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Abstract 
With the explosion of crowd mobility data generated by universal mobile devices equipped with spatial 
positioning modules, deep neural networks (DNNs) have been extensively applied to trajectory data mining 
and modeling. However, recent studies have shown that DNNs are vulnerable to certain adversarial examples, 
which are ingeniously crafted by introducing minute and imperceptible perturbations to original examples, but 
can fool classifiers with high confidence. To enhance the robustness of DNN-based trajectory classification, 
we propose a novel collaborative learning method for robust spatio-temporal trajectory classification, named 
RobTC, which consists of an autoencoder-based self-representation network (SRN) for robust latent feature 
learning and a gated recurrent unit (GRU)-based classification network by sharing parameters with the SRN to 
safeguard against various adversarial attacks. Furthermore, we introduce feature-level constraints between the 
original input and the corresponding adversarial examples instead of the point-level denoising strategies to 
effectively suppress the potential “error amplification effect.” Extensive experiments on the Geolife and 
Beijing taxi traces datasets demonstrate that our method yields significant improvements (white-box 15% and 
black-box 13%) over the state-of-the-art methods, suggesting that our proposed method can significantly 
enhance the model’s robustness against various adversarial attacks while preserving the model’s prediction 
accuracy on original examples. 
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1. Introduction 
Driven by the proliferation of the Internet of Things (IoT) [1], an array of mobile devices equipped 

with spatial positioning modules, including the global positioning system (GPS), have ubiquitously 
dominated the consumer market, generating and accumulating massive spatio-temporal trajectory data. 
Given this wealth of trajectory data, numerous studies centered around urban contexts have spearheaded 
a myriad of practical applications, such as urban management, analyses of epidemic propagation, and 
traffic control, highlight the crucial significance of trajectory data mining and modeling within the IoT 
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scenarios through such achievements. 
Initially, spatio-temporal trajectory classification mainly relied on experts’ prior knowledge and custom-

crafted features derived from their insights. For instance, their solutions commonly utilize traditional 
machine learning algorithms [2], like a decision tree, K-nearest neighbor, and support vector machine 
(SVM), which involve the selection of trajectory attributes such as velocity, acceleration, and direction 
to formulate models. With their recent rapid development, deep learning methods have been applied to 
classification tasks, and demonstrated superior performance on raw data without the need for feature 
engineering procedures. Since they can be easily applied to trajectories of arbitrary length and are more 
flexible than traditional methods, increasingly more studies on trajectory classification are shifting 
towards deep neural network (DNN)-based techniques [3–7], such as convolutional neural network 
(CNN) and recurrent neural network (RNN) for self-adaptive feature extraction and classification in a 
data-driven approach. 

However, recent studies [8–10] have exposed the DNNs’ vulnerability to adversarial examples that are 
generally imperceptible to humans but can fool classifiers with high confidence. In Fig. 1, some systems 
like this one engaged in trajectory classification tasks have been successfully compromised by 
meticulously crafted adversarial examples. Moreover, these adversarial examples possess the ability to 
transfer between different models, greatly increasing security risks, such as serious traffic accidents [11]. 
This highlights the necessity to enhance the robustness of DNNs against adversarial examples to enable 
their effective implementation across diverse scenarios.  
 

 

Fig. 1. Process of trajectory modeling under the IoT. Trajectory data may be struck by  
an adversarial attacks before it enters an analysis model. 

 

Previous attempts [12, 13] to restore the resilience of DNNs, including adversarial training and gradient 
masking, have primarily focused on adjusting the parameters of the target model to enhance its 
robustness. While these approaches have achieved a degree of success against adversarial attacks, they 
are accompanied by limitations, like expensive calculation, vulnerable to black-box attacks, performance 
penalty on original examples, and insufficient generalization. Considering that an adversarial example is 
generated by introducing noise to original example, a logical idea is to denoise such an example before 
feeding it into the target model (Fig. 2). In comparison to adversarial training, this approach is more 
straightforward and reasonable. Subsequent exploration [14] validates the feasibility of this idea, showing 
its effectiveness in reducing point-level noise. Nevertheless, none of the denoisers successfully remove 
all noise in adversarial examples, allowing small residues to be amplified into significant perturbations 
in the feature-level representation, a phenomenon known as the “error amplification effect,” which still 
persists and leads to incorrect prediction. 

To address this issue, we propose a robust spatio-temporal trajectory classification (RobTC) method 
that imposes the loss function of the denoiser to minimize the difference in feature-level representation 
of the target model induced by the adversarial and original examples by departing from setting the loss 
function at the point level (Fig. 2). In particular, we leverage an autoencoder self-representation network 
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for robust latent feature learning and a gated recurrent unit (GRU)-based classification network, with a 
collaborative manner to enhance the robustness of the model. In comparison to the point-level denoising 
method, our method excels in suppressing the impact of adversarial perturbations. Moreover, when 
compared to adversarial training, which is the current state-of-the-art safeguard method, our method 
provides the following advantages: 

l We propose a novel collaborative learning method to autonomously learn the robust latent feature 
of spatio-temporal trajectories through an integration of a self-representation network and a 
classification network for robust trajectory classification to safeguard against both white and black 
box adversarial attacks. 

l Our proposed method effectively suppresses the “error amplification effect” by imposing feature-
level constraints within the collaborative learning framework, which significantly enhances the 
robustness of trajectory classification against various adversarial attacks in a simplified manner. 

l Extensive experiments on two publicly available datasets demonstrate that the advantages of our 
proposed method can resist various adversarial attacks without significant performance penalties on 
the original examples. 

The rest of the article is organized as follows. In Section 2, we offer a brief review of the related work, 
while in Section 3, we provide a detailed explanation of the overall structure of our proposed method. 
We then offer an in-depth presentation of the empirical insights gathered through our experiments in 
Section 4, and finally, Section 5 summarizes our findings and articulates their implications for future work. 

 

 

Fig. 2. Idea of feature-level representation guided denoising. Although the initial difference between 
 the original and adversarial trajectory is small, it undergoes amplification in the feature-level 

representation of the GRU. Consequently, we have employed the distance in feature-level 
representation to guide the training procedure of the trajectory denoiser, aiming to suppress  

the impact of perturbations. 
 

2. Related Work  

We provide a brief overview encompassing spatio-temporal trajectory classification, adversarial attack 
techniques, and defensive strategies, by organizing the explanation into three main parts. 

 
2.1 Spatio-temporal Trajectory Classification 

Existing spatio-temporal trajectory classification methods can be categorized into two groups, namely 
traditional machine learning and deep learning approaches. Traditional machine learning approaches 
typically require manual formulation of decision rules and reasoning mechanisms to solve classification 
tasks. Lee et al. [15] first developed a hierarchical feature structure by combining region-based and 
trajectory-based clustering techniques, with a primary focus on spatial dimensions. Patel [16] combined 
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the spatial distribution, duration and regional association information of trajectory to generate trajectory 
features and improve classification accuracy. Dodge et al. [17] extracted attributes such as velocity, 
acceleration, rotation angle, displacement, and deviation rate of change from the trajectories, to optimize 
the estimation models based on them. Zheng et al. [18] proposed a segmentation method based on change 
points to better complete the trajectory semantic segmentation and a graph-based post-processing 
algorithm to further improve the classification performance. Biljecki et al. [9] proposed a new fully 
automatic trajectory segmentation method that better deals with signal deficiency and noise effects in raw 
data. Xiao et al. [19] propose a method based on ensemble learning to extract local features from sub-
trajectories and then combine these features. Saini et al. [20] proposed a trajectory classification method 
combining fuzzy C-means clustering SVM, resulting in improved accuracy compared with the traditional 
classification method. However, these methods heavily rely on human expert knowledge and manually 
customized features, making it difficult to process large amounts of trajectory data. 

To address certain challenges of manually extracting features from massive datasets, recent research 
has increasingly turned to deep learning methods. Dabiri and Heaslip [21] employed CNNs to predict the 
travel modes of raw trajectories, in order to address the vulnerability of manual features to traffic and 
environmental conditions, as well as human bias in feature creation. Zeng et al. [22] proposed a seq2seq 
model consisting of a convolutional encoder and a cyclic conditional random field to output an accurate 
and reasonable travel mode label. Gao et al. [23] used RNN to capture the spatio-temporal semantics of 
user movement patterns to solve the trajectory-user linking (TUL) problem. Zhou et al. [24] proposed 
TULVAE model to represent the hierarchical and structural semantics of trajectories through high-
dimensional latent variables and to mitigate the problem of data sparsity by utilizing large amounts of 
unlabeled data. Liu et al. [25] introduced a new piecewise convolution mechanism for spatio-temporal 
GRU that better considers spatial and temporal interval information. Liang et al. [26] further advanced 
the RNN by transforming it into a continuous-time model, in which the continuous state adheres to 
ordinary differential equations between successive points. Liu et al. [27] introduced a parallel model that 
combines a statistics-based approach with a spatio-temporal relations based approach to obtain a more 
robust representation. Kim et al. [28] integrate the CNN model with the LSTM network into an overall 
structure to better extract sequential features from the trajectories. Yao et al. [29] embedded spatio-
temporal and pattern dimension features together to provide more comprehensive information for pattern 
recognition. Wen et al. [30] proposed social ordinary differential equation (ODE), incorporating temporal 
agent dynamics and agent interactions into modeling. By applying a pre-processing location sequence, 
Park et al. [31] used a causal location embedding model to capture the time dependence of the location. 
In practical applications, deep learning models have demonstrated excellence in capturing intricate spatio-
temporal semantic relationships, resulting in steadily improved their accuracy over iterations of versions. 
Nevertheless, a common trend in these methods has been their emphasis on optimizing model accuracy 
while overlooking the robustness. While recent study [32] has shown that deep learning models are 
vulnerable to adversarial attacks in contrast to existing methods, our proposed method mainly emphasizes 
the approach to enhance the robustness of trajectory classification while preserving the accuracy. 

 
2.2 Adversarial Attack Techniques 

Adversarial examples !∗ essentially means that adding a small perturbation " to the given input !, the 
output #"∗ ≠ #"  holds true. In practice, an array of techniques has emerged for defending against 
adversarial examples, and can be broadly categorized as optimization-based and gradient-based methods. 
Optimization-based methods approach the generation of adversarial examples as an optimization problem 
and employ optimizers such as box-constrained L-BFGS [33] or Adam for solving it, which are powerful 
but quite slow. In contrast, Kurakin et al. [34] first proposed the gradient based method called fast gradient 
sign method (FGSM) that efficiently finds adversarial examples by summing the attack strength across 
every feature dimension, which is significantly more efficient than L-BFGS by only computing gradients 
once. Kurakin et al. [35] further refined FGSM by compressing the perturbation strength " and introducing 
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multiple iterations FGSM (I-FGSM) with a small step size % to achieve better performance than FGSM. 
Dong et al. [36] took a different approach with the momentum iterative FGSM (MI-FGSM) by integrating 
a momentum term into the generation process of adversarial examples, resulting in more severe damage 
to the target. It’s bears mention that while iterative methods like I-FGSM and MI-FGSM are formidable 
as white-box adversaries, they tend to suffer from decreased transferability[37], making them less effective 
in black-box attack scenarios. 

 
2.3 Defensive Strategies 

2.3.1 Defensive techniques via network modification 
The existing defensive strategies are mainly divided into two categories, which we have summarized 

and denoted in Table 1 [14, 38–40, 42–50]. This defensive strategy-based network modification is geared 
towards enhancing the resilience of the target model against adversarial examples, and the most 
extensively investigated technique is adversarial training [38], which aims to augment the training data 
by injecting adversarial examples into the training process. While these methods can indeed learn how to 
enhance the model’s capacity in order to handle hybrid examples and recover its resilience against 
adversarial attacks, they exhibit poor generalizability to unknown attacks. Several other methods revolve 
around the concept of gradient masking [39], where specific regularized or smoothing labels are 
incorporated during the training procedure to reduce the target model’s sensitivity to input perturbations, 
such as feature compression [40], network distillation [50], region-based classifiers [42], and saturated 
networks [43]. However, they are still vulnerable to black-box attacks, even leading to a performance 
penalty on original examples. 

Table 1. Comparison of different defensive strategies 

Model Generalization 
White-box 

attack 
Black-box 

attack 
Computation 

Performance 
penalty 

Adversarial training [38] × √ × × × 
Gradient masking [39] × √ × × × 
Feature compression [40] × × √ × × 
Network distillation [50] √ × √ √ × 
Region-based [42] × √ × √ × 
Saturated networks [43] √ × √ √ √ 
MaungMuang et al. [44] √ √ × √ × 
Shah et al. [45] √ √ × √ × 
Song et al. [46] √ × √ × × 
Zari et al. [47] √ √ × × × 
Zhao et al. [48] √ √ × √ × 
Han et al. [49] √ × √ √ × 
Liao et al. [14] √ √ × √ √ 
This work √ √ √ √ √ 

“√” means that the factor is taken into account and “×” means not taking this factor into account. 
 

2.3.2 Defensive techniques via input transformation 
Input transformation defenses seek to eliminate adversarial perturbations by transforming inputs before 

they are being fed into the target network. Certain prior methods treat adversarial perturbations as high-
frequency noise and consequently employ traditional denoising techniques to mitigate these minor 
perturbations. For instance, the study [44] examined the impact of data compression on eliminating 
adversarial noise. Alternatively, Shah et al. [45] have applied a range of filters including the median filter 
and averaging filter to mitigate perturbations. Song et al. [46] experimented with five different trans-
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formations and found that total variation minimization and data quilting both demonstrate effective 
defensive performance. However, these denoising methods primarily address small perturbations and are 
susceptible to information loss. 

More recently, there have been efforts to rectify adversarial examples by utilizing generative models. 
Among these efforts, Zari et al. [47] employed dimensionality reduction as a defensive strategy, such as 
principal component analysis (PCA). Zhao et al. [48] employed a denoising auto-encoder to eliminate 
adversarial perturbations in MNIST digits. Similarly, Han et al. [49] utilized PixelCNNs to transform 
adversarial examples into clean ones. While these methods demonstrate strong performance on small 
datasets, they encounter scalability issues when applied to higher-resolution or larger datasets. Last but 
not least, Liao et al. [14] employed a high-level denoising method to reduce noise, with a certain level of 
effectiveness being achieved. However, they encountered issues such as “error amplification effect” and 
vulnerability to adversarial examples. We suspect that the root of these problems is limited to the point 
level, and ignore the feature level, which directly determines the final result. 
 
3. Collaborative Learning Framework 

We introduce a collaborative learning framework, named RobTC, which aims to address the inherent 
limitations of DNN-based trajectory classification methods when dealing with adversarial examples, so 
that the robustness of trajectory classification methods is effectively enhanced. We then detail our 
proposed method called RobTC, including the motivation, over the entire framework, self-representation 
network, classification network, and loss function in this section. 
 
3.1 Motivation 

We know that adversarial training is a delicate balancing strategy, as it involves coupling two 
processes: one for classifying the original examples and the other for defending against adversarial 
examples. This coupling, while intensifying computational demands, can also result in unforeseen 
alterations to the target model, ultimately causing unwarranted performance penalty on original 
examples. Therefore, we consider decoupling these two processes, which entails denoising adversarial 
examples before they enter into the target model. Previous work [14] has shown that adversarial noise 
can indeed be removed through point-level denoising. However, this method cannot completely remove 
all noise in adversarial examples and residual noise can be amplified in high-level hidden representations, 
known as the “error amplification effect,” which still results in incorrect predictions. To address this 
issue, we abandon the constraint at the point level, but at the feature level. Specifically, we achieve this 
by joining a feature-level loss function into the denoising process that involves minimizing the difference 
in high-level representations between the original and perturbed examples. Recognizing the necessity for 
an effective learning mechanism to express the robust inherent features of the original example, we 
employ an autoencoder to achieve this. Simultaneously, we utilize GRU to capture sequential information 
present in these temporal data. 
 
3.2 Overall Architecture 

As demonstrated in Fig. 3, the proposed model comprises two components, namely the upper SRN and 
bottom CN. The role of SRN corresponds to that of a “teacher” guiding the training procedure of CN, so 
that the SRN needs to possess the capability of extracting the robust inherent feature from the original 
trajectory. The SRN comprises an encoder and a decoder, both seamlessly integrated with GRU. 
Conversely, the CN comprises an encoder and a target network stacked in sequence. The encoder acts 
like a “student,” learning robust features from the SRN and feeding them to the target network, effectively 
suppressing the “error amplification effect.” 
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Our task involves modeling transportation modes from a spatio-temporal trajectory, which is essentially 
a trajectory classification problem. A set of trajectory segments ! is defined as {!#, … , !$}, where * is 
the number of trajectory segments. A trajectory segment !% = {,#, ,&, ,', … , ,(} consists of - trajectory 
points. A trajectory point ,) is defined as a tuple {.) , /) , 0)}, where .) , /) ∈ ℝ&, 0) ∈ ℝ* for 3 ∈ (1, -), the 
.)  represents the longitude, /)  represents the latitude, and 0)  represents the time stamp. Finally, we 
estimate the probability distribution 789% = : ∣ !%< that belongs to the transportation mode : based on 
the input trajectory segment !%. 

Throughout the training stage, we feed an original trajectory segment !% and an adversarial trajectory 
segment !%∗ derived from !% into the SRN and CN, respectively, so that they are encoded into the high-
level representations. Note that these two components are trained simultaneously in a collaborative 
manner by sharing parameters with each other. This collaborative approach ensures the transmission of 
robust features by using the high-level representation learned from original examples to guide the high-
level representation obtained from adversarial examples. This critical step helps suppress the amplification 
of adversarial perturbations in the high-level representation before feeding them into the target model. 
Subsequently, we have removed the SRN, leaving only the CN responsible for modeling task. Essentially, 
this approach to collaboratively denoise adversarial noise can be regarded as a preprocessing step in the 
overall workflow. 
 

 
Fig. 3. Illustration of RobTC. The framework mainly consists of two components, specifically the 

upper SRN that automatically learns the robust features of the original trajectories to guide the bottom 
CN in effectively defending against the adversarial trajectories. 

 

3.3 Self-representation Network 

The SRN consists of an encoder and a decoder, where the encoder takes the original trajectory as input 
while the decoder produces a reconstructed trajectory sequence as output. The encoder integrated by 
GRU is responsible for extracting the robust high-level features from the original trajectory segment 
!% = {,#, ,&, ,', … , ,(}. The model learns to encode a fixed-length sequence into a fixed-length vector 
representation, and conversely decodes the fixed-length vector representation back into a fixed-
length sequence. From a probabilistic standpoint, the model serves as a general method for learning 
conditional distributions over a fixed-length sequence conditioned on another fixed-length sequence, e.g., 
=(,>#, … , ,>(|,#, … , ,(). Specifically, the autoencoder first compresses !% into a compact vector representation 
@ and then reconstructs it to !A% = {,>#, … , ,>(}  based on @. 
	

3.3.1 Encoder 
The encoder is a GRU that sequentially processes each point information of the input sequence !%. The 

computational formula of the sequence !% at step 0 is formalized as: 
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B =
⎩
⎨
⎧F+ = G(H, ⋅ [ℎ+-#, ,+]),
M+ = G(H. ⋅ [ℎ+-#, ,+]),
ℎ+/ = 0N-ℎ(H0 ⋅ [M+ ⊙ℎ+-#, ,+]) ,
ℎ+ = (1 − F+)⊙ ℎ+-# + F+ ⊙ℎ+/ ,

 (1) 

 

where the F+ signifies the update gate, M+ denotes the reset gate and ℎ+/  represents the memory state. The 
H,, H., and H0 are learned parameters. The G and 0N-ℎ denote the activation function, the symbol ⊙ 
denotes the element-wise product. As it reads each point information, the hidden state of the GRU evolves 
according to Equation (1). Until reaching the ending time-step R, we get the final representation @ of the 
input trajectory sequence as shown in the equation below: 

 

@ = ℎ1 . (2) 
	

3.3.2 Decoder 
We have employed the GRU of the decode to reconstruct trajectory point !A% based on the compact 

vector @. The decoder sequentially generates each trajectory point and integrates them with the hidden 
representation previously shown by the encoder, advancing the prediction until it concludes with the 
ending time step R, which can be written as: 

 

,>2 = @,   ℎA+ = B8,>+-#, ℎA+-#<, (3) 
 

where ,>+-#, ℎA+-#represent the reconstructed trajectory point and hidden representation in the 0 − 1 time 
step, respectively. The reconstructed trajectory point for 0 time step is denoted as the equation below: 

 

,>+ = H+ ⋅ ℎA+, (4) 
 

where H+ denotes weight matrices. 
 

3.4 Classification Network 

The encoder employed in CN is identical to the one utilized in the SRN, and the significant difference 
is that the decoder in CN is replaced by the target model. In contrast to SRN, we feed the adversarial 
trajectory segment !%∗ (generated by Equations 11 and 12) into CN to generate compact vector @∗ as 
expressed by the equation below: 

 

@∗ = ℎ1∗ , (5) 
 

where @∗  represents the compact vector that summarizes the entire adversarial trajectory segment. 
Finally, we can mathematically express the probability distribution =	of the transportation mode as the 
equation below: 

 

= = softmax(H3 ⋅ @∗), (6) 
 

where H3 denotes weight matrices. 
 

3.5 Loss Function 

In the construction of the RobTC framework, we have primarily employed three essential loss functions, 
namely self-representation network loss, collaborative loss, and classification network loss. 

 
3.5.1 Self-representation network loss 

We know that self-representation network loss is particularly important in construction of the self-
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representation learning network. Not only does it directly affect the robustness of features extracted from 
the original examples but also exert an indirect influence on the decision boundaries of the classification 
network trained in collaboration with it. Specifically, the central component of the network involves the 
compression and subsequent reconstruction of the original example. The reconstruction process aims to 
make it as closely aligned as possible with the original input. To achieve this, we opt for the mean squared 
error as the function ℒ45$, which is denoted as the equation below: 

 

ℒ45$ =]^!% − !A%^&
&

$

%
,    _ ∈ {1,… ,*}, (7) 

 

where * denotes the number of trajectory segments, !% signifies the _-th original trajectory segment, and 
!A% denotes the _-th reconstructed trajectory segment. 

 
3.5.2 Collaborative loss 

In this section, we introduce a collaborative training module that involves both SRN and CN networks. 
This module corrects the decision boundary of CN by enforcing a feature-level constraint between the 
two networks through a loss function. The loss aligns the high-level features extracted by the two 
networks, where the robust features constrain non-robust ones. This alignment aims to prevent the 
backward propagation and amplification of errors affixed to high-level features. Specifically, we feed the 
original examples into the SRN and the corresponding adversarial examples into the CN, respectively, 
both running simultaneously in a collaborative manner. This approach is employed to minimize the 
difference between the feature-level representations of the two networks, enabling the difference between 
two feature vectors to be essentially minimized as well. To achieve this, we use the L2 norm as a 
collaborative loss ℒ%46, which can be expressed as: 

 

ℒ%46 =]‖ℎ+ − ℎ+∗‖&
1

+
,    0 ∈ {1,… , R}, (8) 

 

where ℎ+ and ℎ+∗ represent the feature-level representation of the original and adversarial trajectory points 
at time step 0, respectively, and R denotes the ending time step. The entire expression for ℒ46 is given as 
the equation below: 

 

ℒ46 =]ℒ%46
$

%7#
,    _ ∈ {1,2, … ,*}, (9) 

 

where _ denotes the _-th trajectory segment and * denotes the number of trajectory segments. 
 

3.5.3 Classification network loss 
The CN network comprises two components, namely an encoder and a target network. The encoder is 

responsible for denoising the adversarial examples, while the subsequent target network classifies them. 
We have chosen the cross-entropy loss here because its primary objective is to maximize the probability 
of correct class predictions while minimizing the probabilities of other classes, which enhances the 
classification network’s ability to differentiate between various classes. When dealing with transportation 
mode category, the loss for CN can be expressed as follows: 

 

ℒ6$ = −]]9%,9
:

97#%
.bc89%,9∗ <, (10) 

 

where 9%,9 represents ground truth, 9%,9∗  represents the predicted category, _ denotes the _-th trajectory 
segment, * denotes the number of trajectory segments, m denotes the index class, and d denotes the 
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total category of transportation modes. The final loss is denoted as the equation below: 
 

ℒ = ℒ45$ + eℒ46 + fℒ6$, (11) 
 

where the e and f denote the hyper-parameters for balancing different parts of the final loss. 
 

4. Experiments and Analysis 

To explore the effectiveness and robustness of RobTC, we have conducted extensive experiments on 
two publicly available spatiotemporal trajectory datasets, namely Geolife and Beijing Taxi Traces. This part 
is mainly divided into experimental preliminary, ablation study, hyperparameter evaluation, performance 
evaluation, denoising loss & performance evaluation, and error amplification effect. 

 
4.1 Preliminary Experiment 

4.1.1 Datasets 
The Geolife dataset [51] was collected within the Geolife project by Microsoft Research Asia from 

2007 to 2012 and has since been widely used in the field of spatiotemporal trajectory classification. 
Specifically, it comprises the unit of km and approximately 8,000 various modes of transport labeled into 
one of the five categories such as bike, bus, car, train, and walk. Beijing Taxi Traces dataset [50] collected 
GPS trajectories of 10,357 taxis in Beijing from February 2–8, 2008. The dataset comprises approximately 
15 million data points, covering a total trajectory distance of 9 million kilometers, of which 2000 sub-
trajectory segments are truncated to perform a binary classification task, for example one is available, the 
other is occupied. The two datasets record the longitude, latitude, and timestamp in different trajectories, 
providing a reliable basis for our classification tasks. As part of the preliminary experiment setup, we 
have split them into training (80%), validation (10%), and testing sets (10%). 

 
4.1.2 Preprocessing 

Before conducting the experiments, it is essential to preprocess the raw data, which includes removing 
duplicated records and redundant information such as zero values and altitude. We have normalized the 
longitude and latitude to ensure they would fall within the range of 0 to 1. Timestamps are converted into 
hours to extract the relative time information. Furthermore, each trajectory segment is standardized to 
consist of 100 points. Insufficient points are filled with zeros, while excess points are truncated to 
maintain uniform length across all trajectories. Subsequently, we have employed single-step and multi-
step adversarial attacks, including FGSM, I-FGSM, and MI-FGSM, to target models such as CNN, 
LSTM, GRU, and RobTC. The perturbation factor " is set to 16 to generate the requisite adversarial 
examples. 

 

,#∗ = ,#,    ,+*#∗ = ,+∗ + % ⋅ g3c-8h;ℒ(,+∗, 9)<. (12) 
 

To ensure that the crafted adversarial examples would satisfy the i∞ or i& constraint, we could either 
limit ,+∗ within an " range of , or establish % = "/R as %, where R represents the number of iterations. 
Iterative approaches [36] have been shown to outperform single-step ones in white-box attacks, but the 
opposite is true for transferability. On the other hand, the MI-FGSM formula can be written as: 

 

c+*# = k ⋅ c+ +
h;ℒ(,+∗, 9)

‖h;ℒ(,+∗, 9)‖#
, 

,+*#*	 = ,+∗ + % ⋅ g3c-(c+*#), 
(13) 

 

where k serves as the decay factor of the momentum term and c+ is accumulated gradient at iteration 0. 
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4.1.3 Experiment settings 
Given that existing spatiotemporal trajectory classification tasks have already achieved outstanding 

performance using both the CNN and RNN approaches [52–54], we can consider some of them as our 
baseline. More importantly, we aim to improve the robustness of the model while simultaneously 
preserving its accuracy. 

CNN: VGG16 network serves as a representative based on the CNNs. 
LSTM: The Social LSTM [53] can automatically learn the typical interactions occurring between 

trajectories that coincide in time by connecting the LSTM corresponding to nearby sequences, and 
achieve a better modeling result. 

GRU: TrajGRU [54] is excellent at spatio-temporal trajectory classification. 
ENSEMBLE: We have employed VGG16, Social LSTM, and TrajGRU as trained models for 

adversarial training. Then FGSM, I-FGSM, and MI-FGSM attacks are performed on the three generated 
models, with " = 16 for each attack, to generate corresponding adversarial examples. For simplicity, CNN 
represents VGG16, LSTM represents Social LSTM, and GRU represents TrajGRU. In each batch of 
training, we alternate the source of adversarial examples between the model currently being trained and 
one of the generated models. 

Evaluation of data: In addition to a robustness evaluation, the amount of training data and time is also 
an important metric. During the training stage, RobTC utilizes only a small portion of trajectory data, 
making it highly efficient in terms of training. Specifically, only 4K original trajectory segments are 
employed in constructing our training dataset, whereas all 8K original trajectory segments from the 
Geolife dataset are used to train GRUens. Furthermore, RobTC is trained on 4K trajectory segments for 
less than 50 epochs, while CNNens, LSTMens, and GRUens all need to train on 8K trajectory segments 
for approximately 200 epochs. In other words, with fewer training data and less time, RobTC significantly 
outperforms adversarial training in defending against various adversarial attacks. The findings suggest 
that addressing the decoupled task of denoising is much easier than tackling the coupled tasks of 
classification and defense. During the testing stage, we utilized a dataset consisting of 2K original 
trajectory segments, which were divided into 20 batches. 

 
4.2 Ablation Study 

To systematically evaluate the effectiveness of the SRN component within the overall architecture of 
the proposed method, we have conducted ablation studies by comparing the model’s performance under 
two contrasting conditions, namely one with the presence of the SRN component and another without it 
(Table 2,Table 3).  

In white-box attacks, the accuracy of CNN, LSTM, and GRU decreases by up to 80% compared to the 
same ones in original examples, while RobTC experiences a more modest decrease of 18%, which 
highlights the vulnerability of the three deep models and the enhanced robustness of the proposed model. 
Besides, when comparing the GRU with the RobTC, the accuracy of the former is only 26.86%, whereas 
the latter achieves 71.27% in accuracy, showing the effectiveness of the self-representation learning 
framework in the RobTC model. In contrast to white-box attacks, black-box attacks are more likely to 
transfer between models, making them more challenging to defend against. In black-box settings, the 
accuracy of CNN, LSTM and GRU decreases by up to 58%, whereas RobTC decreases by only 9%, 
indicating that these three deep models are vulnerable to black-box attacks, while the proposed model 
still shows an excellent robustness. Additionally, in the comparison between GRU and RobTC, the 
accuracy of GRU is only 25.86%, while RobTC achieves the highest accuracy of 78.27%, with a 
significant improvement by nearly 53%. 

Granted that the adversarial example essentially adds noise to the original sample to maximize feature 
distortion, we intend to fix this distortion to ensure that the latent features of the adversarial example are 
aligned with that of the original example. In fact, the effectiveness of our method can be attributed to its 
use of SRN to extract the robust representation from the original example and use it to guide the CN 
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network for denoising the adversarial example. As a strict constraint, this guidance corrects the decision 
boundaries of the network, thus effectively suppressing the amplification of perturbations carried by 
adversarial examples. Essentially, we build an end-to-end mapping network that maps the source domain 
(adversarial example) to the target domain (original example), with the noise ultimately removed the 
noise from the adversarial example. 

Table 2. Various deep models under different attack techniques (no defensive protection)   

 Attack 
Accuracy (%) 

CNN LSTM GRU RobTC 
CNN FGSM 21.82* 42.25 43.38 77.42 

I-FGSM 6.62* 46.65 46.19 78.17 
MI-FGSM 4.36* 27.12 26.96 74.26 

LSTM FGSM 43.27 22.23* 41.28 77.15 
I-FGSM 46.63 8.63* 44.52 78.27 
MI-FGSM 27.78 5.75* 26.94 75.19 

GRU FGSM 42.98 40.16 20.86* 74.87 
I-FGSM 46.84 44.74 7.23* 76.97 
MI-FGSM 28.76 26.19 4.35* 73.83 

RobTC FGSM 43.38 42.12 40.76 71.27* 
I-FGSM 46.65 45.68 43.19 73.36* 
MI-FGSM 25.94 26.14 25.86 69.18* 

ORIGINAL 
 

81.16 82.96 83.24 83.21 
The top row corresponds to undefended models, while the leftmost column designates the models responsible for generating 
adversarial examples. “∗” represents white-box attacks, while data without “∗” label represents black-box attacks, and 
“ORIGINAL” represents models of original examples (without perturbation). Note that the deep models are all in an undefended 
state, with RobTC being the only model equipped with a defense mechanism. The bold font indicates the best performance in 
each test. 
 

Table 3. Various deep models under different attack techniques (adversarial training protection)  

 Attack 
Accuracy (%) 

CNNens LSTMens GRUens RobTC 
CNN FGSM 69.74 68.64 68.96 77.42 

I-FGSM 71.17 70.38 65.27 78.17 
MI-FGSM 68.69 67.67 68.21 74.26 

LSTM FGSM 66.65 68.58 68.51 77.15 
I-FGSM 69.36 71.21 70.22 78.27 
MI-FGSM 65.61 68.15 64.13 75.19 

GRU FGSM 67.96 69.69 66.18 76.87 
I-FGSM 70.97 71.61 69.29 77.97 
MI-FGSM 66.12 66.21 64.36 75.83 

RobTC FGSM 67.34 68.26 69.18 71.27 
I-FGSM 71.27 72.37 71.29 73.36 
MI-FGSM 66.25 67.24 67.89 69.18 

ORIGINAL 
 

79.34 80.89 81.57 83.21 
The top row corresponds to undefended models, while the leftmost column designates the models responsible for generating 
adversarial examples. “ORIGINAL” represents models of original examples (without perturbation). Note that the deep 
models are all in an undefended state, with RobTC being the only model equipped with a defense mechanism.  
 
4.3 Hyperparameter Evaluation 

To verify the effective of the hyper-parameters of the proposed model, we have investigated the number 
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of iterations 0 in multi-step attacks, decay factor k in momentum iteration, and the setting of perturbation 
factor " in adversarial attacks. The primary objective of these experiments is to get a more suitable 
hyperparameter to achieve better attack effects for testing the robustness of our proposed model. 

 
4.3.1 Decay factor µ 

We know that the decay factor k is particularly important in increasing the success rate of attacks, 
where the success rate is defined as the misclassification rate of the corresponding models with 
adversarial examples as inputs. When k = 0, the momentum-based iterative method typically reverts to 
the standard iterative method, namely I-FGSM. We have conducted MI-FGSM attacks based on CNN 
with a perturbation " = 16 (referencing to the " research below), 10 iterations (inefficiency with too many 
iterations), and a range of decay factors from 0.0 to 2.0 in increments of 0.1.  

As shown in Fig. 4, the success rate against adversarial examples on the CNN, LSTM, GRU, and 
RobTC models, are adjusted for the decay factor k range. Notably, the success rate of white-box attacks 
on CNN is close to 80%, which remains consistent across various decay factor magnitudes. This result 
shows the effectiveness of the iterative method in white-box attacks, even without the influence of decay 
factors. The success rate curves for LSTM and GRU in black-box attacks exhibit a unimodal shape, with 
the peak occurring around k = 1.0, which we have adopted for our subsequent experiments. When k = 
1.0, an alternate interpretation of the c+ defined in Equation (13) is that it simply accumulates all previous 
gradients to undertake the current update. For our proposed method, regardless of the variations in the 
decay factor, the attack success rate consistently remains below 20%. This result serves as additional 
confirmation of the robustness of our proposed model against black-box attacks. 
 

 

Fig. 4. Success rate (%) of adversarial examples generated for CNNs against CNN (white-box), LSTM, 
GRU, and RobTC (black-box), while varying k from 0.0 to 2.0. 

 

4.3.2 Number of iterations 
We delve into the impact of the number of iterations on the success rate when using I-FGSM and MI-

FGSM. Employing consistent hyperparameters (i.e., " = 16, k = 1.0), we have attacked the CNN model 
with varying iteration counts ranging from 1 to 10. Subsequently, we evaluate the success rate of 
adversarial examples against CNN, LSTM, GRU, and RobTC models. 

As shown in Fig. 5, with an increase in the number of iterations, the success rate of I-FGSM against 
the black-box model gradually decreases, whereas MI-FGSM preserves a relatively high-success rate. 
This suggests that adversarial examples generated through the iterative approach are prone to overfitting 
to white-box models and have limited transferability across different models. However, momentum-
based iterative methods effectively mitigate the trade-off between a white-box attack and transferability, 
thus performing well in both white and black box attack settings. To achieve a better attack performance, 
we set 2 as the number of iterations, as seen in the red dashed line in Fig. 5. 
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Fig. 5. Success rate (%) of adversarial examples generated for the CNNs against CNN (white-box), 
LSTM, GRU, and RobTC (black-box). 

 

4.3.3 Perturbation factor ϵ 
Since adversarial examples are crafted by adding small perturbations to original examples, and the 

strength of these perturbations depends on the magnitude of the perturbation factor ", it holds significant 
practical significance to study the impact of the perturbation factor on the effectiveness of attacks, which 
helps to optimize the subsequent defensive strategy research. Then, we have conducted extensive 
experiments on two publicly available datasets, which includes comparing the accuracy of three models 
(GRU, GRUens, RobTC) against FGSM, I-FGSM, and MI-FGSM attacks with varying " . The 
experimental results are illustrated in Fig. 6. Fig. 6(a)–6(c) represent the results on the Geolife dataset, 
while Fig. 6(d)–6(f) represent the results on the Beijing taxi trajectory dataset. It is evident from these 
curves that the accuracy of the GRU model sharply decreases as " increases from 0 to 2, and then slightly 
decreases within a range of 2 to 16, stabilizing at a lower level. In contrast, the accuracy of GRUens and 
RobTC shows a mild decrease as " increases from 0 to 2, then stabilizing at higher levels within a range 
of 2 to 16. Overall, when subjected to the same perturbation strength, the accuracy of GRUens decreases 
more compared to RobTC. This suggests that GRUens is relatively sensitive to perturbations but that 
RobTC is not. Upon observing each curve (ranging from 2 to 16), we can see that the attack itself slowly 
intensifies and gradually approaches saturation point. 

 
4.4 Performance Evaluation 

4.4.1 Evaluation of ensemble adversarial training models  
Performance evaluation is mainly divided into two parts, specifically one is to compare methods based 

on adversarial training (Section 4.4), and the other is to compare methods based on denoising method 
(Section 4.5). Here, ensemble adversarial training is an enhanced version of adversarial training, as it 
significantly improves the model’s robustness against black-box attacks. This prompts us to conduct 
comparative experiments using it alongside our proposed model. We set 	" to 16, set the number of iterations 
to 2 for both I-FGSM and MI-FGSM, and set k to 1.0 for MIFGSM. As shown in Table 3, the accuracy of 
all ensemble adversarial training models experiences a decline under the adversarial settings. However, this 
decline, although reaching as high as 17% in some cases, is significantly smaller than the corresponding 
deep models, which indicates that ensemble adversarial training models exhibit a good robustness. Notably, 
the RobTC model displays the highest accuracy drop of only 14%, surpassing the other three ensemble 
adversarial training models (CNNens, LSTMens, and GRUens). These findings suggest that the RobTC 
model exhibits a stronger robustness compared with ensemble adversarial training models. 
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(a) (b) (c) 

 
(d) (e) (f) 

Fig. 6. Accuracy of various models when subjected to FGSM, I-FGSM, and MI-FGSM adversarial 
attacks (" ranging from 0 to 16). (a)–(c) depict the results obtained from the Geolife datasets, and  

(d)–(f) show the results from the Beijing taxi traces datasets. 

 
4.4.2 Evaluation of all models on original examples 

In fact, we should increase the model robustness without sacrificing its performance. At present, 
although many defense methods improve the robustness of the model, they are accompanied by the side 
effect of performance penalty. So, we have conducted experiments using their original examples, rather 
than adversarial examples. Tables 2 and 3 reveal that ensemble adversarial training models have a slight 
decline in prediction accuracy compared to deep models, inferring a certain level of performance penalty. 
However, RobTC can significantly enhance the model’s robustness against various adversarial attacks, 
while preserving the model’s prediction accuracy on original examples. Our hypothesis is that injecting 
adversarial examples during training amounts to introducing a regularization term, which dampens the 
model’s fitting process and inevitably leads to a certain degree of performance loss. In practice, our proposed 
method adopts a preprocessing manner, discarding this regularization operation, which involves removing 
the attached noise from adversarial examples before feeding them into the target model. Consequently, 
even when operating on the original examples, our model achieves a higher prediction accuracy. 

 
4.5 Denoising Loss & Performance Evaluation 

Denoising loss is a metric used to evaluate the effectiveness of models in denoising original input. It 
quantifies the difference between the original input and the denoised output, indicating the level of 
distortion in the input. We have compared RobTC with the previous methods: pixel guided denoiser 
(PGD) and high-level representation guided denoiser (LGD) [14] and then repeated the experiment 10 
times to take an average of the final results. Tables 4 and 5 reveals that RobTC and LGD exhibit similar 
denoising loss, both of which are inferior to that of PGD. We hypothesize that this difference may arise 
from the presence of not only vertical information transfer but also a lateral one within the DUNET 
structure of PGD, and the fusion of these two types of information mitigates information loss to some 
extent. In terms of accuracy, RobTC preserves the model’s prediction accuracy compared with ND (no 
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defence) in the original examples. Additionally, it significantly outperforms the other three models in 
both white and black box attack settings, fully demonstrating that our proposed model still maintains a 
superior robustness. 
 

Table 4. Denoising loss of different denoising methods in the experiment 

Defense Original 
White-box Black-box 

" = 4 " = 16 " = 4 " = 16 
ND 0.0000 0.0185 0.0528 0.0187 0.0536 
PGD 0.0142 0.0145 0.0161 0.0143 0.0169 
LGD 0.0372 0.0369 0.0372 0.037 0.0378 
RobTC 0.0354 0.0362 0.0368 0.0371 0.0374 

Denoising loss is the #! distance between the input trajectory segments & the denoised ones, ND means no defense, and 
original represents the original trajectory. The bold font indicates the best performance in each test. 
 
 
Table 5. Robust accuracy (%) of different denoising methods in the experiment 

Defense Original 
White-box Black-box 

" = 4 " = 16 " = 4 " = 16 
ND 83.24 35.42 28.23 42.12 47.52 
PGD 73.63 48.12 44.61 58.08 52.23 
LGD 75.21 55.12 52.61 61.08 60.23 
RobTC 83.21 69.26 67.27 74.33 73.42 

ND means no defense, and original represents the original trajectory. The bold font indicates the best performance in each test. 
 

4.6 Error Amplification Effect 

Previous experiments have revealed an inconsistency between the denoising loss of PGD and its 
corresponding classification accuracy, which appears in different attack settings. Whether for the white- 
or black-box, the denoising loss of PGD outperforms that of LGD, but its accuracy is lower than that of 
LGD. Also, the denoising loss of the RobTC model is comparable to LGD to that of LGD, yet its accuracy 
surpasses that of LGD, which fully demonstrates the inconsistency. To explore this inconsistency, we 
measured the hierarchical perturbation of the target model caused by the input. Specifically, we quantified 
the perturbation intensity at layer . by defining R> as the perturbed trajectory and then used the equation 
to calculate the perturbation intensity: 

 

n?8R>, ,< = oB?8R>< − B?(,)o/|B?(,)|. (14) 
 

As shown in Fig. 7, the perturbation intensity n? curves of the five models tend to expand with the 
growth of the number of model layers, and the adversarial examples here are generated by “FGSM × 
CNN/LSTM/GRU (" = 16).” When the denoised example is at the 0-th layer of the target model, meaning 
it has just been fed into the target model, the perturbation intensity of PGD, adversarial, and Gaussian 
noise are similar and significantly lower than LGD and RobTC. The perturbation intensity values of PGD, 
adversarial, and Gaussian noise are around 0.15, while LGD and RobTC are around 0.2, which shows 
the initial state of different perturbations carried by the denoised examples when inserted into the target 
model. Although the initial state perturbation intensity of adversarial and PGD is weak, with an increase 
in the layers of the target model increase, the tiny perturbation carried by them gradually amplifies, 
becoming greater than LGD, RobTC, and Gaussian noise. It is clear that both LGD and RobTC exhibit a 
great suppression of this “error amplification effect,” but RobTC performs better as it approximates our 
baseline, Gaussian noise. 

 



Human-centric Computing and Information Sciences                                                                                                                          Page 17 / 22 

 

 

Fig. 7. Visualization of layerwise perturbation level of the target model. Adversarial, Gaussian noise, 
PGD, LGD, and RobTC correspond to the n? for adversarial examples, Gaussian noise perturbed examples, 

PGD denoised examples, LGD denoised examples, and RobTC denoised examples, respectively. 
 

To better demonstrate the varying suppression effects of different denoising models on this “error 
amplification effect,” we plotted a 3D visualization. As shown in Fig. 8, the underlying coordinates in both 
subfigures represent the number of layers of the target model and the denoised examples using different 
denoising models. The ordinate represents the corresponding perturbation intensities. Fig. 8(a) and 8(b) are 
identical but presented from different angles. These two views collectively provide a comprehensive 
depiction of the change in perturbation intensity as the denoised example enters the target model.	
 

 
(a) (b) 

Fig. 8. A 3D visualization of the “error amplification effect” suppression through the RobTC model:  
(a) front view and (b) back view. 

 

From the Fig. 8(a), we can observe that as five different types of examples carrying noise are fed into 
the target model, the intensity of their respective perturbation is amplified layer by layer, but this also 
manifests intensity differences. From the Fig. 8(b), we can clearly see the perturbation intensity of the 
five types of noisy examples when they reach the final layer of the target model. This view also confirms 
the results observed in the front view Fig. 8(a), with particularly apparent intensity in the last layer of the 
target model. Through these experiments presented above, we can observe that the RobTC model 
effectively suppresses the impact of the “error amplification effect” throughout the target model. 
Compared with the PGD denoising method, the initial denoising effect of RobTC is not optimal. However, 
when the feature propagates back layer by layer, this “error amplification effect” is suppressed, and the 
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error parasitic in the feature is gradually weakened during the transmission of the feature to the top layer. 
It is well known that the top feature pair basically determines the final classification result, thus 
accounting for the inconsistency between its denoising loss and classification accuracy. As mentioned 
above (Section 4.2), we have guided the CN by using the robust features extracted from the SRN to 
minimize the feature distortion of the adversarial example compared to the original one. In this process, 
SRN constrains the CN layer by layer and inhibits an error amplification layer by layer. 

 

5. Summary & Future Work 

To enhance the robustness of DNN-based trajectory classification, we propose a novel collaborative 
learning method for robust spatio-temporal trajectory classification named RobTC, which consists of an 
autoencoder-based self-representation network for robust latent feature learning and a GRU-based 
classification network by sharing information with each other to defend against various adversarial 
attacks. We introduce feature-level constraints between the original input and the corresponding 
adversarial examples instead of the point-level denoising strategies to effectively suppress the potential 
“error amplification effect”. Extensive experiments on the Geolife and Beijing taxi traces datasets 
demonstrate that our proposed method yields significant improvements (white-box 15% and black-box 
13%) over the state-of-the-art methods, suggesting that ours can significantly enhance the model’s 
robustness against various adversarial attacks while preserving its prediction accuracy on original 
examples. In practice, the proposed method is characterized by a simpler training procedure with fewer 
training data and less time. 

In future work, we intend to extend the application of the proposed method to other practical domains 
to evaluate its feasibility and scalability and anticipate that the creation of adversarial defense models in 
diverse domains, such as images and text, may follow a similar approach to our model, with only minor 
modifications to the feature extraction phase. Given the limited availability of labeled adversarial 
examples in spatio-temporal trajectory modeling tasks, we continue to explore the potential of pre-
training approaches to address this challenge. Specifically, we seek to incorporate pre-training 
mechanisms like few-shot learning into our future work. 
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