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Highlights

Informative Relationship Multi-task Learning: Exploring Pairwise
Contribution across Tasks’ Sharing Knowledge

Xiangchao Chang, Menghui Zhou, Xulong Wang, YunYang, Po Yang

e We propose an informative relationship multi-task learning framework
designed to quantify the mutual knowledge contributions in joint learn-
ing, while simultaneously capturing the unique characteristics of each
task to ensure diversity.

e We propose a sparse informative relationship learning model to enhance
efficacy, to handle the sparsity over the shared knowledge, particularly
in scenarios characterized by a large number of tasks.

e We propose an optimization algorithm leveraging accelerated gradient
descent methodologies to effectively address point-wise regularization.
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Abstract

Multi-task learning is a machine learning paradigm, that aims to leverage
useful domain information to help improve the generalization performance
of all tasks. Learning the relationships of tasks helps to identify the latent
tasks’ associations and access a better performance. However, most of the
existing methods hardly pay attention to the determination of knowledge
interaction among tasks and instead concentrate solely on certain aspects of
task affinity. This compulsory similarity among all tasks leads to deficien-
cies in both task diversity and model robustness. To address this issue, we
emphasize the task relationships within mutual information interaction. We
propose a regularized framework from an informative perspective to quantify
pairwise contributions during the knowledge-sharing stage, meanwhile utiliz-
ing an exclusive Lasso to identify the exclusive characteristics of tasks. An
efficient optimization algorithm is developed to solve the proposed objective
function. Detailed theoretical analyses and extensive experiments on both
synthetic and real-world datasets are provided to demonstrate the effective-
ness of our proposed method.

Keywords: Multi-task Learning, Relationship Learning, Sparse Learning

1. Introduction

Multi-Task Learning (MTL) [1, 2], a machine learning paradigm inspired
by human learning activities [3], learns multiple related tasks jointly to make
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a better performance by leveraging the contained knowledge. The most crit-
ical issue in MTL is to identify the complex task relations and incorporate
the intrinsic relationship into the learning strategy and process estimation to
improve the performance and interpretation of all tasks [3, 4].

A common way to utilize the underlying association is seen as the prior
knowledge in many scenes. Relying on the selection of experts in the relevant
fields [5, 6, 7], experimental works show the benefits of such MTL methods
relative to individual task learning. [8] forces the model parameters of each
task to approach the average model parameters of all the tasks. Furthermore,
task similarity is proposed in [9] to guide joint learning, which means that
the more similar two tasks are, the closer the corresponding model param-
eters are expected to be. The similarity of tasks is also used in modelling
the longitudinal progression to approximate the chronological association in
[10, 11]. Temporal smoothness methods [12, 13] employ relatively small vari-
ations in progression modelling [14]. Spatial association, as discussed by
[15], is coupled with temporal relations in spatio-temporal models [16, 17],
employing 2-D dependencies to jointly learn relevant tasks. Leveraging task
similarity across domains enables effective joint learning and reveals depen-
dencies in selected inspections. As another line of effort, the feature-based
MTL methods focus on learning the common feature subset shared by tasks
in some structures. The low-dimensional representation in [18] and multi-
task feature selection method in [19] learn the features shared across a set
of multiple related tasks based on group sparsity regularization. In [20], a
shared predictive feature structure learning method is proposed. With the
same assumption that overlap features exist, a dirty model in [21] is proposed.
The low-rank constraints have been proposed to learn the latent structure of
subspace in [22, 23]. It should be noticed that not all tasks share a common
feature set or very few features participate in all tasks. Robust methods are
proposed in [24, 25] to capture the common feature sets meanwhile modelling
the outlier features. Another viewpoint on this problem is that not all learn-
ing tasks are related to each other and benefit from joint learning in MTL.
Clustered-MTL methods proposed in [26, 27, 28] aim to determine the task
groups, each of which consists of similar tasks and learn the latent common
structure simultaneously.

However, in real-world applications, it is hard to identify the task asso-
ciation in some respects, and even harder to obtain a clear feature structure
shared by tasks. So there are some MTL learning methods were proposed to
learn the task relations automatically by the similarity of tasks’ parameters



to explicit relations with interpretability. A tree structure in [29] is employed
to capture the hierarchical relations. Bonilla et al. [30] propose a multi-task
Gaussian process model that defines a prior on functional values and uses a
covariance-based method to model task relations via a covariance matrix €2
computed from a kernel function. To avoid overfitting from strict Gaussian
process assumptions, Zhang and Yeung [31] propose a generalized ¢ process
method with a weight-space view, utilizing an inverse-Wishart prior distri-
bution on X to generate (2, where the degree of freedom is determined by
the maximum mean discrepancy. Subsequent works [32, 33, 34, 35, 36] in-
troduce regularized frameworks with a matrix-variate normal prior over the
parameter matrix, leveraging flexible norm forms to estimate the relation
matrix. Based on the likelihood function, sparse prior over the covariance
matrix €2, methods proposed in [35, 37] learned the sparse relations among
tasks when the number of tasks is large. And asymmetric relations learning
in [33, 38], incorporated with directed acyclic graphs model thus can model
complex structure of tasks parameters.

While, most of the existing methods in task relation learning are based
on the similarity in some fields, such as prior knowledge, common features,
distance of parameters and so on. To quantify the pairwise correlation in
an appropriate way is critical, but the matching degree of joint learning has
not been taken into consideration. It may cause several following problems.
First, the attention to the affinity of tasks brings compulsory similarity con-
straints over all tasks. It is obvious in the utilization of prior knowledge, and
the variations of tasks in the selected inspects forced to be relatively small.
Learning relations with automatic methods like graphical models [30, 35]
seem no similarity constraints in any way, but the previous means are based
on the regularization of model parameter distance, thus providing a con-
straint of all task diversity. Second, the similarity constraints utilize similar
tasks and force the tasks’ parameters to lie in a short range, and the similar-
ity may go against the representation of the specific characteristics of tasks.
It is indeed to capture the exclusive features meanwhile leveraging the do-
main knowledge. Third, most of the proposed methods only model the task
relation in some ways, ignoring the shared knowledge that may be in some
dimensions and varying degrees thus the detailed characterization must bring
a high cost in both expert knowledge and calculation.

To address the issues outlined above, an intuitive approach is to discern
both the commonalities shared across all tasks and the unique characteris-
tics specific to each task. A comprehensive method for learning relationships



should not merely emphasize certain aspects across all tasks, but also differ-
entiate between knowledge that is universally applicable and that which is
task-specific. Drawing from the ’informative learning’ perspective as outlined
in [39] to discern 'what to know’” within the established MTL framework, we
introduce the concept of the 'informative relationship’. This concept signi-
fies the relationships established during the knowledge interaction phase of
MTL and aids in quantifying the mutual information of each subtask. The
intuitive nature of this definition facilitates the exploration of methods for
relation learning across tasks without imposing compulsory similarity con-
straints on the unified parameter representation. Essentially, decomposing
the learning stage aids in exploring the intrinsic relationships where tasks are
genuinely associated.

In this paper, we propose a Multi-Task Informative Relationship Learn-
ing (MIRTL) method for exploring the knowledge interaction of tasks and
the exclusive characteristics captured. With the simple and intuitive decom-
position, we resolve the conflict described above, highlighting the following
contributions:

e We propose an informative relationship multi-task learning framework
aimed at emphasizing mutual information interactions among tasks in
MTL relation learning, while simultaneously capturing their exclusive
characteristics to ensure task diversity.

e A sparse informative relationship multi-task learning model was pro-
posed to enhance the appropriateness of task relations. Furthermore,
an optimization algorithm was introduced, leveraging accelerated gra-
dient descent to address point-wise regularization.

e Following a comprehensive theoretical analysis and experimental in-
vestigation on both synthetic and real-world datasets, the exceptional
performance of our framework in target prediction and relation esti-
mation was confirmed. Furthermore, several potential extensions and
limitations of our proposed framework were discussed.

Notations: Denote N,, = {1,...,m}. For any A = [ay, ..., a,,] € R>™,
let a; € R? be the i—th column of A; denote by ||a;||; the [;—norm of ay;
|A]lpq = (E;‘:l(E?lllXij\p)‘I/p)l/q; denote tr(B) = X' by = by +boo+...+ by,
is the trace of square matrix B; denote the ag.i,z and ag.i) are the (j, k)—th entry
and the j—th column of matrix A;; N(u,0?) denotes a normal distribution

with mean p and standard deviation o.
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2. Related work

2.1. Robust multi-task learning

Robust multi-task learning [24] devotes to identifying the irrelevant (out-
lier) tasks. In robust MTL, the multiple tasks are divided into two groups,
the related tasks group and the irrelevant (outlier) tasks. A traditional defi-
nition of outlier tasks is ’lies an abnormal distance from the other values in
a random from a population’. Other inspects of robustness method include
robust feature MTL in [25], robust temporal smoothness in [13] and so on.
The robustness based MTL methods take the knowledge shared mechanism
into joint learning, and discriminate the tasks’ parameters according to the
distance to identify the similarity of tasks. While it may be too strict to
judge the similarity with only parameter distance, the most glaring flaw is
the distance could not reflect the linear correlation. To this end, we re-
formulate the decomposition method and make an intuitive judgement by
multi-task learning mechanism. The biggest difference between us is that we
quantify the pairwise relationship in knowledge sharing stage rather than a
single distance criterion.

2.2. Multi-task relationship learning

In MTL, tasks are related and the relatedness can be quantitated via
similarity, correlation, covariance and so on [3]. As mentioned above, the
multi-task relationship learning methods focus on quantifying the similar-
ity of tasks’ learned parameters. To learn the task relationship automati-
cally from data, [30] propose a covariance based method built on Gaussian
progress. In [35], a sparse prior on the relation matrix is employed to learning
the sparse correlation when the number of tasks is pretty large. An exclu-
sive relation learning method in [40] is proposed in a longitudinal research
of disease, and applied to finding out the exclusive characteristics of each
task. The above MTL relationship learning methods provide an appropriate
approach to capturing the pairwise relations of tasks by a graphical model.
While the former methods focus on learning the relations in a unitary param-
eter space, the coherence similarity exists, resulting in a shift to the graphical
centre inevitably. The motivation of our work is reasonable in that the in-
trinsic relationship should only exist in the knowledge sharing stage, and the
informative relationship is conducive to finding out the pairwise contribution
and comprehension of multi-task learning mechanism.



3. Methods

3.1. Proposed Methods

Assume that there are m learning tasks, associated with the sample data
{(X1,51), oy (Xon, ym) } are given, where X; € R4 is the data matrix of the
1—th task with each column as a sample; y; € R™ is the response target of
the i—th task(continuous value of y; for regression tasks and discrete values
for classification); the data dimensionality is denoted by d; the number of
samples for i—th task is denoted by n;. Denote W = [W1, ..., W,,,] € R>™ is
the weight matrix to be estimated, the empirical risk is defined by L(W') =

#EQ’Q%Z?;IZ((:E?)TW, (v:)j)), where the loss function I(-,-) can be selected
as squared loss for regression tasks and logistic loss for binary classification
tasks. For each task and decomposing the weight matrix W into two com-
ponents H and P (W = H + P) to capture the task relation in learned
parameter by domain sharing knowledge to determine the informative rela-
tionship, meanwhile capturing the task specific characteristics by P to find
out the exclusive feature in different subtasks.

In the following, we proposed a regularized framework for learning mul-
tiple task informative relations and identifying tasks’ specific characteristics

simultaneously:

min L(W) + Mtr(HQ T HY) + Xl |Plls st W=H+P (1)
where Q > 0 denotes a square positive definite(or positive semidefinite) co-
variance matrix to capture the relations among tasks; and its inverse(or pseu-
doinverse) by Q71; A\; and )\, are regularization parameters.

The multi-task informative relations learning (MTIRL) framework pro-
posed in (1) contains three terms. The first terms measures the empirical
loss by selected loss function [(+,-) based on the training data. The second
term is a regularizer on H. And an intuitive explanation can be formed
as tr(HQ'HT) = tr(HYYTHT) = tr(HYT)T(HY)) = ||HY||%, where
YYT = Q1. Similar but different in [11, 13], prior knowledge is employed to
model task relations using the Laplacian matrix. To automatically estimate
informative relationships among tasks, akin to [35, 40], we interpret the pos-
itive semidefinite square matrix ) as a covariance matrix to capture pairwise
task relations during the parameter sharing stage. This matrix can be viewed
as analogous to Gaussian process modelling for covariance matrix estimation
and reflects the mutual information of tasks by a square logarithmic mapping.
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A Gaussian prior is selected to learn the informative relationships because
it aligns with the central limit theorem of the model parameters. The infor-
mative relationship matrix, denoted as 2, distinguishes between multi-task
learning and single-task learning scenarios. When {2 becomes diagonal, it in-
dicates minimal knowledge interaction across all tasks, resembling single-task
learning.

The third component [, ;—norm for modeling task specific characteris-
tics with the exclusive lasso term in [40, 41]. Noticed that it is different
from the [y ;—norm in [11, 42] which selects the common features shared
across all tasks. The exclusive lasso constraint provides a competitive rela-
tion among the features of every subtask. We argue the exclusive relation
learning in [40], for its confusion in intrinsic relationship learning which mis-
judges the information interaction mechanism in multi-task learning. The
proposed MTIRL framework not only captures the intrinsic relation at the
interaction stages but also encourages the exclusive feature representation of
tasks. As a result, the two above components achieve mining the dependency
in multi-task learning to find out the latent associations and help to reveal
the exclusive characteristic conveyed in parameter representation space at a
particular subtask.

Under the covariance-based relation learning framework in (1), we pro-
pose a method to learn tasks’ informative relations with a focus on sparsity,
acknowledging that not all knowledge contributes equally to joint learning.
Similarly, in scenarios with a large number of tasks, the benefits of one task
may not extend to all others, potentially increasing model complexity and the
risk of overfitting. Effectively capturing sparse task relations thus warrants
imposing sparsity on the covariance matrix 2.

Here we propose the multi-task sparse informative relations learning (MT-
SIRL) method to capture the informative task relations under the high di-
mensional tasks with a tight estimation induced by sparse prior. Specially,
the objective function of the MTSIRL method is formulated as

min LOV)+Aitr(HQ ™ HY) + Xo||P|l12 + 3|y st. W=H+P

H,P

(2)
where the A3 is the parameter of the sparse inducing norm /; —norm on 2. An
intuitive explanation is [|Q[|; = tr(Q) + 3212, > 7L, i, lwisl, so the method
(2) could learn the sparse relations by penalization of the off-diagonal entries
in covariance matrix 2. The placement of [; regularization on €2, we restrict
the complexity of €2, and the learned ) with zero entries (2;; implies the
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corresponding tasks with index ¢ and j are no related.

3.2. Optimization Algorithm

In this section, we show the optimization solution of the MTIRL frame-
work. To solve the problem (1) and (2), the alternating descent method in
[43] is utilized to access the optimal convergence rate. By alternating opti-
mize H and P with fixed §2 as proposed above, and optimize the () by fixed H
and P. First, we introduce the optimization algorithm based on accelerated
proximal gradient(AGM) for the update step with fixed €. Denote

7 .

£OH,P)Y = 3 - S UKV + P), (1)) ®)

G(H,P) = Mtr(HQ ' HT) + X|| P12 (4)

Noted that the objective function in problem (1) is a composite function of
a differential term £(W) and a non-differential term G(H, P). Denote

OL(R, S
Trsn(R,S) = L(R,S) + <—(6R’ ) - Ryt
My _ e OLUS) o Mip_ a2 5
SIH = R} + (g P = 5) + o |IP = S|l ()

(Hk, Pk) = argmin Tps,L(W)+ G(H, P)
H.P

where R = H° S = P and R* = H* + ap(H* — H*1), Sk = P*+ oy (PF —
P*=1) for k > 1, the value of 7, and «y apply the strategy in [44], we have
the optimal convergence rate among the first-order methods with O(3%).

When the H and P are fixed, the update of ) in problem (1) can be
solved with an analytical solution, and the problem with respect to €2 in
problem (2) is formulated as

: —1 T
min Atr(HQ™HT) + A |9 (6)

To solve the problem (6), we utilize the similar method of AGM in [44],
and for the optimal €2, we have the following analysis based on primal dual
construction in [45].

Theorem 1. The optimal § in problem (6) satisfies
- elgmzn(H) I

vm(As/ M)
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where eig,,;,(H) denotes the minimum eigenvalue of H; I is identity matrix.
The lower bound of €2 depends on the smallest eigenvalue of H. So the
optimal € is positive definite when the H is of rank m and otherwise positive
semidefinite. Thus the covariance matrix ) can be viewed as calculated by
the shared parameter among tasks.

3.3. Implementation Details

The calculation of the proximal operator with non-smooth terms in G(H, P)
and problem (6) are pivotal building blocks of APM. By utilizing the alter-
nating descent algorithm for the decomposed terms H and P. We show
the three separate proximal operator problems to update H, P and (2, the
detailed update strategies for calculation are as follow

1 A
H = argmin=||H — U||% + ZXG(H)
H 2 Tk

U=R— iw )
m OR
. 1 2 )\2
P = arg}vgun§|]H - V0lz+ EQ(P)
g 1OL(R,S) ©)
Tk 08

Q = argmin Z[|2 — Q% + 2 0]
o 2 Tk (10)
A1 8tr(HQ_1HT)
Nk of)
The update step of H can be solved analytically with a space complexity of
O(m3(1 + d*)). Similarly, the update step of P involves a typical lj 5-norm
proximal operator calculation as described in [41], with a space complexity of
O(m?d). Additionally, the update step of Q with a Lasso constraint can be
solved using the soft-thresholding operator k(a, b) = sign(a) - max(0, |a| — b),
with a space complexity of O(m?). Here, sign denotes the sign function, and
| - | represents the absolute value. It’s worth noting that all the mentioned
space complexities are based on the analytical solution of each updating step
and can be further reduced through decomposition based on the data scale.
Specially, The partial derivative step in (10) can be calculated as

otr(HQ HT)
o0

Q=0F -

= -Q'HTHO™! (11)



Meanwhile, we provide the analytical solution for updating €2 in the problem
(1) with fixed H and P as above.

4. Properties

Since MTIRL does not include the sparsity constraints over the covariance

matrix €2, it can be seen as a special form when A3 = 0, so we provide the
theoretical analysis of MTSIRL.

4.1. Basic Assumption

In the following theoretical analyses, we make basic assumptions on the
data and model to ensure generality and adaptability. Firstly, assume the
normalized data satisfies the orthogonality thus the (j, k)—th entry of X;

(1) (

denoted as x; satisfies /;”:l(xjik))2 = 1,Vj € Ny. And assume that a linear

model with Gaussian noise gives the responses that satisfy
yii = £ (@) + 65 = (@) Tw! + 65 (12)

where © € Ny, 7 € N,,, the true weight matrix W* decomposed as the sum of
two underlying true components H and P, W* = [wj,...,w}]| = H* + P* €
Rom X, = [, 2] € Ry, = [y17 . yl"] € R™ are respectively the
training data and targets of the i—th task; the noise §; = [0y, ..., 0]t €
R™, d;; ~ N(0,0?); The true evaluation under i.i.d. normal noise is

fi = XTwp = [f; @) f7 D)) € RY (13)

7

Thus, we have y; = f7 + J;,¢ € N,,; and define the index set for sparsity
pattern as

Q(A) = {(i,9)lai; # 0}, Qe(A) = {(4, 7)[ai; = 0}, (14)

The assumption of a Gaussian distribution aligns with the parameter distri-
bution under the central limit theorem, ensuring generalizability when the
sample size is sufficient, meanwhile corresponding to the least biased distri-
bution. The assumption made in this context is that training sample sizes
for all tasks are considered equal for simplicity. It is noteworthy that the
derivation presented below can be readily extended to scenarios where the
training sample size varies across tasks. Based on the above assumptions,
we further restrict the eigenvalue [46], similar to some previous studies on
MTL[24, 25, 13].
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Assumption 1. For a matriz pair 'y, € R*™ and L'y, € R“*™  let r and
c (1 <r <d1l < c < m)be the upper bounds of |Q(H)| and |Q(P)|,
respectively. Let B1, 3> be positive scalars. Given XX7T is positive definite.
There exist positive scalars ky(r) and ko(c) such that

XTvec(Ty +T'p)|

ki(r) £ min || 15

1(7) TuTpeR(re) /mn||Qi1(Ly)||r (15)
XTvec(Ty +Tp)|

ko(c) & min H 16

2() Ty, TpeR(r,c) \/mnHQz(FPWF ( )

where the set R(r,c) is defined as

R(r,c) = {Tg,Tp e R* Ty £ 0,Tp #0,|Q:(H)| <r,|Q:(P)| <c,
1Qc1(Tr)ll2 < Bil| Qu(Tr)ll2s [[Qe2(T'p)12 < Ail|Qa(Tp) |12}

4.2. Theoretical Analysis
Our main theoretical result is summarised in the following theorem for

performance bounds. Based on the ALM method in the optimization of (2
and H and P, we give the theoretical analysis as follows.

Theorem 2. Let(H, P) be an optimal solution of (2) under the optimal
in Theorem 1 for m > 2 and n,d > 1. Let X; and y; satisfy the above
assumptions. Take the reqularization parameters A\ and Xy as

2
ma/mAids, g > o, 0 = 29 \Jdm +t (18)
mn

where t > 0 is a universal constant. Then with the probability of as least
1 — exp(—%(t — dmlog(1 + ), for any H, P € R*™, we have

(17)

. XT f 2< - XT H +P fz* 2
ngII I ZH =
—}—va m)\l)\gHQ H_H)H2+2)\2||Q2<P_P)HLQ
Then (19) can be written as
1 & L
— XTvec(H + P) — F9|I?
— > IX T veelH + P) = vee(F)|
(20)

1 m
< — > ||X[vee(H; + P;) — vec(F*)|?

- mn
=1
+2m/mA\ s | Qi (H — H)|la + 2X9[| Q2(P = P)[|1

11



where F* = [fy, ..., fr] € R™™,

Based on Theorem 2 and Assumption 1, we derive the following theorem
that lies in the crucial theoretical assurances it offers for MTSIRL. These
bounds serve a purpose by assessing the accuracy of our proposed model in
approximating the true evaluation values in approximating the true weight
matrices (H*, P*,WW = H* + P*) and the probability of sparse patterns re-
covery.

Theorem 3. Let (H, P) be an optimal solution of problem (6) for m > 2
and n,d > 1 and take the regularization parameters Ay and Ay as in (18).
Then under Assumption 1, the following results hold with the probability of
as least 1 — exp(—3(t — dmlog(1 + =) (¢t > 0)

LS X e+ P) — vec(F|P < (2N | P o)
mn < ki (r) ka(c)
~ ¥ (61 + 1) 2mv m)\l)\g 2)\2\/E
~ « (B2 + ].)\/E Qm\/ m>\1)\3 2)\2\/6
HP_ P HL? < /fg(C) ( kl(r) + kQ(C) ) (2?))

Then with the same probability, the following two sets

: (D) 2y 2y
01 = {all ] > CLED E I, 2avtyy (24)
O, — [l P > L2 EDVEZmVIMNs | 2haven, o)

ka(c) Fa(r) ka(c)
estimate the true sparsity pattern Q,(P*) and Qy(H*), respectively, that is
Q1 = Qi(P7) and Qs = Qx(H").

5. Experiments and Analysis

In this section, we conduct experiments to demonstrate the effectiveness
of the proposed informative relationship learning methods on both synthetic
data and four real-world datasets. The proposed methods are compared with
the other six comparative MTL methods and the details of experimental
setup and results are presented.

12



5.1. Datasets

A synthetic dataset and four real-world datasets are conducted in our
experiments and the generation of synthetic dataset and the detailed de-
scription of real-world datasets are presented as follows.

e Synthetic Data: A synthetic dataset is created to simulate multi-
task learning progression, incorporating sparse and noisy correlations
based on a multivariate Gaussian distribution as a generalization. This
dataset is set with the number of tasks m = 25 and for each task with
samples n; = 100 and 100 dimensions. The m * m matrix Ug is gen-
erated from random sampling from N(0, 1), then each row in Uq has
40% probability to be selected and 80% of entries in selected rows will
set to be zero with 50% probability. Then the sparse relation matrix
Q" is generated by Q* = UqUd, W € R*™ is generated from the mul-
tivariate normal distribution N(0,€Q*) for each row. Then prediction
target is obtained by the linear model with Gaussian white noise as
yi = X W; +0.3%N(0,1).

e School Dataset: The dataset is from the Inner London Education
Authority (ILEA), including examination records of 15362 students
from 139 secondary schools in the years 1985, 1986, 1987. 27 binary
attributes consisting of year, gender, etc., and 1 bias attribute repre-
sented for each sample. The target is the examination score. So there
are 139 tasks with each task corresponding to one school.

¢ Parkinson’s Disease Dataset: This dataset is composed of a range of
biomedical voice measurements from 42 patients to predict the disease
symptom score of Parkinson’s for patients at different times using 19
bio-medical features [47]. The dataset has 5,875 data points for all
patients, and in our experiments, each patient’s disease symptom is
treated as a task.

e SmartFert Dataset: The dataset is intended for evaluating soil health
globally. It comprises 354 geographically dispersed sites across 42 coun-
tries, documenting agriculture-related variables such as climate, soil
type, yield, and fertilization [48]. Following data preprocessing, 12 fea-
tures are obtainable for four farming operations executed to a consis-
tent standard. The corresponding target entails measuring the amount
of fertilizer, including nitrogen, phosphorus, potassium, and sulfur,
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applied during each month. The sampling time points of prediction
tasks in uniform, from January to December of a year, and SmartFert
datasets can be divided into four independent task for predicting dif-
ferent elements: SmartFert.N, SmartFert.P, SmartFert.K, and Smart-
Fert.S.

e Alzheimer’s Disease Dataset: The dataset is from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) funded by the National In-
stitute of Health (NIH) in 2003 [49]. There are five subsets ADAS-
cog, MMSE and RAVLT. TOTAL, RAVLT.TOT5 and RAVLT.TOT30.
1092 patients (samples) with 314 MRI features with 5 categories: sur-
face area, volume of white matter parcellation, volume of cortical par-
cellation, standard deviation and average of cortical thickness. The
target is cognitive scores from 12 time points: M00, M06, M12, M24,
M36, M48, M60, M72, M84, M96, M108 and M120. We remove the
samples with fail the MRI quality controls and with missing entries.
And the sample sizes corresponding 12 tasks are 1074, 1064, 1014, 867,
565, 483, 299, 327, 259, 200, 118 and 69, respectively.

5.2. Comparative methods

To evaluate the efficacy and demonstrate the competitiveness of the pro-
posed informative relationship learning models, we compare them with the
following methods that are closely related to the task relationship learning
domain to verify the prediction performance and ablation.

e Multi-task learning with exclusive Lasso (eLasso) in [50]:
mmz}n L)+ M|[W]|12 (26)

A group regularization models the scenario when variables in the same
group compete with each other which has been widely used to esti-
mate the predictive tasks meanwhile modelling the exclusive features
at different subtasks separately.

e Robust multi-task learning (RMTL) in [24]:
min LW) + M|Hle + Xo|[Plhz st W=H+P  (27)

RMTL integrates the low-rank regularization under the assumption
that all tasks share a common feature set characterized by the trace
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norm. The proposed robustness method is achieved by similar decom-
position in our method, but the implicit theory is to model the tasks’
parameters with abnormal values by exclusive Lasso as 'outlier tasks’,
which we regard as a composition of sharing feature structure and tasks’
specific characteristics.

e Robust multi-task feature learning (RMTFL) in [25]:

min LW) + Al Hlloq + Xol[Plhz st W=H+P (28)

RMTFL employs the Il —norm to capture the feature selected across
the whole disease progression and [; s—norm to capture the exclusive
feature of particular time points. The robustness method focuses the
knowledge interaction on the feature level and decomposes the feature
into common and specific subsets.

e Sparse Multi-task relationship learning (SPATS) in [35]:

mvén LW) + Altr(WQ’lVVT) + Ao |2 ]1 (29)

SPATS learns the pairwise relationships of tasks under the Gaussian
graphical prior, and the same sparsity-inducing component in corre-
lation learning. The SPATS utilizes the covariance based method to
judge the similarity of two tasks, meanwhile handling a situation in
which the number of tasks is pretty large.

e Multi-task exclusive relationship learning (MTERL) in [40]:

min LW) + Mtr(WQTTWE) + X[ W1 (30)
The MTERL method learns the pairwise ’exclusive relationship’ of
the disease progression, employing the exclusive Lasso to capture the
prominent characteristics in different disease stages. The main differ-
ence between us is the task relationship definition, MTERL explores
the relationship in the whole parameter space, while we focus on the
knowledge sharing stage in which tasks’ interaction happens.

e Multi-task robust temporal smoothness learning (RoTS) in [13]:

TEZ]?;LL(W)+)\1HRHTH171+)\2HPH271 s.t. W:H+P (31)

)
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The RoTS method utilizes the widely used temporal smoothness (T'S)
assumption in temporal real-world progression modelling, in which the
variance between adjacent time points is relatively small and modelled
as total variation reconstruction ||[RHT]||;;. As a prior knowledge com-
plementary to ambiguous chronological research, TS has been applied
in [10, 11, 42] and so on. A similar robustness method is in [24, 25], and
it is worth emphasising that we provide a more detailed and intuitive
definition of the informative relationship, rather than utilizing the sim-
ilarity of tasks only. In our experiments, we choose the RoTS method
as a competition of tasks’ similarity and informative relationship.

5.3. Experimental settings

For the quantitative performance evaluation, we employ the metrics of
the root mean squared error (rMSE) for aggregated performance over all
tasks and the single subtask evaluation.

R V]2
rMSE(Y,Y) = \/w (32)

where Y and Y are the ground truth prediction target and predicted tar-
get value, and n is the number of samples. We partitioned the data into
training sets and testing sets using various training ratios. We conducted
10 trials with 5-fold cross-validation to select the optimal hyperparameters
(A1, A2, A3), and then utilized these selected hyperparameters to optimize
individual prediction performance on the test sets. The regularization pa-
rameters were selected from a logarithmic scale spanning from 1072 to 103.
This range was chosen to accommodate the diverse variances observed in
real-world datasets, thereby allowing for an effective structural risk penaliza-
tion across various datasets and its intrinsic distribution. We randomly select
training samples with different training ratios for each dataset and use the
rest to test the generalization performance. For synthetic data, we consider
80% as the training ratio. For real-world datasets, we take 60%, 70%, 80%,
and 90% as the training ratios. According to the rMSE, we choose the best
parameters on the training set and report the performance on the report the
performance on the test test for all methods.

5.4. Ezxperimental results on synthetic data
To evaluate the accuracy of the proposed approaches in terms of relation-
ship learning, we first evaluate the performance of the synthetic dataset with
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Table 1: Prediction performance comparison of models in terms of rMSE (lower is better).
80% of data is used as training data, and shown data in this table is mean value + standard
derivation.

Error SPATS MTERL MTIRL MTSIRL
Prediction Error on Y 0.6879£0.1397 0.7311+£0.2206 0.6673+0.1126 0.6651+0.1034
Estimation Error on Q* 0.93664+0.0035 0.9478+0.0017 0.9627+0.0021 0.9215+0.0014

Figure 1: Comparison between the true task covariance 2" and the estimation by our
MTSIRL method €2 on the synthetic dataset.

the competitive MTL relationship learning methods, SPATS and MTERL
under the noisy simulated environment. The performance of learning the re-
lationship matrix is shown in Table 1, and we show the rMSE on prediction
error in target Y and the error between the ground truth 2* and estimation
relation matrix (2. As the illustration in Table 1, the proposed sparse infor-
mative relationship MTL method shows a better performance in both target
prediction and relationship matrix estimation. Noticed that the MTERL
method shows a weak performance on both targets, while it is important
to emphasise the difference between ’exclusive relationship’ and ’informative
relationship’, which former focuses on the tasks’ outward manifestation and
we model the process tasks learned from each other, thus better robustness
under the noisy condition. A visual demonstration is shown in Figure 1,
compared with the true covariance matrix generated from simulation and
estimated by our proposed method. The lighter colour indicates the bigger
value in the matrix, though the estimated matrix provides a fair perfor-
mance under a noisy condition, while there is still a small estimation bias in
our model. The main reason is the disturbance influences all the tasks with
common addictive noise which leads to an error in informative relationship
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Table 2: Prediction performance comparison of models in terms of rMSE (lower is better)
in the School dataset. The ratio shows the percent used as training data, and the data

shown in this table is the mean value + standard derivation.

Training Ratio

0.6

0.7

0.8

0.9

eLasso 11.404940.1154 11.14584-0.1064 10.988240.2367 10.934040.2317

RMTL 11.054640.1311 10.888840.1409 10.729140.1374 10.676840.2312
RMTFL 11.416540.1187 11.182940.2049 11.022740.1923 10.980940.2564

SPATS 11.6569+0.1407 11.451640.0873 11.2184+0.1618 11.214340.2790
MTERL 11.38734+0.1231 11.136840.1344 10.9668+0.1929 10.964840.2566

RoTS 10.6004+0.0631 10.490840.0938 10.4131+0.1511 10.380740.1351

MTIRL 10.6145+0.0879 10.585240.1488 10.5257+0.1230 10.3204%0.1775
MTSIRL 10.3051+0.0562 10.0596+0.0868 10.3608+0.1456 10.0046+0.1642

Table 3: Prediction performance comparison of models in terms of rMSE (lower is better)
in the Parkinson’s dataset. The ratio shows the percent used as training data, and the
data shown in this table is the mean value & standard derivation.

Methods 0.6 0.7 0.8 0.9
eLasso 0.1549+0.0582 0.1655+0.0609 0.1433+0.1067 0.1556+0.1082
RMTL 0.1415+0.0411 0.1753£0.0508 0.1681£0.0641 0.1481+0.1071
RMTFL  0.193340.0809 0.1660+0.0961 0.1408+0.1064 0.2115+0.1605
SPATS 0.1705+0.0659 0.1684+0.0190 0.1055+0.0592 0.1030+£0.0957
MTERL  0.1599+0.0522 0.1440+0.0829 0.1408+0.0705 0.1061+0.0716
RoTS 0.1503+0.0504 0.1167£0.0536  0.0906+0.0354 0.0859+0.0487
MTIRL 0.143940.0590 0.16084+0.1012 0.111940.0723 0.11604+0.1234

MTSIRL 0.1361£0.0663 0.1090+0.0515 0.110540.0779 0.0897+0.1144

estimation.

5.5. Experimental results on real-world data

The prediction performance conducted on the School dataset is shown
in Table 2. With the rise of the training ratio, most methods improve the
predictive performance because of the larger number of training instances.
Our proposed methods perform well in situations with different training ra-
tios, while RoTS show an approximate predictive performance surprisingly.
Though the predictive tasks have no apparent temporal relation among the
schools, they still can illustrate the improvement of performance by the uti-
lization of tasks’s similarity. Besides, the MTSIRL show better performance
in comparison with the SPATS and MTERL, and it illustrates the efficiency
of the proposed decomposition method in the task relationship learning ap-
proaches.

We demonstrate the prediction performance on the Parkinson’s dataset
in Table 3. Our proposed methods exhibit superior performance with lower
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Table 4: Prediction performance comparison of models in terms of rMSE (lower is better)

in SmartFert. The ratio shows the percent used as training data, and the data shown in

this table is the mean value + standard derivation.

Dataset Methods 0.6 0.7 0.8 0.9

eLasso 55.2339+9.8120 50.0739+£11.4340  51.0054+14.4822 52.1875+14.3144

RMTL 60.0938+12.8970 59.3696+£7.7862  46.4736+15.4610  40.4928+12.4899
RMTFL  66.8432+22.0246 59.3716+14.2369  52.2995+16.8092  47.7635+18.2358

N SPATS 58.9708+19.6251 57.2366+16.8723  54.0776+£13.5166 43.0291+8.8552

MTERL  64.9306+15.6415 52.1219+49.6701 51.1431+9.8340 40.6653+8.4338

RoTS 52.7433+12.5757 48.2904+7.1747 43.2738+8.3501 33.1913+£8.5101

MTIRL 55.0871+£19.2175 46.4938+7.6625 43.1323+5.6423  32.0887+12.3462
MTSIRL 51.0373£13.9577 43.0506+6.9202 45.09904+10.7166  30.8191+6.9996

eLasso 15.117545.7498 16.131244.8091 16.573645.7106 15.247749.9639

RMTL 15.013644.9621 12.854642.4684 13.258446.1606 14.013243.3399

RMTFL 14.88724+4.6189 16.93884-6.2309 16.292542.7575 14.071546.4828

P SPATS 14.385144.4055 14.11834+3.2163 14.3186+8.1646 15.9009+6.8176

MTERL 16.181244.9246 14.2648+6.1563 14.1543+6.4957 13.683943.3818

RoTS 14.55434+4.2736 13.467143.1534 14.6449+4.9837 12.13254+3.7169

MTIRL 13.6522+3.6585 14.289544.8874 13.4039+4.4114 12.193144.9383
MTSIRL 14.899146.5781 13.4004+4.0087 12.9484+3.6630 11.2235+4.0178
eLasso 39.6869+23.0632 34.6040+£9.0395  38.6637+8.64882 36.2285+16.2771

RMTL 40.1564+24.2115 36.7602+8.1751 38.5117+7.4937 36.3774+9.3944

RMTFL  38.5617+24.5291 33.5959+5.8909 37.1658+3.3030 32.11304£9.3993

K SPATS 33.0144+7.3822 32.1374+6.9506 33.9420+7.5602 30.0107+£12.9808

MTERL  38.1141417.7324  34.1170+£10.9482  32.268546.6798 32.9576£8.7970

RoTS 37.7715£13.5931 32.4376+5.0282 33.9695+4.5422 32.0179+16.0658
MTIRL 34.2518+21.1542  30.9235+4.6454  30.9142+8.0719  29.0153+£12.4076
MTSIRL 32.3273+20.4688  32.0831+6.6913  29.2353+6.4537  31.8171+15.5351
eLasso 23.3940+7.8800 22.3194+8.4704 23.5501+£8.4900 20.8678+10.8733

RMTL 22.8227+6.2186 25.3811£7.2993 23.4062+9.2389 17.51134+10.6652
RMTFL 21.6784+5.9079 22.5237+4.4219 21.5818+4.4859 18.54004+10.7995

g SPATS 20.1999+3.4101 22.8633+10.2144  20.683143.6549 16.7218+4.1018

MTERL 24.3386+9.4860 21.5714+4.9416  23.2879+11.3832 18.25214-5.3309

RoTS 22.8689+5.1246 21.6916+4.3283 17.83854+4.6142 16.9938+7.8317

MTIRL 22.5401+9.5597 21.1902+£7.4591  17.3517+3.3483 16.050045.4733
MTSIRL 19.7331+£4.2782 17.2486+4.2821  17.7444+3.8730 15.3200+6.0198

training ratios but perform worse with higher training ratios. This aberration
can be attributed to the neglect of the relationship between biomedical voice
measurements from subjects in our framework. In this dataset, training
samples consist of diverse biomedical voice measurements, leading to greater
disparities between the training and test sets as the training ratio increases.
In our experiments, with a small number of training samples, implying more
biomedical voice measurements are allocated to the test set, the variance of
features between the training and test data is relatively small. Conversely,
with a higher training ratio, the predictive target exhibits a larger gap due
to differences in the biomedical voice measurements.
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The prediction performance comparison of models in terms of rMSE con-
ducted on the SmartFert dataset is shown in Table 4. The predictive target
in this dataset is to predict the nitrogen, phosphorus, potassium and sulfur
content in the soil, while the content of the above elements changes over the
seasons and vary from different farms. The proposed informative relationship
learning methods outperform others in most single prediction tasks. Noticing
that the feature based learning methods with similar decomposition (RMTL
and RMTFL) show a relatively larger prediction error, it is reasonable to in-
fer that it is caused by the changes of characteristics in different time points.
Specifically, the overall prediction performance of task SmartFert.P stands
out due to the relatively small variation in its predictive targets compared to
the other tasks. In contrast, all four predictive tasks in this dataset exhibit
significant variations, leading to poorer prediction performance. These fluc-
tuations among prediction tasks create challenges in joint learning. A direct
consequence is that modeling the progression relationship using decompo-
sition methods (RoTS, MTIRL, and MTSIRL) shows improved prediction
performance across tasks. Although a difference in subspace learning, the
decomposition methods perform well in the condition that the predictive
tasks are various. Another piece of evidence is the performance of RMTL
and RMTFL, the assumption that tasks share a subset of features is suitable
to some extent in SmartFert.P and SmartFert.S, while inappropriate in the
circumstance that the tasks’ similarity is lower, such as SmartFert.N and
SmartFert. K.

The average and standard deviation of performance measures in terms of
the rMSE conducted on the Alzheimer’s disease datasets is shown in Table
5 and the performance of each subtask on different time points is shown in
Figure 2. Our proposed methods show a better performance in both over-
all predictive tasks and each time points. In the ADNI cohorts, the data
is collected from the baseline to M120 with long-term research up to ten
years after the first time checking, and the modelling of progression is chal-
lenging. The MTERL learns the exclusive relationship of disease and the
RoTS method simulates the gradual changes in progression. The common
tendency of all plots in Figure 2 is as time goes by, the worse prediction
performance of each task. The main reason why this phenomenon occurs is
many patients dropping out from the ADNI study thus the number of in-
stances decreases with the passage of time. Besides, an abnormal fluctuation
of the performance curve happens in the district from M48 to M96, especially
in ADAS-Cog, RAVLT. TOT6 and RAVLT.TOT30. It seems that the perfor-
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Table 5: Prediction performance comparison of models in terms of rMSE (lower is better)
in ADNI. The ratio shows the percent used as training data, and the data shown in this
table is the mean value £ standard derivation.

Dataset Methods 0.6 0.7 0.8 0.9
eLasso 15.701540.3779 15.055240.3445 14.4239+0.2312 14.011440.4793
RMTL 15.3409+40.3742 14.944440.1723 14.446440.2039 13.9948+0.5116
RMTFL  15.8653+0.1677 15.1849+0.3523 14.5580+0.2676 14.3239+.05271
ADAS-Cog SPATS 12.9562+0.2402 12.5772+0.1557 12.0569+0.2909 12.1118+0.4039
MTERL 14.8580+0.3246 14.7334+0.4160 14.1492+0.2842 13.8066+0.3446
RoTS 14.6217+0.3565 14.117140.3596 13.773340.3288 13.201440.2698
MTIRL 12.3176+0.2070  12.1113+0.1425 11.6162+0.2099 11.4096+0.4266
MTSIRL 12.3014+0.2438  12.1599+0.2006 11.763340.2554 11.411140.5497
eLasso 11.4141+0.5497 8.8135+0.2054 8.5671+0.2199 8.8074+0.5369
RMTL 8.2303+0.3421 8.0837+0.2119 7.6425+0.2389 7.112240.2645
RMTFL 9.7131+0.4078 8.9356+0.2046 8.7854+0.3006 8.427940.4041
MMSE SPATS 9.0279+0.1907 8.3300+0.2324 7.8631+0.3675 7.5838+0.1194
MTERL 9.1281+0.1998 8.6031+0.2298 8.3006+0.4531 8.0607+0.5817
RoTS 6.3727+0.2925 6.5939+0.1747 6.3763+0.2058 6.3658+0.2495
MTIRL 6.4126+0.2605 6.1824+0.1216 6.4403+0.1444 6.2120+0.2650
MTSIRL 6.2746+0.3405 6.5803£0.1522 6.3429+0.2143 6.0882+0.2948
eLasso 5.3755+0.0977 5.0678+0.0998 4.8359+0.1637 4.7767+0.1250
RMTL 4.8676+0.0766 4.6387+0.0520 4.4673+0.1479 4.154040.1088
RMTFL 5.4789+0.1167 5.0990+0.1045 4.9598+0.1287 4.79224+0.1193
SPATS 4.885540.0745 4.6336+0.0883 4.4870+40.1449 4.4340+0.1866
RAVLT.TOTAL MTERL 5.5214+0.0629 4.9767+0.0399 4.8003+0.1121 4.6730+0.1359
RoTS 4.43874+0.0774 4.2558+0.0974 4.106240.0483 4.0188+0.0780
MTIRL 4.435440.0882 4.264240.1186 4.1092+0.1049 3.9025+0.1106
MTSIRL 4.41524+0.0985 4.1763+0.0658 4.0783+0.0728 3.7872+0.1149
eLasso 6.0839+0.1246 5.7028+0.1175 5.5799+0.0720 5.3902+0.1335
RMTL 5.7678+0.0746 5.4690+0.1087 5.3087+0.1008 5.146140.1611
RMTFL 6.1640+0.1380 5.7388+0.0865 5.5873+0.1126 5.408140.0562
RAVLT. TOT6 SPATS 5.2230+0.0741 5.0903+0.1009 5.0707+0.0601 4.932440.1000
MTERL 5.8138+0.1123 5.6149+0.1032 5.3992+0.1264 5.3348+0.1904
RoTS 5.4959+40.0971 5.207140.0717 5.0477+0.0484 4.9265+0.1429
MTIRL 5.0586+0.0646 4.873040.0701 4.7965+0.0534  4.6073+0.1377
MTSIRL 5.038240.0890 4.8664+0.0788 4.7995+0.0465 4.6478+0.1297
eLasso 6.3493+0.1375 5.9100+0.1299 5.7456+0.0992 5.594540.2289
RMTL 6.1246+£0.1277 5.7824+0.1237 5.608140.0831 5.5057+0.1852
RMTFL 6.5142+0.1183 6.0505+0.1729 5.8153+0.1213 5.524940.1909
RAVLT. TOT30 SPATS 5.3403+0.0609 5.2262+0.0416 5.0116+0.0958 4.9463+0.1135
MTERL 6.0730+0.1268 5.8038+0.0861 5.6127+0.0908 5.4627+0.2004
RoTS 5.8117+0.1129 5.5374+0.1021 5.3659+0.0755 5.2364+0.1422
MTIRL 5.2528+0.0702 5.0927+0.0862 5.0214+£0.0765 4.9016+£0.1094
MTSIRL  5.271440.0783 5.1402+0.0807 4.9709+0.0817  4.8509+0.1432
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Figure 2: Prediction performance comparison of each time point in terms of rMSE(lower
is better).

mance curves do not follow the number of samples at these time points. The
consistency of the progression model changes in this section, no matter the
approaches to modelling the disease. It means that both the shared feature
sets (eLasso, RMTL and RMTFL) and the chronological prior knowledge
(RoTs) do not explicitly capture the progression to some extent. While the
MTSIRL method with sparse prior over relationships does not exhibit supe-
rior performance compared to MTIRL, this can be attributed to the sparsity
of samples for progression estimation, especially for tasks in later sequences.

For a further discussion in AD progression, We show the learned infor-
mative relationship matrices from ADNI datasets on Figure 3. The learned
informative relationship matrices are accessed from the cross-validation and
for a better visual illustration, the learned covariance matrices are trans-
formed into relationship matrices with regularization. In figure 3, first, all of
the relationship matrices show a high correlation in the initial stages of the
disease, including the baseline, M06, M12, M24 and M48. It reveals a rel-
atively close relationship in the beginning stages, thus there are similarities
measured by the proposed frameworks in those cognitive prediction tasks.
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Figure 3: The informative relationship matrices learned by MTSIRL from the ADNI
datasets.

Secondly, the learned informative relationship is quite similar in the latter
stages, M96, M108 and M120 in the prediction target of RAVLT, M108 and
M120 in the prediction target of ADAS-Cog and MMSE. It means that the
changes in the brain gradually come to stability in critical patients. Thirdly,
through the learned informative relationship learning, it is shown that co-
herent tasks in the middle of disease progression, from M60 to M96, appear
less similar to others, even compared with adjacent time points. Contacting
the abnormal fluctuation in the prediction performance curves in Figure 2,
the complex changes in the middle of disease progression bring a challenge
in both modelling and determination, because of the limited knowledge shar-
ing under our proposed framework. In conclusion, the proposed informative
relationship learning methods provide a deep insight into exploring the dis-
ease progression, the experiment results show the limitation of the temporal
smoothness prior assumption, and more sophisticated models need to capture
the variance of the different stages of Alzheimer’s disease.
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Figure 4: The prediction performance with variety of configuration for parameters.
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Table 6: Average time cost of proposed methods in real-world datasets.

Methods Cost School Parkinson’s disease SmartFert ADNI
Tterations 93.8000+0.4216  927.9000+£65.7139  14.2000+3.7347 327.6000+4.6714
Time 0.6000£0.1464 0.0500+0.0293 0.0063+0.0132 6.7390+0.6372
Tterations 93.7000+0.4830 943.4000£46.4954  13.5000+6.6207 331.7000+4.3982
Time 0.6438+0.1627 0.0484+0.0226 0.0031+£0.0099  6.8172+0.3655

MTIRL

MTSIRL

5.6. Parameter Sensitivity

For all real-world datasets evaluated in our experiments, we conduct pa-
rameter sensitivity analysis based on A; and Ay in the MTIRL method. The
training ratio is set as 0.9 and the parameters are chosen from the same scale
in prediction performance experiments. The result of parameter sensitivity
is presented in Figure 4. The performance curves help us to learn the rela-
tive importance of shared knowledge and task-specific characteristics under
the predictive tasks, as the optimal hyperparameters indicate the variance of
data modelling constraints. In the School dataset, the optimal performance
at Ay = 100 and Ay = 1000 highlights that task-specific characteristics play a
significant role compared to shared knowledge. Conversely, in the Parkinson’s
disease dataset, the parameter selection indicates less task similarity, treating
independent patients with biomedical voice measurements as separate tasks
and disregarding their relatedness. On the SmartFert dataset, task similarity
is notably important, particularly evident with the turning point at Ay = 100
in the SmartFert.N dataset. In SmartFert.P, SmartFert.K, and SmartFert.S
datasets, predictive performance improves as A\; and A, increase, which ap-
pears contradictory in relative importance analysis. However, it’s crucial
to note that the significant changes in predictive targets within SmartFert
datasets suggest that similarity stems more from prior knowledge than from
model parameters. The informative relationship method offers flexibility in
learning interactions among tasks. However, in the ADNI dataset, higher
values of A\; do not consistently lead to improved performance, especially in
MMSE and RAVLT.TOTAL datasets. This inconsistency underscores the
necessity for accurately simulating disease progression at each time point
rather than relying solely on task cohesion to enhance overall performance.

5.7. Time Complexity

Besides the convergency rate and calculation complexity analyses in Sec-
tion 3, the time complexity of the proposed informative relationship learning
methods in real-world datasets is presented in Table 6. Our experiments are
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conducted on the AMD RYZEN 5800H CPU with 3.20GHz, and the thresh-
old is settled as 107% when the function value between adjacent iterations is
smaller than it, then the iterative progression stops.

Notably, the alternating method employed in optimizing 2 within MT-
SIRL exhibits comparable convergence rates to directly solving MTIRL.
Moreover, despite the additional sparse constraint in informative relation-
ship learning, MTSIRL demonstrates strong scalability in handling a large
number of tasks, exhibiting superior performance in both prediction and re-
lation estimation across most experimental scenarios.

However, a higher time cost for each iteration of the objective function op-
timization is observed, especially notable in the School and ADNI datasets,
albeit for distinct reasons. In the School dataset, which features a large
number of tasks, the predominant time consumption arises from learning
pairwise informative relationship matrices. This process involves extensive
computation to establish relationships between multiple tasks. Conversely,
in the ADNI dataset, the primary computational burden is attributed to
the high-dimensional neuroimaging features. The complexity of processing
these features significantly impacts calculation costs, necessitating substan-
tial computational resources. In this paper, the analytic solution is directly
adopted in the optimization step to optimize the time complexity. Therefore,
for broader practical applications, it is crucial to carefully consider and man-
age the dimensionality of the data. Efficient handling of data dimensions can
mitigate computational overheads and enhance the feasibility of applying the
proposed method across different datasets and scenarios.

6. Discussion

We propose a novel multi-task informative relationship learning frame-
work to explore the latent tasks’ shared knowledge dependency of multi-task
learning. To overcome the compulsory similarity constraints in past relation-
ship learning studies, we employ a decomposition method of learned model
parameters, for both informative relationships exploration under the knowl-
edge sharing across the process and tasks’ specific features capture. We
argue the prior knowledge similarity of tasks assumption which restrains the
representation of task-specific characteristics with unclear knowledge sharing
mechanism. By applying it to the real-world cohorts, we point out that task
dependency changes in different stages, and the existing prior knowledge can
not model well the latent association of tasks.
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The primary contribution is we propose the concept named ’informative
relationship’, which means the task relationships in the knowledge-sharing
stage of MTL. It helps us to explore the underlying interactive information
across all tasks. We utilize graphical regularization to uncover the pair-
wise informative contributions of tasks using the covariance matrix. This
approach offers advantages in terms of generalization performance in data
modeling, statistical properties under the central limit theorem, and cost-
effectiveness in calculating mutual information. Additionally, we apply an
exclusive Lasso constraint to capture unique features within different sub-
tasks. This combined approach allows for a comprehensive exploration of
task relationships while efficiently capturing task-specific characteristics.

There are still several limitations to be considered in this study. First,
the current research is from the viewpoint of knowledge sharing, while the
pairwise knowledge contribution is based on the overall features. It will be
helpful to learn the informative relationship with the categories of features
to obtain better interpretability, despite the rising expert prior knowledge
and calculation cost. Besides, the proposed methods are based on the reg-
ularized framework, and fit to extend to the neural networks with the same
network structure for each subtask, while lacking generalization in learning
with various tasks with diverse network structures due to the unmatched
dimensional model parameters. An important work worth studying is about
informative relationship learning in multi-modal models to determine the
latent knowledge dependency of each modal.

7. Conclusion

In this paper, we propose a novel multi-task informative relationship
learning model aimed at uncovering the dependencies of shared knowledge
across all tasks. Specifically, our approach utilizes a decomposition method
to determine the pairwise knowledge contribution matrix and capture the
specific features of each task. This model addresses weaknesses in MTL re-
lationship learning by providing insights into the underlying dependencies
through mutual information analysis. Theoretical analysis and experiment
results demonstrate the effectiveness of our proposed framework. Further-
more, we discuss some limitations and extensions of informative relationship
learning for better model interpretability and data mining.
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