 38.2% 59.8% 79.5%
Recent antibiotics
(day) 8

637
(388, 817)

499
(292, 697)

416
(252, 638)

340
(199, 538)

270
(150, 420)

210
(188, 371)

165
(95, 303)

132
(80, 241)

94
(62, 158)

62
(51, 85)

Level 1 (65) (lowest) 2.5% 3.6% 4.8% 7.4% 13.1% 20.0% 27.4% 36.0% 53.5% 82.8%
Level 2 (155) 6.8% 12.9% 17.5% 24.0% 30.3% 33.9% 37.1% 38.0% 33.6% 14.8%
Level 3 (334) 23.6% 30.0% 34.4% 37.0% 36.8% 32.7% 26.0% 18.5% 9.8% 1.9%
Level 4 (678) (highest) 67.1% 53.5% 43.3% 31.6% 19.8% 13.4% 9.6% 7.5% 3.0% 0.5%
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Table 3. Cont.

Variables 1,2,3
Decile 1
(Lowest

Risk)
Decile 2 Decile 3 Decile 4 Decile 5 Decile 6 Decile 7 Decile 8 Decile 9

Decile 10
(Highest

Risk)

Prescribing intervals
average (day) 9

98
(10, 238)

151
(45, 314)

175
(76, 324)

190
(92, 316)

186
(101, 306)

170
(102, 284)

145
(95, 236)

122
(80, 174)

94
(66, 138)

50
(31, 76)

Level 1 (30) (lowest) 43.7% 29.8% 22.2% 17.2% 13.3% 11.6% 11.8% 14.6% 22.0% 63.8%
Level 2 (93) 13.5% 15.3% 16.6% 17.1% 19.1% 23.4% 29.8% 38.4% 47.2% 29.6%
Level 3 (171) 17.6% 20.6% 24.2% 26.3% 29.2% 31.3% 33.5% 34.1% 27.1% 6.0%
Level 4 (363) (highest) 25.1% 34.3% 37.0% 39.4% 38.5% 33.7% 24.9% 12.8% 3.7% 0.6%
Prescribing intervals
deviation (day) 9

0
(0, 0)

0
(0, 78)

0
(0, 126)

41
(0, 162)

90
(0, 187)

111
(40, 202)

117
(63, 199)

112
(71, 175)

96
(62, 149)

51
(25, 83)

Level 1 (0) (lowest) 77.0% 62.1% 52.2% 41.2% 27.8% 16.1% 8.6% 2.9% 0.7% 0.2%
Level 2 (37) 7.6% 11.7% 12.8% 14.8% 16.3% 18.0% 18.2% 20.0% 27.9% 64.1%
Level 3 (103) 6.0% 10.7% 14.0% 16.8% 22.4% 28.3% 35.0% 43.0% 46.2% 27.6%
Level 4 (226) (highest) 9.4% 15.5% 21.0% 27.2% 33.5% 37.6% 38.2% 34.2% 25.3% 8.2%

1. continuous variables: mean (SD); and grouped by levels as categorical variables: patient number and percentage.
2. The values of each decile were shown as the median and Q1 (25th percentile) and Q3 (75th percentile) numbers;
the values of each antibiotic exposure level 1–4 show the median value in brackets. 3. The counts of patients were
rounded to the nearest five numbers in line with disclosure controls. 4. count of total antibiotic prescriptions
grouped by quartile; level 1 is the lowest (1st quartile), and level 4 is the highest quartile (4th quartile). 5. count of
unique antibiotic types grouped by quartile; level 1 is the lowest (combined 1st and 2nd quartile for the same
value); level 3 is the highest quartile (4th quartile). 6. count of broad-spectrum antibiotic prescriptions grouped by
quartile; level 1 is the lowest (combined 1st and 2nd quartile for the same value); level 3 is the highest quartile
(4th quartile). 7. The time between the first prescription and the last antibiotic prescription was estimated and
grouped by quartile; level 1 is the lowest (1st quartile), and level 4 is the highest quartile (4th quartile). 8. From
the last antibiotic prescription until COVID-19 onset, days were estimated and grouped by quartile; level 1 is the
lowest (1st quartile), and level 4 is the highest quartile (4th quartile). 9. The prescribing interval was measured
by collecting the number of days between each antibiotic prescription by individuals, and then the mean and
standard deviation were estimated. The values were grouped by quartile; level 1 is the lowest (1st quartile), and
level 4 is the highest quartile (4th quartile).
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2.3. Sensitivity Analysis for Antibiotic Exposure Interaction

In this sensitivity analysis, the interaction relationships between total antibiotic pre-
scriptions and the other six antibiotic exposure variables were analysed (Supplementary
Figure S2A–F). Generally, ORs increased with total antibiotic frequency subgroups from
very low to very high users, but the trend varied within each subgroup. When compared
to the lowest-level reference group, the ORs of each antibiotic type level were almost iden-
tical within subgroups. In contrast, the ORs increased with the levels of broad-spectrum
antibiotics and exposure period and decreased with the levels of recent antibiotics within
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each subgroup. For average and deviation of prescribing intervals, ORs increased slightly
in very low to high groups, while the highest ORs both appeared at level 1 in the very high
subgroup and then went down with the levels. This suggested that for the most frequent
antibiotic users, shorter days between repeated prescriptions were at higher risk.

3. Discussion

This study evaluated the association between the characteristics of antibiotics and the
risk of hospital admission or death among patients with a recent COVID-19 infection who
had received at least two antibiotic prescriptions in the prior three years. Variables such
as the total number of antibiotic prescriptions, the number of antibiotic types, the number
of broad-spectrum antibiotic prescriptions, the time between the first and last antibiotic
prescriptions, as well as recent antibiotic use, were associated with becoming a case. The
different characteristics of antibiotic exposure were found to be associated with the risk of
severe COVID-19 outcomes.

Compared to previous research in COVID-19 populations, the population in this study
were patients who had used two or more antibiotics in the past three years. They exhibited
a higher prevalence of white ethnicity, comorbidities, deprivation, residency in care homes,
and a greater likelihood of receiving COVID-19 and influenza vaccinations. Nevertheless,
after adjusting for confounding variables, these findings are consistent with previous re-
search, which demonstrated that the quantity and diversity of antibiotic exposure were
correlated with severe outcomes of COVID-19 infection [11]. This study also observed that
patients at high risk of severe COVID-19 had received more recent antibiotics within the an-
tibiotic assessment window. This variable, withdrawing prescriptions within the six weeks
before COVID-19 onset, was implemented due to a meta-analysis’s conclusion that bacterial
co-infections were less common in COVID-19 patients [12] and concerns regarding the
overuse of antibiotics during the pandemic [13]. Considering that patients at higher risk
of COVID-19 also had a longer duration between their first and last prescriptions, one
plausible interpretation is that these high-risk patients were frequent and long-term users
of antibiotics. However, patients with repeated antibiotic use tend to be more likely to
be immunosuppressed and susceptible to infections, which may potentially confound the
results. Furthermore, a review indicates that older age, males, and pre-existing comor-
bidities are linked to weaker immunity, which may contribute to the increased severity of
COVID-19 [14]. Despite age and sex matching in this study, as well as adjustments made
for comorbidities, it is essential to stay alert to potential factors that could influence the
interpretation of the results.

A key question is what a possible biological mechanism could be behind an increased
risk of viral infections (such as COVID-19) with larger and more diverse prior antibiotic
exposures. Antibiotics can disrupt the microbiota in the gut as well as the oral and nasal
cavities, resulting in a less diverse microbiota [8]. The imbalance of the intestinal micro-
biome may increase the susceptibility to infections by enabling opportunistic pathogens
already present in the microbiota to thrive [15]. A systematic review by Elvers (2020)
suggested that the acute alterations in the gut microbiome would recover to baseline within
1 month after ceasing commonly prescribed antibiotics in primary care, although other
studies indicated a longer restitution time of 2–6 months [16]. The impact of repeated an-
tibiotic exposures on the microbiota is less well studied. An animal model in rodents found
that the gut microbiome disturbance lasted longer with a longer duration of exposure to
amoxicillin [17]. Thus, intermittent and longer-duration antibiotic use may lead to frequent
perturbations, affecting gut microbiota resilience. Furthermore, the gut microbiota serves
as a reservoir for antibiotic resistance genes (ARGs), with prolonged treatment linked
to increased antimicrobial resistance (AMR) risks [18,19]. The present study found that
the level of broad-spectrum antibiotic prescribing was associated with a higher risk of
severe COVID-19 outcomes. This is consistent with previous research that observed more
multi-drug-resistant bacteria in a broad-spectrum antibiotic treatment group compared
with the narrow-spectrum group [20]. Broad-spectrum antibiotics can also alter both bac-
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terial and fungal compositions, which have complex interactions in maintaining the gut
microbiome [21]. Consistent with our findings, several other observational studies have
found associations between prior use of antibiotics and increased risks of infections and
infection-related complications [10,11,22].

Another key question for assessing the harm-benefit ratio of repeated antibiotic ex-
posure is whether frequent and diverse antibiotic exposure (with the highest risks in this
study of severe COVID-19 outcomes) is actually effective in treating common bacterial
infections and in reducing infection-related complications. Despite the widespread use of
antibiotics and patients in primary care frequently getting multiple courses of an antibiotic
over time [22], there is very limited substantive evidence from clinical trials to support
this practice. For instance, about 29.1% of patients receive a repeat antibiotic prescription
within 30 days of their initial prescription [23]. It has been reported that the bacteria of
patients using an antibiotic are more likely to become resistant [24]. Despite this, treatment
guidelines for common infections, such as those in England, seldom tackle the problems
associated with frequent antibiotic prescribing, including diminishing effectiveness due to
resistance and potential harm from adverse effects on the microbiota [25,26].

The strengths of this study include the use of OpenSAFELY, which covers over 40%
of England’s population with comprehensive EHRs linked to COVID-19 data. Based on
previous research that showed that patients with increased antibiotic usage were related
to severe COVID-19 outcomes compared to patients without antibiotics [11], this study
provides a more detailed description of antibiotic patterns related to severe COVID-19 by
analysing the subgroups of COVID-19 patients with antibiotic use. Another advantage
is the use of RF models, which are ideal for identifying high-risk patient subgroups and
understanding exposure patterns. As this study attempts to address the combination
of different antibiotic exposures, the complexities of regression models increase when
considering interaction terms among all antibiotic-related variables. Instead, using Random
Forest to create latent variables for summarisation is a more feasible approach.

This study also points out key limitations, including potential confounding factors
and the inability to randomise participants’ antibiotic use, which might influence the
study’s outcomes. First, the generalisation of this study might be limited to frequent
antibiotic users rather than the general population (about 70% of the COVID-19 patients
had only one or no antibiotic prescription). It was challenging to apply classification by
including overall COVID-19 patients because redundant information from zero antibiotics
predominated. In addition, antibiotic history is not a leading cause of severe COVID-19
but one of the risk factors that may deteriorate the outcome. Nevertheless, the observed
harmful effects of repeated antibiotic use in this study should not be overlooked. Given
that antibiotics and COVID-19 are both common in the community, this information will
be beneficial for consideration in clinical decisions. Second, possible confounding due to
reduced immune function in patients with a frequent history of antibiotic prescribing may
have been present. However, the question is, even with the confounding present, whether
frequent antibiotic use is actually beneficial in treating bacterial infections, considering it
might lead to later adverse outcomes due to AMR or gut dysbiosis. Another consideration
is that frequent antibiotic prescribing varies considerably between GPs, even after taking
into account their case mix [27]. Finally, this study did not analyse the infection types,
though the literature indicated that most of the antibiotics were poorly coded indications in
primary care [27]. Future research could address this by exploring the interaction between
infections and antibiotic prescribing, such as variability in antibiotic types or duration
between antibiotic treatments.

In conclusion, the study found that in patients with antibiotic histories, a higher
number of antibiotic prescriptions, a greater variety of antibiotic types, the use of broad-
spectrum antibiotics, the duration between the first and last prescriptions, and recent
antibiotic use are all factors that contribute to an increased risk of severe COVID-19. This
highlights the need for more judicious antibiotic prescribing in primary care, primarily for
patients with higher risks of infection-related complications, which may better offset the
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potential adverse effects of repeated antibiotic use. While the signals in this study of the
potential harm of repeated antibiotic use are not proven causally, they do suggest repeated
antibiotic use negatively influences one’s ability to fight future infections.

4. Materials and Methods
4.1. Data Sources

On behalf of National Health Service (NHS), London, England, we used primary care
records from OpenSAFELY-TPP, which comprises nearly 22 million patients’ electronic
health records (EHRs), covering 40% of the population in England. Patient-level EHRs were
linked to the Second Generation Surveillance System (SGSS), the NHS Digital Secondary
Use Service (SUS), the COVID-19 Patient Notification System (CPNS), and the Office for
National Statistics (ONS, London, UK) to acquire COVID-19 outcomes, including PCR
tests, diagnosis of hospitalisation, and cause of death. Data linkage was provided via the
OpenSAFELY integrated platform, which is governed by NHS England.

4.2. Study Design

This was a matched case-control study. Eligible patients were newly identified as
COVID-19 from SGSS positive tests, GP diagnosis records, or SUS hospital admission
records from February 2020 to December 2022 (code lists are available in supplementary
Table S1). Selection criteria included age from 18 to 110 years old, sex, registration with
one GP practice for at least 3 years, and at least two antibiotic prescriptions within 3 years.
The study design and the flowchart of patient selection are illustrated in Supplementary
Figure S1. Patients who were admitted to the hospital for COVID-19 with a primary
diagnosis code of U07.1 or U07.2 (International Classification of Diseases, 10th revision
(ICD-10)) were categorised as a case group. Controls were defined as individuals without
COVID-19-related hospital admissions (according to SUS data) or death records (from
CPNS or ONS) within one month of their COVID-19 diagnosis.

4.3. Matching

Each case was matched with replacements for up to six eligible controls using the R
package MatchIT v4.2.0 [28]. Matching variables included age (within a maximum range
of 5 years), sex, region of GP practice, and index date (year and month). Age and sex
partially accounted for individual susceptibility to COVID-19 and antibiotic exposure;
region and index date accounted for the time and regional variation of COVID-19 infection
and antibiotic prescribing.

4.4. Antibiotic Exposure

To measure the long-term impact of repeated antibiotic use on COVID-19 outcome
severity, the maximum exposure time frame was set at three years, and antibiotic prescrip-
tions in the most recent six weeks were not considered in the analysis because the acute
effect of antibiotics was not a major concern in this study. Systemic antibiotics from the
British National Formulary (BNF) chapter 5.1 (Antibacterial drugs), excluding both BNF
5.1.9 (Antituberculosis drugs) and BNF 5.1.10 (Antileprotic drugs), were included in the
search strategy. There were 79 antibiotic compounds in the codelist, namely “antibiotic
types”, and only 55 of them were identified in this study population. The code lists of all
antibiotics and broad-spectrum antibiotics are listed in Supplementary Table S1.

Antibiotic exposure was summarised through the following variables: (i) the overall
counts of antibiotic prescriptions; (ii) the number of unique types of antibiotics; (iii) the
number of broad-spectrum antibiotics; (iv) the number of days between the first and last
prescriptions; and (v) the time since the most recent antibiotic, measured as the number of
days between the latest prescription and index date. The days between each antibiotic pre-
scription during the exposure period were measured to capture the prescribing frequency,
and the (vi) mean and (vii) standard deviation (SD) were calculated to indicate the average
and variation of prescribing intervals. These continuous variables were categorised into
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four levels by quartile in descriptive statistics and sensitivity analysis. A detailed definition
was included in Supplementary Table S2.

4.5. Confounding

Comorbidities were considered important confounders since they were associated
with severe COVID-19 complications and a possibly higher chance of receiving antibiotics.
In this study, Charlson comorbidities were measured in the most recent 5 years, and the
weighted score was divided into 5 subgroups (no comorbidities, low, medium, high, and
very high) in the main analysis [29]. Other confounders recorded were ethnicity, body mass
index (BMI), smoking status, care home residence, COVID-19, and influenza vaccination.
All missing values were grouped as “unknown” as these clinical variables did not meet the
“missing at random” assumption for imputation.

4.6. Random Forest Model

Random Forest (RF) is a robust machine learning method for classification, relying
on an ensemble of decision trees. It enhances accuracy through random sampling (boot-
strapping) and feature selection for splits in each tree, making it effective for complex
data analysis. Machine learning methods can identify clinical subgroups of patients with
regard to outcomes [30] and can be used to classify risk levels of adverse outcomes [31].
Here, RF was applied to generate the probability of being a severe COVID-19 case using
antibiotic exposure variables. The dataset was divided, with 80% for training and 20%
for validation. After tuning and assessing the model, both sets were combined to refine
the final model. The RF model hyperparameters included a 0.6 sample size, 3000 trees,
a minimum node size of 800, and a depth of 500. Each split randomly picked 1 variable
from a random set of 4 candidate variables by minimising Gini impurity, which enabled
the maximisation of tree diversity and the minimisation of correlation between trees [32].
The contribution of each variable in the RF model was assessed by the mean decrease Gini
score and presented as a variable importance plot. The visualisation ranked variables by
their importance relative to the most important one, showcasing their descending order of
influence. The RF model then calculated the probability of severe COVID-19 outcomes for
individuals. Based on these probabilities, the study population was segmented into ten risk
levels using decile cut-offs, with higher levels indicating a greater risk of severe outcomes.
This approach allowed for a detailed examination of how antibiotic exposure varies across
different risk levels.

4.7. Statistical Analysis

Descriptive statistics described differences in baseline characteristics between case and
control groups, as well as variations in antibiotic exposure patterns across decile groups.
Patients in the same decile group exhibited similar antibiotic exposure, with higher deciles
correlating to an increased risk of COVID-19 hospitalisation. The study further assessed the
most common antibiotics across deciles. The association between risk deciles and COVID-
19 hospitalisation was examined using conditional logistic regression (CLR) to calculate
odds ratios (OR), with the first decile as the reference group. The model was adjusted for
confounders including ethnicity, BMI, CCI, smoking, IMD, care home, COVID-19, and
influenza vaccination. CLR was performed by R package survival v3.2-3, which considered
matching strata for both the crude model and the model adjusted for confounders [33].

4.8. Sensitivity Analysis

The study analyses the total number of antibiotic prescriptions over three years as a
key factor in understanding antibiotic exposure. This variable was crucial as it influenced
other variables, such as the exposure period and prescribing interval deviation. To delve
deeper, a sensitivity analysis was conducted to understand the interaction relationship
between total antibiotics and other antibiotic exposure variables. Total prescriptions were
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grouped into quartiles, reflecting varying antibiotic use frequencies. CLR then assessed the
odds ratio of hospitalisation risk across these subgroups.

4.9. Software and Reproducibility

If required, data management was performed using Python 3.9.1, with analysis carried
out using R 4.0.5. Code for data management and analysis, as well as code lists, are archived
online (https://github.com/opensafely/amr-uom-brit (accessed on 29 August 2023)).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics13060566/s1. Supplementary Figure S1A. Diagram of patient
selection (index date) and prior antibiotic measurements (AB exposure in 3 years); Supplementary
Figure S1B. Flowchart of the patient selection process. Supplementary Figure S2A–F. Sensitivity
analysis: interaction between total antibiotic prescriptions and other antibiotic exposure variables.
Supplementary Table S1. Code lists are used for variable definition. Supplementary Table S2:
Definition of antibiotic-related exposure variables. Supplementary Table S3. Characteristics of
study cohorts before and after matching. Supplementary Table S4: Antibiotic exposure stratified
by outcome.
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under notices initially issued in February 2020 by the Secretary of State under Regulation 3(4) of the
Health Service (Control of Patient Information) Regulations 2002 (COPI Regulations), which required
organisations to process confidential patient information for COVID-19 purposes; this set aside the
requirement for patient consent [37]. As of 1 July 2023, the Secretary of State has requested that NHS
England continue to operate the Service under the COVID-19 Directions 2020 [38]. In some cases
of data sharing, the common law duty of confidence is met using, for example, patient consent or
support from the Health Research Authority Confidentiality Advisory Group [39]. Taken together,
these provide the legal basis for linking patient datasets using the service. GP practices, which
provide access to primary care data, are required to share relevant health information to support the
public health response to the pandemic, and have been informed of how the service operates.

Data Availability Statement: Access to the underlying identifiable and potentially re-identifiable
pseudonymised electronic health record data is tightly governed by various legislative and regulatory
frameworks and restricted by best practices. The data in OpenSAFELY is drawn from General Practice
data across England, where TPP is the Data Processor. TPP developers (CB, JP, FH, SH, JC) initiate an
automated process to create pseudonymised records in the core OpenSAFELY database, which are
copies of key structured data tables in the identifiable records. These are linked to key external data
resources that have also been pseudonymised via SHA-512 one-way hashing of NHS numbers using
a shared salt. DataLab developers and PIs holding contracts with NHS England have access to the
OpenSAFELY pseudonymised data tables as needed to develop the OpenSAFELY tools. These tools
in turn enable researchers with OpenSAFELY Data Access Agreements to write and execute code
for data management and data analysis without direct access to the underlying raw pseudonymised
patient data and to review the outputs of this code. All code for the full data management pipeline—
from raw data to completed results for this analysis—and for the OpenSAFELY platform as a
whole is available for review at github.com/OpenSAFELY. The data management and analysis
code for this paper was led by YY and contributed by JM, VP, XZ, and AF. All data were linked,
stored, and analysed securely within the OpenSAFELY platform https://opensafely.org/. Data
include pseudonymised data such as coded diagnoses, medications, and physiological parameters.
No free text data is included. All code is shared openly for review and re-use under the MIT
open license (https://github.com/opensafely/amr-uom-brit/ (accessed on 4 July 2023)). Detailed
pseudonymised patient data is potentially re-identifiable and therefore not shared. We rapidly
delivered the OpenSAFELY data analysis platform without prior funding to deliver timely analyses
on urgent research questions in the context of the global COVID-19 health emergency. Now that the
platform is established, we are developing a formal process for external users to request access in
collaboration with NHS England; details of this process will be published shortly on OpenSAFELY.org.
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