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H I G H L I G H T S

A novel algorithm is proposed for evasive attacks against autoencoder-based cyberattack detection systems (CDS) in smart grids.
Effectiveness of the proposed evasive attack is demonstrated on an autoencoder-based CDS for transmission protective relays.
Attacker with knowledge of the CDS model can successfully craft evasive samples to cause spurious protective relay operations.
It is paramount to adequately assess the robustness of ML-based CDS prior to full-scale field implementation in smart grids.
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A B S T R A C T

The digital transformation process of power systems towards smart grids is resulting in improved reliability,
efficiency and situational awareness at the expense of increased cybersecurity vulnerabilities. Given the
availability of large volumes of smart grid data, machine learning-based methods are considered an effective
way to improve cybersecurity posture. Despite the unquestionable merits of machine learning approaches
for cybersecurity enhancement, they represent a component of the cyberattack surface that is vulnerable, in
particular, to adversarial attacks. In this paper, we examine the robustness of autoencoder-based cyberattack
detection systems in smart grids to adversarial attacks. A novel iterative-based method is first proposed to craft
adversarial attack samples. Then, it is demonstrated that an attacker with white-box access to the autoencoder-
based cyberattack detection systems can successfully craft evasive samples using the proposed method. The
results indicate that naive initial adversarial seeds cannot be employed to craft successful adversarial attacks
shedding insight on the complexity of designing adversarial attacks against autoencoder-based cyberattack
detection systems in smart grids.
1. Introduction

1.1. Motivations

The number, frequency, and impact of cyberattacks have been
escalating in a variety of domains over the past decade. Given the
significance of critical infrastructures on societal welfare, cyberattacks
on these systems have recently raised particular concern.

Power systems are arguably considered the most important critical
infrastructure because most other critical infrastructures depend on
the availability of electricity. A successful cyberattack against power
systems can result in wide area, long duration electricity outages such
as the one experienced by the Ukrainian power grid in 2015 [1,2]
that can affect the safety of citizens and their economy. As such,
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the North American Electric Reliability Corporation (NERC) and other
regulatory agencies have taken steps to ensure the cybersecurity of
power systems, for example, by mandating various standards such as
the critical infrastructure protection (CIP) standards [3]. As such, there
is a pressing need by regulatory agencies and utilities alike to develop
various approaches for the cybersecurity enhancement of smart grids.

Model-based and machine learning (ML)-based methods have been
extensively investigated for cybersecurity enhancement of smart grids.
ML-based methods for cyberattack detection are receiving extensive
attention due to the increasing availability of large volumes of smart
grid data. Despite the unquestionable benefits of ML-based approaches
for smart grid cyberattack detection and mitigation, ML-based models
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themselves can become the target of attacks. An experienced attacker
with specific ML model knowledge can design and apply adversarial
attacks that render ML-based attack detection ineffective.

1.2. Literature review

1.2.1. Related literature on ML-based cyberattack detection systems in
smart grids

ML-based cyberattack detection systems are extensively examined
for different applications in smart grids. Supervised and unsupervised
learning methods have been used in [4] to detect stealthy false data
injection attacks against state estimators. In [5], ensemble learning
algorithms using unsupervised and supervised classifiers have been
proposed to detect stealthy false data injection attacks against state
estimation. A semi-supervised learning approach based on mixture
Gaussian distribution has been proposed in [6] for detecting false data
injection attacks also targeting smart grid state estimation. Wavelet
transform and deep neural network techniques have been employed
in [7] to detect false data injection attacks against ac state estimation.
A supervised ML-based method has been presented in [8] to detect cy-
berattacks targeting state estimators. A genetic algorithm-based method
has been used in [8] for feature selection to enhance detection accuracy
and reduce computational complexity.

A novel method based on margin setting algorithm has been pre-
sented in [9] to protect power systems against false data injection
attacks. In [10], an artificial-intelligence-based algorithm has been in-
troduced to detect compromised meters. An intrusion detection system
using non-nested generalized exemplars and state extraction method
has been proposed in [11] for wide area measurements. A combination
of signature-based and deep learning methods have been employed
in [12] to monitor and detect cyberattacks in transmission protection.
In [13,14], a deep learning-based cyberattack detection system has
been proposed for transmission line protection. The performance of
different learning algorithms including supervised, semi-supervised,
and online learning algorithms have been analysed in [15] for different
attack scenarios. A conditional deep belief network-based method has
been introduced in [16] for detecting the false data injection attacks in
real-time. An unsupervised anomaly detection system using dynamic
Bayesian networks and restricted Boltzmann machine has been pro-
posed in [17] to differentiate an actual fault from a cyberattack in smart
grids.

1.2.2. Related literature on adversarial attacks against ML-based methods
in smart grids

Various papers have investigated the adversarial attacks in the con-
text of different applications in smart grids. In [18,19], the vulnerability
of ML-based load forecasting model to adversarial attacks has been
investigated. An adversarial attack against ML-based event analysis has
been presented in [20]. In [21] a method has been proposed to generate
adversarial signals to attack learning models in power systems.

The vulnerability of ML-based classifiers to adversarial attacks has
been investigated in [22] for phasor measurement unit data. In [23],
the vulnerabilities of deep learning-based energy theft detection sys-
tems to adversarial attacks has been investigated. A black-box ad-
versarial attack construction algorithm for targeting ML-based models
operating on smart meter data has been presented in [24]. An adversar-
ial attack model has been presented in [25] to compromise dynamical
controls of energy systems. In [26,27], machine learning have been
used to craft false data injection attacks against power grid state
estimation.
2

Fig. 1. High level representation of executing adversarial attacks against smart grids
equipped with ML-based cyberattack detection systems.

1.2.3. Related literature on adversarial attacks against cyberattack detec-
tion systems in smart grids

Recently, several papers have examined evasive attacks in the con-
text of smart grid cybersecurity. While some references, [28,29], are
focused on specific protocols, other references, [30–33], are application
oriented. ML-based intrusion detection systems for IEC 60870-5-104
and Modbus protocols have been introduced in [28,29], respectively.
Afterwards, the resilience of these intrusion detection systems have
been evaluated against adversarial attacks. The vulnerability of deep
learning-based intrusion detection systems against adversarial attacks
has been examined in [30] in demand response applications. The ad-
versarial attacks against intrusion detection systems for state estimators
have been investigated in [31,32]. In [33], the adversarial attacks
against deep reinforcement learning-based energy theft detectors have
been explored.

1.3. Contributions

Considering the existing literature, there is a research gap on exam-
ining the robustness of machine learning-based cyberattack detection
systems to adversarial attacks in smart grids. This paper builds on the
available literature on adversarial attacks against machine learning to
investigate the robustness of autoencoder-based cyberattack detection
systems in smart grids. A novel iterative-based method is first proposed
to craft adversarial attacks against an autoencoder-based unsupervised
cyberattack detection systems. Afterwards, it is demonstrated that an
attacker with white-box access to the autoencoder-based cyberattack
detection systems can successfully craft evasive samples using the
proposed method. We demonstrate that a naive initial adversarial seed
cannot be used to craft successful adversarial attacks in smart grids
using iterative-based methods.

The main contributions of this paper are as follows:

• For the first time, it is demonstrated that autoencoder-based
cyberattack detection systems in digital substations are vulnerable
to evasive attacks.

• A novel iterative-based algorithm is proposed to create evasive
attacks against autoencoder-based cyberattack detection systems.

• It is demonstrated that the success of the proposed iterative-based
algorithm does not depend on the availability of data from the
targeted system.
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Fig. 2. A schematic diagram of the hierarchical structure of protection, control and monitoring systems in power systems.
1.4. Paper organization

The remainder of this paper is organized as follows. Section 2
presents the basics of adversarial attacks against ML-based cyberattack
detection systems in smart grids. The modelling of adversarial attacks
is described in Section 3. Section 4 presents a novel iterative-based
approach for generating adversarial attacks. The simulation results are
provided in Section 5 before concluding the paper in Section 6.

2. Adversarial attacks against machine learning-based cyberat-
tack detection systems

Interest and progress in the application of artificial intelligence (AI)
and ML to cybersecurity of smart grids has increased in recent years.
Consequently, there is a growing concern over these ML-based cyber-
security defences themselves becoming the target of attacks known as
adversarial attacks. The objective of adversarial attacks is to deceive
ML-based algorithms into making incorrect decisions by exploiting their
vulnerabilities. Successful adversarial attacks against ML-based cyber-
security defences can prevent/delay attack detection or reduce their
trustworthiness by increasing the number of misclassifications. As such,
there is a need to evaluate the robustness of ML-based cybersecurity
defences against such attacks.

Adversarial attacks can be conducted in training and/or testing
phases. Poisoning attacks are performed in the training phase by inject-
ing corrupting samples into the training set to achieve adversarial goals
of attackers in the testing phase [34,35]. Evasive attacks are executed in
the testing phase by deliberately adding subtle perturbation to the input
data to mislead the ML model to make incorrect decisions [36,37]. The
feasibility of evasive adversarial attacks is related to the characteristics
of ML models as well as overfitting due to insufficient regularization.
The focus of this paper is on the evasive adversarial attacks.

Evasive adversarial attacks can be classified into white-box or black-
box attacks based on the extent of the attackers’ knowledge of the
machine learning system, which involves information about: (1) train-
ing dataset, (2) feature set, (3) learning algorithm, and (4) objec-
tive function and parameters/hyper-parameters during training. In the
white-box evasive attack, the attacker has complete knowledge about
the target system. In the black-box adversarial attack, the attacker
3

has no knowledge about the ML algorithm and architecture including
model parameters, feature set and training data, but can query the
system and receive feedback to make educated conjectures about the
model or to obtain training data that can subsequently be used to train
a separate or substitute model.

Adversarial attacks were first investigated in the image processing
and computer vision domains [38–40]. The objective here is to min-
imally perturb benign data to cause misclassification while keeping
the modifications imperceptible to the human eye. Although there is
a large body of literature on adversarial attacks in image and com-
puter vision domains, the increased attention of ML-based models to
industrial control system (ICS) cybersecurity problems has resulted in
recent adversarial attack publications in this application area. It is
worth noting that famous methods for generating adversarial attacks
such as fast gradient sign method (FGSM) and basic iteration method
(BIM) are ineffective in industrial control systems and smart grids as
extensively discussed in [41–44]. Yet, few papers have investigated the
implications of adversarial attacks for ML-based cyberattack detection
systems in smart grids [45].

There are several requirements for successful implementation of
attacks against ICSs and smart grids that make adversarial attacks in
these fields more challenging as illustrated in Fig. 1. First, communi-
cation networks are innate to modern ICSs and smart grids. As such,
attackers must bypass any intrusion detection systems that monitor
communication packets and communication traffic for abnormal be-
haviours. Moreover, the communication packet must reach the desired
device. For example, the communication packet containing a malicious
payload must have the correct destination media access control (MAC)
address to reach the desired target device. Second, adversarial attacks
need to evade ML-based cyberattack detection systems that monitor
the payload of communication packets. For instance, the attackers may
need to mimic laws of physics or acceptable ranges to evade ML-
based cyberattack detection systems in smart grids. Third, the malicious
payload of communication packets should cause the desired physical
impact, e.g. maloperation of a protective relay resulting in tripping
operations to achieve the desired impact of an attacker. The second
and third aspects are related to designing effective and successful
adversarial samples.
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Fig. 3. Structure of a typical autoencoder consisting of the encoder, decoder and the latent space.
Fig. 4. The IEEE PSRC D6 benchmark test system.
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Both iterative-based and generative adversarial networks can be
sed to devise adversarial attacks. The main objective of the iterative-
ased methods is to transform an initial sample iteratively to maximize
he probability of the sample evading the ML-based cyberattack detec-
ion systems and also causing the desired physical impact. The main
hallenge in the iterative-based methods is to design an objective func-
ion that can successfully create adversarial samples to a high degree.
n contrast, the main challenge in generative adversarial networks is
he availability of data to train the models.

The present literature has neglected the unique characteristics of
mart grids in contrast to other ICSs. Power systems consist of a large
umber of substations and components that are spread over a wide
eographical area. Moreover, essential protection and control actions
eed to be executed within a short period of time. These character-
stics necessitate distributed intrusion systems relying on a few local
easurements (sensor readings) in one substation. This is while the

dversarial attacks against intrusion detection systems studied in the
resent literature usually have focused on water distribution and wa-
er treatment systems. These water distribution and water treatment
ystems collect all sensors and actuators data with very low sampling
ates which makes execution of successful attacks against these ICSs
ore difficult. Moreover, the attacker should manipulate most of the

ensor readings in order to execute a successful attack which makes the
mplementation of adversarial attacks difficult, if not impossible [46].

hile the underlying principles of these approaches can be generalized
o some extent to applications like state estimation in power systems,
hey cannot be simply extended to protection and control systems.

. Threat model

The protection, control and monitoring systems in power systems
ave a hierarchical structure as illustrated in Fig. 2 which commonly
4

perate in different time scales. In general, the protection and control
ystems on the lower system levels are designed to function based on
ata with higher time resolution and act faster compared to protection
nd control systems on the higher system levels. In this paper, we focus
n the sensors and actuators at the lower power system levels like
rotection systems in substations. It is worth noting that no encryption
an be used for communication between these lower level systems
ecause of the time critical functions involved. Moreover, the actuators
t this level form the first line of defence in power systems. As such,
uccessful cyberattacks against these sensors and actuators can result in
erious consequences for power systems. These characteristics persuade
any researchers to adopt AI-based intrusion detection system such

s autoencoders [14]. Unsupervised or semi-supervised autoencoder-
ased cyberattack detection systems are superior to other AI-based
ethods because of the abundance of labeled non-anomalous datasets

nd rarity of cyberattack datasets in smart grids.
The objective of the attacker is to devise a stealthy attack which

an evade autoencoder-based cyberattack detection systems in smart
rids and force an actuator or a set of actuators to misoperate and
ause the intended physical impact. We assume that the attacker can
ccess and compromise a particular set of sensors or data coming from
ensors. Two attack scenarios against IEC 61850-based substations are
onsidered here. In the first scenario, we assume that the attacker has
he ability to either compromise the transformer instruments/merging
nits physically or manipulate their settings to perform the false data
njection attacks. In the second scenario, we assume that the attacker
as the ability to compromise and control the communication traffic
oming from the sensors, for example, by connecting a malicious device
o the communication network to perform man-in-the-middle (MITM)
nd false data injection (FDI) attacks. The attacker disrupts the sampled
alue (SV) packets from the merging unit to the protective relays
nd sends falsified SV packets which contain the synthetic fault data
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Fig. 5. Malicious modification of the current transformer setting through the merging unit.
Fig. 6. False data injection attack through the process bus.
crafted using the proposed adversarial attack algorithm. This causes the
protective relay to misoperate. We also assume that the attacker has
white-box access to the autoencoder-based cyberattack detection sys-
tems and knows the model architecture and parameters. The attacker
may be a disgruntled internal employee with white-box access to the
cyberattack detection system. The attacker may also be external to the
organization, but has been involved with the development, evaluation
and installation of the cyberattack detection system.

4. Proposed evasive attack algorithm

We start by identifying a roadmap that an attacker can take to
execute a successful attack against smart grids with autoencoder-based
cyberattack detection systems. First, the attacker chooses a target in
the smart grid for the attack. For example, protective relays such as
instantaneous overcurrent relays can be considered as the targets of
the evasive attack. The attacker should then identify the characteristics
of the attack data that can force the target to misoperate. For an
instantaneous overcurrent relay, an attacker can force a misoperation
by injecting current measurements with magnitude above the instan-
taneous overcurrent relay setting. The challenge for the attacker is to
create an evasive attack sample which can both bypass the cyberattack
detection system in a substation and force the relay to misoperate.
The example of instantaneous overcurrent protective relays discussed
here can be easily extended to other types of protective relays or other
protection and control systems in substations.

Consider an autoencoder illustrated in Fig. 3. The encoder, 𝑓 ,
encodes the input, 𝑥, to a latent space, 𝑧, with dimensions typically
5

smaller than the input space. The decoder, 𝑔, then reconstructs the
input from the latent space. We propose an iterative algorithm for
devising evasive attacks to bypass the autoencoder-based cyberattack
detection systems and trigger a protection or control system in smart
grids as follows:

𝑥𝑎 = argmin
𝑥

‖𝑔(𝑓 (𝑥)) − 𝑥‖22 + ℎ(𝑥) (1)

where 𝑥𝑎 denotes the crafted evasive attack sample.
The first term in (1) ensures that the reconstruction error is small

and allows the evasive attack sample to bypass the cyberattack detec-
tion system. The second term ensures that the crafted evasive attack
sample can force the target relay to misoperate. Different functions can
be used to implement ℎ(𝑥). The 𝑔(𝑓 (𝑥)) term in (1) is taken from the
whitebox model of the autoencoder and ℎ(𝑥) should be designed based
on the logic of the targeted protective relay or control system. It is
worth noting that the logic of the protective relays or control systems
in power systems are well-documented and standardized. Thus, it is
convenient for attackers to access roughly accurate information about
these systems to design the term ℎ(𝑥) in (1).

Considering the example of the instantaneous overcurrent protec-
tive relay, the current measurements received from the current trans-
former are compared with a threshold by the instantaneous protective
relay to detect the fault and trip the circuit breaker. Therefore, the
attacker can select ℎ(𝑥) = 𝑅𝑒𝐿𝑈 (𝜃 − 𝑚𝑎𝑥(𝑥)) where 𝜃 must be larger
than or equal to the relay setting. 𝑅𝑒𝐿𝑈 represents rectified linear
unit function. The accessible information in the public domain about
the ratings of current transformers and settings of the instantaneous
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Fig. 7. The architecture of the autoencoder-based cyberattack detection system.
Fig. 8. Simulation-based distribution system test case.

vercurrent protective relays make the selection of appropriate value
or 𝜃 convenient for attackers. Furthermore, the choice of a 𝑅𝑒𝐿𝑈
unction in ℎ(𝑥) not only guarantees that the protective relay will be
riggered but also eliminates the competition between the first and
econd terms in (1) once the relay threshold is met.

Algorithm 1 Crafting The Evasive Attack Sample
1: 𝜏 is the learning rate, 𝛾 is the momentum term
2: 𝑚𝑒𝑎𝑛𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑒𝑟𝑟𝑜𝑟(𝑀𝑆𝐸)𝑡𝑎𝑟𝑔𝑒𝑡 is the desired reconstruction error
3: 𝑥0 ← 𝑥𝑓
4: while ||𝑔(𝑓 (𝑥𝑖)) − 𝑥𝑖||22 > 𝑀𝑆𝐸𝑡𝑎𝑟𝑔𝑒𝑡 do
5: 𝐿𝑖 = ||𝑔(𝑓 (𝑥𝑖)) − 𝑥𝑖||22 + ℎ(𝑥)
6: 𝑣𝑖+1 = 𝛾𝑣𝑖 + (1 − 𝛾)∇𝑥𝑖𝐿𝑖
7: 𝑥𝑖+1 = 𝑥𝑖 − 𝜏𝑣𝑖
8: end while

The optimization problem in (1) can be solved using Algorithm 1
hich is implemented using TensorFlow. 𝑥𝑓 in step 3 of Algorithm 1

s the adversarial seed. In steps 5–7, the algorithm perturbs the evasive
ample to minimize its reconstruction error, ‖𝑔(𝑓 (𝑥𝑖))−𝑥𝑖‖22, while also

minimizing the term ℎ(𝑥) to ensure that the evasive sample triggers the
relay. This perturbation of the evasive sample is repeated iteratively
until the desired reconstruction error is achieved.

5. Simulation results

In this section, we investigate the performance of the proposed eva-
sive attack against autoencoder-based cyberattack detection systems for
protective relays. We first describe the cyberattacks against protective
relays. Next, we explain an autoencoder-based cyberattack detection
systems for protective relays. Afterwards, the capability of the proposed
evasive attack to bypass the autoencoder-based cyberattack detection
systems is demonstrated. All the experiments are conducted on a com-
puter with i7-9700K CPU and RTX2080 GPU. The deep learning model
for the cyberattack detection system is implemented with Keras with a
6

Tensorflow backend. Algorithm 1 is implemented in Tensorflow to craft
the evasive attack samples.

5.1. Cyberattacks against protective relays

Power systems are commonly protected by various protective relays
which use measurements like current and/or voltage to identify abnor-
mal conditions. The abnormal conditions are generally recognized by
considering a combination of thresholds and time limits. For example,
the overcurrent relays detect the abnormal conditions when the current
level goes beyond a certain threshold and for a certain duration of
time. As such, a cyberattacker can employ many different methods
to execute a successful attack in the absence of cyberattack detection
systems. Moreover, the attacker does not even need to replicate wave-
forms of abnormal power system conditions. This is because any signal
that violate the threshold and time settings of a protective relay is
sufficient to force the relay to misoperate regardless of the waveform
shape. For example, the attacker can change the setting of the current
measurement instrument or inject any false current measurements with
high magnitude through the substation local area network to trigger the
overcurrent relay.

We employ the IEEE power system relaying committee (PSRC)
D6 benchmark test system in this paper to demonstrate the cyber-
attacks against protective relays [47]. The test system comprises of
three substations connecting a power plant to the rest of the power
system through four transmission lines as illustrated in Fig. 4. The
transmission lines are protected by various protective relays including
distance, overcurrent and differential protection. The test system is im-
plemented using a co-simulation platform including Riverbed Modeler
and OPAL-RT HYPERSIM simulator.

We implemented two cyberattacks in this section to demonstrate
the vulnerability of the protective relays in power systems in the ab-
sence of cyberattack detection systems. In the first attack, we changed
the current transformer settings to force the overcurrent relay of the
transmission line to misoperate as illustrated in Fig. 5. In the second
attack scenario, we injected currents with high magnitude through the
substation local area network to cause overcurrent relay malfunction as
illustrated in Fig. 6. Both attack scenarios resulted in the transmission
line tripping.

The growing number of cyberattacks against power systems in
recent years has underlined the importance of cyberattack detection
systems.

5.2. Autoencoder-based cyberattack detection system for protective relays

The stealthy and polymorphic nature of cyberattacks motivated
the development of machine learning-based cyberattack detection sys-
tems in substations to counteract these attacks. The unsupervised
autoencoder-based cyberattack detection systems are superior to other
machine learning-based methods as they can detect zero-day attacks.
Moreover, autoencoder-based cyberattack detection systems do not
need continually evolving cyberattack data for training.
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Fig. 9. The fault measurements from both the targeted power system (top) and the test case power system employed to generate initial attack seed (bottom).
Fig. 10. A window of initial adversarial seed (top) and crafted evasive attack using
Algorithm 1 (bottom).

In this paper, we adopt a 1-dimensional convolutional based au-
toencoder from [14] as illustrated in Fig. 7. The autoencoder has a
convolution filter size of 10, convolutional stride length of 1 and used
ReLU as the activation function. The autoencoder receives time series
of current measurements as input for the overcurrent protective relay
and generates an alarm when it detects a cyberattack. Data are fed to
the autoencoder-based cyberattack detection system in windows with
the size of 240 measurement samples.

The precision and recall metrics are employed to measure the
performance of the cyberattack detection system.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = # 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
# 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + #𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(2)

𝑟𝑒𝑐𝑎𝑙𝑙 = # 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
# 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + #𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(3)

Cyberattacks that are correctly detected by the cyberattack de-
tection system represent True Positive. Measurements with normal
7

behaviour that are incorrectly classified as a cyberattack represent
False Positive. Cyberattacks that are not detected by the cyberattack
detection system represent False Negative. Measurements with normal
behaviour that are correctly classified as legitimate measurements rep-
resent True Negative. # represents the count of each event. Therefore,
precision is the fraction of attack classifications made by the cyberat-
tack detection model that is correct. Recall is the fraction of actual
attacks that are ‘‘recalled’’, i.e., correctly classified as attacks by the
cyberattack detection system.

The autoencoder-based cyberattack detection system was able to
identify the attacks presented in Section 5.1 with 100% precision and
100% recall. As such, the attacker can only bypass the cyberattack
detection system either by injecting genuine historical fault data from
the location of the protective relay or using adversarial attacks. It
is worth noting that obtaining historical fault data is difficult as a
fault may have never occurred on the zone of protection of the relay
while the attacker has gained access to these measurement data. In the
next section, we demonstrate how the attacker can use evasive attack
algorithms to bypass autoencoder-based cyberattack detection systems.

5.3. Evasive attacks

In this section, we investigate the ability of evasive attacks to bypass
the autoencoder-based cyberattack detection systems for protective
relays. The iterative algorithm proposed in Section 4 for evasive attacks
is employed here to craft the evasive attacks. The attacker needs a seed,
𝑥𝑓 , to craft evasive attacks using the proposed algorithm as cited in
Section 4.

We consider a simulation-based test case to generate the seed for
Algorithm 1 to craft evasive attacks. Nevertheless, any other approach
can be adopted to generate the seed. We assume that the attacker has
limited information about the target system. For example, we assume
that the attacker only knows that the target substation is a generator
substation. Nevertheless, the attacker does not have any information
about the generator parameters, the configuration of the substation or
the topology and impedances of the network.

The simulation-based test case used by the attacker in our study
is illustrated in Fig. 8. The test case is based on a demo test system
in MATLAB Simulink developed by G. Sybille and T. Zabaiou. In the
test case, a 3.125-MVA synchronous generator, SG, is connected to a
2400-V distribution system which feed a 2250-hp induction motor, IM,
and a resistive load, Ld1. The synchronous generator is equipped with a
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Fig. 11. The initial adversarial seed (top) and the joined crafted evasive attack using the proposed method (bottom).
Fig. 12. The scaled fault-free measurements as the initial adversarial seed (top) and the joined crafted evasive attack (bottom).
non-reheat thermal turbine, governor, automatic generation controller
(AGC) and an AC1 A excitation system. The 2400-V distribution system
is also connected to a 25-kV network through a 6 MVA transformer. The
25-kV network is modelled as an ideal voltage source behind an R-L
impedance. Fault measurements from both the targeted power system
and the test case power system employed to generate the initial attack
seed is shown in Fig. 9 for comparison.

We emphasize the simulation-based test case used by the attacker
to generate the initial attack seed is different from the target system
illustrated in Fig. 4 in several aspects. First, the rating and parameters
of the generator in the two systems are different. Second, the generator
exciter, governor, and turbine of the generator in the two systems are
different. Third, the networks voltage level and topology are different.
Because of these differences, the initial attack seed data generated
using this test case cannot bypass the autoencoder-based cyberattack
detection system developed for the target system illustrated in Fig. 4
without using adversarial attack algorithms.

The attacker can craft synthetic evasive samples using Algorithm
1 to replicate the measurements in the target substation. Recall that
the cyberattack detection system has an input window of 240 measure-
ment samples. As such, each crafted evasive output from Algorithm 1
contains 240 samples. These individually crafted evasive windows are
8

guaranteed to evade the detector as long as we set mean squared error
(MSE) target to a value less than the detection threshold in Algorithm
1. A window of evasive data is shown in Fig. 10.

However, in reality, an attacker has to feed a continuous series
of measurement data to the overcurrent relay instead of a disjoint
sequence of windows of data. As such, the attacker has to join the
crafted evasive windows of data into a single final evasive sample. The
method of generating the final evasive sample by joining the first few
measurements of each window and discarding the measurements that
overlap with the next evasive window does not work. This is because
joining several windows of evasive data which are crafted indepen-
dently introduces discontinuities in the final crafted evasive sample.
These discontinuities can be detected by the cyberattack detection
system as an attack.

To address this challenge, the stride of the windows of evasive data
should be reduced to minimize the discontinuities introduced in the
final joined evasive sample. When crafting the evasive samples, a win-
dow stride of 1 produced the results with the minimum discontinuity in
our simulations. We performed gradient averaging during each update
iteration of the evasive samples to further increase the success rate of
the final joined evasive sample and reduce its reconstruction error. In
Step 7 of Algorithm 1, every data point is updated using the average
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gradient computed across all windows that contain that data point.
As such, we are using the average for the sections where the evasive
windows overlap.

The evasive attack crafted using the seed produced by the test
power system in Fig. 8, Algorithm 1 and techniques explained above
was able to evade the autoencoder-based cyberattack detection system
with 100% success rate. An example of this joined evasive sample
is illustrated in Fig. 11. The results here proved that the proposed
Algorithm 1 can be used successfully to craft evasive attacks against
autoencoder-based cyberattack detection systems in substations.

It is worth noting that the attacker cannot craft evasive attacks using
naive seeds. To demonstrate this notion, the evasive attack seed is gen-
erated by using scaled fault-free measurement data from the targeted
power system similar to the case illustrated in Fig. 5 in Section 5.1.
Although Algorithm 1 was able to reduce the reconstruction error, it
was unable to craft a successful evasive attack as illustrated in Fig. 12.

Training ML models with synthetically generated evasive samples
has been proposed in the literature as an effective way to counteract
adversarial attacks against classifier models. For example, training
datasets are augmented with adversarial examples in [48] to provide
protection against adversarial attacks on the classifiers. However, such
an approach may not work in an unsupervised learning setting and
additional adaptations are needed as the unsupervised model does not
use labeled datasets.

6. Conclusion

This paper investigated the vulnerability of autoencoder-based cy-
berattack detection systems in digital substations to adversarial attacks.
A novel iterative-based algorithm is proposed to craft evasive attacks
against autoencoder-based cyberattack detection systems. It is demon-
strated that an attacker with white-box access to the autoencoder-based
cyberattack detection system and limited knowledge about the target
substation can craft an evasive attack which can bypass the cyberattack
detection system and cause a physical impact. It is worth noting that
the same attacker cannot craft evasive attacks using naive seeds. This
highlighted the importance of keeping both the information about sub-
stations, and model architecture and parameters of autoencoder-based
cyberattack detection systems confidential.
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