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Abstract: SARS-CoV-2 still presents a global threat to human health due to the continued emergence
of new strains and waning immunity among vaccinated populations. Therefore, it is still relevant to
investigate potential therapeutics, such as therapeutic interfering particles (TIPs). Mathematical and
computational modeling are valuable tools to study viral infection dynamics for predictive analysis.
Here, we expand on the previous work on SARS-CoV-2 intra-cellular replication dynamics to include
defective interfering particles (DIPs) as potential therapeutic agents. We formulate a deterministic
model that describes the replication of wild-type (WT) SARS-CoV-2 virus in the presence of DIPs.
Sensitivity analysis of parameters to several model outputs is employed to inform us on those
parameters to be carefully calibrated from experimental data. We then study the effects of co-infection
on WT replication and how DIP dose perturbs the release of WT viral particles. Furthermore, we
provide a stochastic formulation of the model that is compared to the deterministic one. These models
could be further developed into population-level models or used to guide the development and dose
of TIPs.

Keywords: mathematical model; virus replication dynamics; sensitivity; SARS-CoV-2; defective
interfering particles

MSC: 92-10; 92B05; 92C45; 92C70

1. Introduction

In December 2019, a new infectious disease was reported to the World Health Orga-
nization (WHO) that would later be identified as a novel coronavirus (SARS-CoV-2) [1].
By 30 January 2020, the WHO declared SARS-CoV-2 a “public health emergency of interna-
tional concern” [2], as it rapidly spread to 113 countries. By the 11th of March 2020, it had
caused 118,319 infections and 4292 deaths. Consequently, the WHO declared SARS-CoV-2
a pandemic [3,4], and as of the 29 July 2022, about 572 million infections and over 6 million
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deaths have been recorded worldwide. During the early stages of the pandemic, treatment
options were limited to chloroquine and remdesivir [5,6]. However, since then, several
effective vaccines have been developed that provide protection and reduce transmission,
with many countries rolling out mass vaccination programs [7]. Although vaccines for
SARS-CoV-2 now exist, the emergence of new strains due to mutations has led to further
concerns about vaccine effectiveness [8,9]. This fact, together with that of waning immunity
and the existence of individuals who are unable to be vaccinated or out-right refuse to do
so, highlight the need for additional therapeutics and prophylactics [10,11].

One such potential therapy is viral interfering particles. During viral replication,
mutants lacking essential parts of the viral genome arise [12,13], which are unable to
replicate in the absence of wild-type (WT) virus. These are known as defective interfering
particles (DIPs). DIPs can be exploited to make therapeutic interfering particles (TIPs),
which inhibit the replication of WT virus by outcompeting WT gene segments for resources
required during viral replication and assembly [14,15]. TIPs/DIPs have been investigated
for several viruses, including HIV, Ebola, influenza, and SARS-CoV-2, and have been
found to cause a two-fold reduction in viral titres [14–16]. However, caveats exist in their
production; for instance, which sections of the viral genome are to be removed to allow for
replication at a faster rate than WT, they are virus-specific, and little is known about how
mutations change replication dynamics [13,17].

From a mathematical modeling perspective, a long-standing effort exists to describe
transmission dynamics at the population and within-host levels (see Ref. [18] and references
therein). At the within-host level, DIPs, as therapeutics, have been studied in Refs. [19,20].
However, little effort has been devoted to investigating the intra-cellular replication kinetics
of DIPs in the presence of WT virus. Grebennikov et al. [21] have recently proposed a SARS-
CoV-2 intra-cellular replication dynamics model. This model allowed for the quantification
of viral genomes and proteins during the replication cycle. We wish to exploit this model
to explore co-infection with DIPs and the effect of DIPs on the replication dynamics of the
WT virus. In particular, in this study, we formulate a mathematical model of SARS-CoV-2
replication in a cell co-infected with DIPs. As in Ref. [21], we will follow a deterministic
approach to calibrate model parameters. We shall use sensitivity analysis to study the
impact parameters have on the release of both WT and DIP viral particles. We also introduce
a stochastic description of this model to compare to the deterministic one. We shall also
investigate how initial doses of each virus affect viral particle production (WT and DIPs)
to quantify DIP-related inhibition of WT replication and the reliance of DIPs on the WT
replication machinery.

Overall, our study is the first one in which a detailed mathematical model (both
in a deterministic and stochastic settings) of the reaction kinetics of SARS-CoV-2 life
cycle in the presence of DIPs is formulated, calibrated and examined. The currently
available mathematical models of SARS-CoV-2 infection dynamics considering the wild-
type virus competition with the DIPs describe the within-host organism infection in upper
and lower respiratory tract cells with only a single parameter characterizing the intracellular
biochemical reaction cascade [15]. The high-resolution model presented below allows us
to explore in detail the determinants and limits of the efficacy of DIP-based treatment of
COVID-19.

2. Materials and Methods

The kinetics of the corresponding biochemical reactions are described in the determin-
istic mathematical model introduced in Section 3 of this paper. The system of ordinary
differential equations (ODEs) is formulated under the assumption of mass action kinetics,
Michaelis–Menten approximations, and on the biological scheme presented in Figure 1.
The model can, in principle, be defined as a stochastic process.
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Figure 1. Biological scheme of the replication of infectious SARS-CoV-2 and defective interfering
viral particles. Arrows without a T-end (which are not green) indicate the synthesis processes,
i.e., translation or transcription, arrows with T-shaped beginning indicate that the variable at which
the arrow points with the arrow-end is increased, while the variable at which the arrow points with
a T-end is decreased (e.g., transitions of the entities from one state to another, or a decrease of non-
structural proteins during the transcription activation), and green arrows indicate the transport of the
entities from one place to another (to or from double-membrane vesicles or to the cell membrane in
vesicles), which is not modeled explicitly. All entities are subject to degradation.

2.1. Sensitivity Analysis

The mathematical model included parameters which encode the biological mecha-
nisms under investigation. Since many parameters required calibration, it is important
to identify which have the greatest effect on model outputs. Global sensitivity analysis
allowed us to evaluate the results of simultaneous changes in parameter values [22,23].
For implementing this approach, consider the vector of parameters θ = (θ1, θ2, . . . , θn) such
that the model output is described as Y = g(θ). We use the Sobol approach to determine
global sensitivities [24]. Each parameter θi can be considered a random variable distributed
uniformly on an associated range θi ∈ [θiL, θiU ], where θiL and θiU are the upper and lower
bounds that the parameter can take. Since Y is a function of these variables, it is also a
random variable that takes values in Euclidean space with variance V(Y). This total output
variance can be decomposed on the sum of variances associated with the contributions of
the individual parameter variations to the model output and the sum of variances associ-
ated with the interactions caused by simultaneous variations of multiple model parameters.
Let E[V(Y|θi)] be the expectation of the conditional variances V(Y|θi = θ∗i ) (variances of Y
taken over parameters θj, j ̸= i, for a fixed θi = θ∗i ), averaged over all possible values θ∗i .
We were interested in how the conditional variance V(Y|θi = θ∗i ) of the model output will
change if the value of the parameter is known θ∗i . The law of total variance gives [24,25]:

V(Y) = E[V(Y|θi)] +V(E[Y|θi]), (1)

where the first-order Sobol sensitivity index for parameter θi is defined as:

Si =
V(E[Y|θi])

V(Y) , (2)
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where V(E[Y|θi]), the variance of the conditional expectation, is the main effect contribution
of parameter θi to the output variance.

We also investigated the result of multiple fixed parameter values. If we let V(E[Y|θ−θj ])
be the expected reduction in the variance by fixing all parameters except θj, then the total
effect of parameter θi can be defined as:

STi =
E[V(Y|θ−θi )]

V(Y) = 1 −
V(E[Y|θ−θi ])

V(Y) , (3)

where a larger sensitivity index indicates greater importance of the associated parameter to
the given model output [22].

2.2. Model Development and Calibration

In formulating the new mathematical model, we introduced several additional pa-
rameters that relate to the kinetics of DIPs and the loss of non-structural proteins due to
DIPs using trans-elements from the WT virus for their replication. These variables are
summarized in Table 1. Grebennikov et al. provided parameter estimates for the WT
virus [21]. These values are summarized in Table 2.

Table 1. Dynamical variables of the mathematical model for the life cycle of SARS-CoV-2, with defec-
tive interfering particles.

Variable Definition Value

[Vwt
f ree] Number of free infectious (i.e., wild-type) virions outside the cell membrane 10

[Vwt
bound] Number of infectious virions bound to ACE2 and activated by TMPRSS2 1–10

[Vwt
endosome] Number of infectious virions in endosomes 1–10

[Vdip
f ree]

Number of free non-infectious (i.e., defective interfering particles) virions
outside the cell membrane

[Vdip
bound] Number of non-infectious virions bound to ACE2 and activated by TMPRSS2

[Vdip
endosome] Number of non-infectious virions in endosomes

[gRNAwt
(+)

] Single strand positive sense genomic RNA 1–5

[gRNAdip
(+)

] Single strand positive sense DIP genomic RNA

[NSP] Population of non-structural proteins
[gRNAwt

(−)
] Negative sense genomic and subgenomic RNAs of infectious virus 10

[gRNAwt] Positive sense genomic and subgenomic RNAs of infectious virus 104

[gRNAdip
(−)

] Negative sense subgenomic RNAs of DIPs

[gRNAdip] Positive sense subgenomic RNAs of DIPs
[SP] Total number of structural proteins S + M + E per virion 2 × 103 ∈ (1, 125, 2230)
[N] N proteins per virion 456; 1465 ∈ (730, 2200)
[N-gRNAwt] Ribonucleocapsid molecules for infectious virions
[N-gRNAdip] Ribonucleocapsid molecules for non-infectious virions
[Vwt

assembled] Assembled infectious virions in endosomes

[Vwt
released] Released infectious viruses 10–104 virions

in 7 to 24 h
[Vdip

assembled] Assembled non-infectious virions in endosomes

[Vdip
released] Released non-infectious virions
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Table 2. Estimates of previously calibrated model parameter values.

Parameter Description, Units Value Range [References]

kbind Rate of virion binding to ACE2 receptor, h −1 12 (3.6, 12) [26,27]
dwt

V Clearance rate of WT extracellular virions, h−1 0.12 (0.06, 3.5) [28–30]
kdiss Dissociation rate constant of bound virions, h−1 0.61 (0.32, 1.08) [26,27]
k f use Fusion rate constant, h−1 0.5 (0.33, 1) [31]
kuncoat Uncoating rate constant, h−1 0.5 (0.33, 1) [31]
dwt

endosome Degradation rate of WT virions in endosomes, h−1 0.06 (0.0001, 0.12) [28,32],
ktransl Translation rate, nt/mRNA h−1 45,360 (40,000, 50,000) [33,34]

1/ fORF1 Length of ORF1 of the RNA genome coding NSPs, nt 21,000 fixed [35]
dNSP Degradation rate of proteins in the cell, h−1 0.069 (0.023, 0.69) [34,36],

tuned to (0.023, 0.1)
kwt

tr(−)
Transcription rate of WT negative sense 3 (1, 100) [34],
Genomic and subgenomic RNAs, copies/mRNA h−1 tuned to (1, 20)

KNSP Threshold number of NSPs 100 (10, 150)
enhancing vRNA transcription, molecules

dwt
gRNA Degradation rate of WT positive sense RNAs in cell, h−1 0.2 (0.069, 0.69) [34,37],

tuned to (0.069, 0.4)
dwt

gRNA(−)
Degradation rate of WT negative sense RNAs 0.1 (0.05, 0.2)

in double-membrane vesicles, h−1

kwt
tr(+)

Replication rate of positive sense WT RNAs, copies/mRNA/h 1000 (620, 1380) [38]

kwt
complex Rate of the WT nucleocapsid formation [N-gRNA], h−1 0.4 (0.02, 0.4) [39–43]

KN Threshold number of N proteins at which 5 × 106 (3.5, 6.5)× 106 [44–46]
nucleocapsid formation slows down, molecules

1/ fN Length of RNA genome coding N protein, nt 1200 fixed [47]
1/ fSP Length of genome coding structural proteins S, E, M, nt 104 fixed [47]
dN Degradation rate of N protein, h−1 0.023 (0.023, 0.069) [36]
dSP Mean degradation rate of the pool of E, S, M proteins, h−1 0.044 (0.023, 0.36) [36]
nwt

SP Total number of structural proteins S, M, E per WT virion, molecules 2 × 103 (1125, 2230) [39,48,49]
nwt

N Number of N protein per WT virion, molecules 456 fixed [39]
Kwt

Vrel threshold number of WT virions at which 103 (10, 104) [44,50]
the virion assembly process slows down, virions

kwt
assemb Rate of WT virion assembling, h−1 1 (0.01, 10) [32,51]

dwt
N-gRNA Degradation rate of WT ribonucleoprotein, h−1 0.2 (0.069, 0.69) [34,37]

kwt
release Rate of WT virion release via exocytosis, h−1 8 (8, 7200) [51,52]

dwt
assembled Assembled WT virion degradation rate, h−1 0.06 (10−4, 0.12) [28]

The above table contains estimates of the calibrated model parameters, for the model presented in
Equations (4)–(27), for the variables defined in Table 1, as reported in Ref. [21].

The remaining parameters were estimated using approximate Bayesian computation
(ABC) [53]. The ABC algorithm allows a user to define a set of prior beliefs about parameter
distributions, π(θ), and combines this with model simulations and data to arrive at a
posterior distribution π(θ|D). Given a sample parameter set, θ∗ ∼ π(θ), a user can simulate
data D∗ ∼ π(D|θ∗) and compare them to the experimental data, D. If the simulated
data are within a given threshold distance, ε (with distance measure d(·, ·)), from the
experimental data, D, then the sample parameter set (θ∗, D∗) is accepted. Otherwise,
the parameter set is rejected and this process is continued until N parameter sets are
accepted [53]. We made use of an Euclidean distance measure, defined as:

d(M(θ∗), D) =
√

∑
t∈T

(M(θ∗, t)− D(t))2,

where T = {24, 48} (hours) is the set of time points within the experimental dataset,
D(t) is the observed progeny fold reduction under the treatment with DIPs at time t
specified in Table 3, and M(θ∗, t) is the respective progeny fold reduction predicted by the
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mathematical model. The dimensions of D and M depend on how many experimental
outputs can be compared to the model outputs (both reduce to one in our case).

Datasets for defective interfering particles are limited, with little investigation of the
intra-cellular replication kinetics of WT virus in the presence of DIPs. Chaturvedi et al. [15]
investigated two SARS-CoV-2 DIPs as TIPs. Both DIPs had shorter genomes, around 6–10%
shorter than the WT virus. Chaturvedi et al. [15] performed a virus yield-reduction assay by
transfecting Vero cells with TIP or control RNAs (one µg/million cells) 24 h before infection
with SARS-CoV-2 at an MOI = 0.05, and harvesting culture supernatants for titration at
various time-points (24, 48, or 72 h post-infection). They discovered that these particles
lead to a 1.5–1.2 log fold reduction in virus produced compared to control samples. We
compared the fold reduction generated by therapeutic interfering particle two (TIP2) [15],
at 24 and 48 h, to the fold reduction from our mathematical model of [Vwt

released] against the
original model proposed by Grebennikov et al. [21]. These fold reductions are summarized
in Table 3. For the ABC rejection method, given that the choice of a suitable ε is difficult,
we sampled 106 parameter sets and kept the top 0.1% that minimize the distance measure
d(·, ·). We assumed uniform prior distributions for the parameters within the search ranges
summarized in Table 4.

Table 3. Fold log reductions for 24 and 48 h post-infection as reported in Ref. [15] for TIP2 to 2 decimal
places (2.d.p.).

Time (Hours) Fold Log Reduction (2 d.p.)

24 1.20
48 1.14

Table 4. Median estimates of unknown model parameter values.

Parameter Description, Units Value Range [References]

ddip
V

Clearance rate of DIP extracellular virions, h−1 0.481 10[−1.2,0.55] [28–30]

ddip
endosome

Degradation rate of DIP virions in endosomes, h−1 3.29 × 10−3 10[−4,−0.93][28,32],

kdip
tr(−)

Transcription rate of DIP negative sense 34 10[0,3] [34],

Genomic and subgenomic RNAs, copies/mRNA h−1

ddip
gRNA

Degradation rate of DIP positive sense RNAs in cell, h−1 0.218 10[−1.16,−0.16] [34,37],

ddip
gRNA(−)

Degradation rate of DIP negative sense RNAs 0.218 10[−1.30,0]

in double-membrane vesicles, h−1

kdip
tr(+)

Replication rate of positive sense DIP RNAs, copies/mRNA/h 2540 10[2.79,4.14] [38]

kdip
complex

Rate of the DIP nucleocapsid formation [N-gRNA], h−1 0.14 10[−1.69,0] [39–43]

ndip
SP

Total number of structural proteins 112 10[1,3.1] [39,48,49]
S, M, E per DIP virion, molecules

ndip
N

Number of N protein per DIP virion, molecules 53 10[1,2.35]

Kdip
Vrel

Threshold number of DIP virions at which 380 10[1,4.31] [44,50]
the virion assembly process slows down, virions

kdip
assemb

Rate of DIP virion assembling, h−1 0.38 10[−2,1.31][32,51]

ddip
N-gRNA

Degradation rate of DIP ribonucleoprotein, h−1 0.268 10[−1.16,0] [34,37]

kdip
release

Rate of DIP virion release via exocytosis, h−1 105 10[0.9,3.15] [51,52]

ddip
assembled

Assembled DIP virion degradation rate, h−1 4.89 × 10−3 10[−4,−0.62] [28]
kwt

trans(−)
Rate of loss of NSPs by trans elements 5.39 × 10−5 10[−5,−3.7]

from negative sense WT RNA, h−1

kwt
trans(+)

Rate of loss of NSPs by trans elements 6.17 × 10−3 10[−2.22,−1.86]

from positive sense WT RNA, h−1

kdip
trans(−)

Rate of loss of NSPs by trans elements 4.72 × 10−5 10[−5.69,−3]
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Table 4. Cont.

Parameter Description, Units Value Range [References]

from negative sense WT RNA, h−1

kdip
trans(+)

Rate of loss of NSPs by trans elements 8.61 × 10−3 10[−2.9,−1.17]

from positive sense WT RNA, h−1

Median estimates of unknown model parameters values for the model presented in Equations (4)–(27), with vari-
ables defined in Table 1, as well as relevant search ranges.

2.3. Stochastic Simulation Algorithm

To perform stochastic simulations of the model formulated as a Markov chain, the most
popular exact approach is Gillespie’s direct method [54]. The Markov chain specifies the
propensity am for the m-th jump process (i.e., the respective elementary reaction rate),
which changes the variables by a discrete amount when that process takes place. The
propensity am defines the probability pm = amdt that the m-th process is triggered in the
infinitesimal time interval [t, t + dt). At each step of the simulation, two random numbers
r1, r2 ∼ U(0, 1) are generated to sample the time of the next jump process, τ, and the index
rm of the process to perform:

τ =
1
a0

log(1/r1), rm = arg min
µ

(
µ

∑
m=1

am ≥ r2a0

)
,

where a0 = ∑M
m=1 am is the total sum of propensities.

In this work, we used the rejection stochastic simulation algorithm (RSSA) [55]. This
method estimates the upper and lower bounds on the propensities am, am, instead of calcu-
lating the exact values, am, and uses the third random number, r3 ∼ U(0, 1), for a rejection
test to check if the exact value is needed to be computed (see details in Ref. [55]). The propen-
sity values are updated only when necessary; therefore, the algorithm is practical when the
propensity computation is time-consuming, e.g., for non-linear process rates parameterized
with Michaelis–Menten functions. Additionally, two dependency graph structures are
defined to reduce the number of propensity updates and accelerate computations: the first
one specifies for each process which variables are affected when the corresponding jumps
occur, and the second one specifies for each variable the process indices with propensities
dependent on the value of the variable. Note that certain search strategies for the candidate
process can also be implemented (e.g., RSSA with composition–rejection search (RSSA-CR)
groups the jump processes by their propensity bounds). Alternatively, one can use approxi-
mate methods to significantly speed up computations, such as the tau-leaping method [54],
or the other hybrid methods that make use of SDE or ODE approximations [55,56]. In this
work, however, we used the exact RSSA method, as the performance of the parallelized
code to compute the ensemble of stochastic trajectories was acceptable.

2.4. Software

The following packages in Python language (version 3.8.8) were used to simulate
and analyze the model: Scipy (version 1.8.1) to numerically solve the system of ordinary
differential equations, SALib (version 1.4.5) for identification of Sobol sensitivity indices,
Matplotlib (version 3.5.1) for visualizations, and Joblib (version 1.0.1) for parallelization
of the ABC rejection algorithm, which allows to infer posterior distributions of model
parameters. To perform stochastic simulations, we used the package DifferentialEquations.jl
(version 7.4.0) in Julia language (version 1.8.1). Codes used to simulate and analyze these
models are available in the GitHub repository https://github.com/MacauleyLockeml/
SARS-CoV-2-DIP-Model (accessed on 12 June 2024).

https://github.com/MacauleyLockeml/SARS-CoV-2-DIP-Model
https://github.com/MacauleyLockeml/SARS-CoV-2-DIP-Model
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3. Mathematical Model of WT and DIP Infection

The variables of the mathematical model characterizing the life cycle of SARS-CoV-
2 according to Figure 1 are listed in Table 1. The unknown functions [·] characterizing
the abundance of the constituents of the SARS-CoV-2 replication system are the time-
dependent variables with their rates of change in time described by the system of the
ordinary differential equations introduced below. The parameters (coefficients) appearing
on the right-hand side of the equations are the rate constants of the processes specified in
Tables 2 and 4.

3.1. Cell Entry and RNA Release

The binding of infectious WT virion to the cellular trans-membrane protein ACE2
allows entry and release of the viral RNA into the host cell. We describe this process by
equations specifying the rates of change of free-, receptor-bound, and fused virions, as well
as the viral RNA genome in the cytoplasm:

d[Vwt
f ree]

dt
= −kbind[Vwt

f ree]− dwt
V [Vwt

f ree] + kdiss[Vwt
bound], (4)

d[Vwt
bound]

dt
= kbind[Vwt

f ree]− (k f use + kdiss + dwt
V )[Vwt

bound], (5)

d[Vwt
endosome]

dt
= k f use[Vwt

bound]− (kuncoat + dwt
endosome)[V

wt
endosome], (6)

d[gRNAwt
(+)

]

dt
= kuncoat[Vwt

endosome]− dwt
gRNA[gRNAwt

(+)]. (7)

where [Vwt
f ree] is the number of extra-cellular free infectious virions, [Vwt

bound] is the number
of virions bound to ACE2 and activated by TMPRSS2, [Vwt

endosome] is the number of virions
in endosomes, and [gRNAwt

(+)
] is the number of ss-positive sense genomic RNA. A similar

set of equations is used to describe the cell entry and RNA release of non-infectious viral
defective interfering particles:

d[Vdip
f ree]

dt
= −kbind[V

dip
f ree]− ddip

V [Vdip
f ree] + kdiss[V

dip
bound], (8)

d[Vdip
bound]

dt
= kbind[V

dip
f ree]− (k f use + kdiss + ddip

V )[Vdip
bound], (9)

d[Vdip
endosome]

dt
= k f use[V

dip
bound]− (kuncoat + ddip

endosome)[V
dip
endosome], (10)

d[gRNAdip
(+)

]

dt
= kuncoat[V

dip
endosome]− ddip

gRNA[gRNAdip
(+)

]. (11)

where [Vdip
f ree] is the number of extra-cellular free DIPs, [Vdip

bound] is the number of DIPs

bound to ACE2 and activated by TMPRSS2, [Vdip
endosome] is the number of DIPs in endosomes,

and [gRNAdip
(+)

] is the number of ss-positive sense genomic RNA. DIPs for SARS-CoV-2
would require a functional spike (S) protein to successfully bind to ACE2 receptors and
mediate cell entry. Consequently, we assume that the rates for kbind, kdiss, k f use, and kuncoat
are the same for both WT virus and DIPs. However, degradation rates related to cell entry
will differ between WT and DIPs, since the shorter genome of DIPs might imply a different
degradation rate.

3.2. RNA Transcription and DIP Parasitism

The released WT viral genomic RNA undergoes translation into non-structural viral
polyproteins, [NSP], which operate to form the viral replication and transcription complex,
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i.e., the RNA-dependent RNA polymerase (RdRp). The main function of the RdRp replica-
tion complex is to generate a negative sense full-length genomic and subgenomic RNAs.
As DIPs lack the ability of self-replication, the conditional transcription of DIP RNAs results
in competition with WT SARS-CoV-2 for replication proteins [15]. The use of WT virus
trans elements by DIPs reduces [NSP] availability for the transcription of WT viral RNA.
The respective sets of equations have different structures, as detailed below. The abundance
of non-structural proteins, [NSP], the negative sense genomic and subgenomic RNAs,
[gRNAwt

(−)
], and positive sense genomic and subgenomic RNAs, [gRNAwt], associated

with the replication of the infectious virions are described by the following equations:

d[NSP]
dt

= ktransl fORF1[gRNAwt
(+)]− dNSP[NSP]

− (kwt
trans(−)

[gRNAwt
(+)] + kwt

trans(+)
[gRNAwt

(−)]+ (12)

kdip
trans(−)

[gRNAdip
(+)

] + kdip
trans(+)

[gRNAdip
(−)

])[NSP],

d[gRNAwt
(−)

]

dt
= kwt

tr(−)
[gRNAwt

(+)]θRdRp − dwt
gRNA(−)

[gRNAwt
(−)], (13)

d[gRNAwt]

dt
= kwt

tr(+)
[gRNAwt

(−)]θRdRp − (kwt
complexθcomplex + dwt

gRNA)[gRNAwt], (14)

where

θRdRp =
[NSP]

[NSP] + KNSP
, θcomplex =

[N]

[N] + KN
. (15)

Equation (12) reflects the fact that non-structural proteins are translated only from the
viral genomic RNA of infectious WT virions. Transcription of negative sense viral genomic
and subgenomic RNAs described by Equations (13) and (14) is regulated by the positive
sense viral genomic RNA. The set of equations for transcription of negative sense and
positive sense DIP subgenomic RNAs, i.e., [gRNAdip

(−)
], [gRNAdip] are as follows:

d[gRNAdip
(−)

]

dt
= kdip

tr(−)
[gRNAdip

(+)
]θRdRp − ddip

gRNA(−)
[gRNAdip

(−)
], (16)

d[gRNAdip]

dt
= kdip

tr(+)
[gRNAdip

(−)
]θRdRp − (kdip

complexθcomplex + ddip
gRNA)[gRNAdip]. (17)

3.3. Translation and Competition for Nucleocapsid Protein and Other Structural Proteins

DIPs compete with WT virions for packaging proteins, e.g., nucleocapsid N proteins
([N]) [15]. Structural S, envelope E, and membrane M proteins are translated from positive
sense subgenomic RNAs in the endoplasmic reticulum (ER) and are considered in the
mathematical model as a single population, [SP]. Nucleocapsid proteins, on the other hand,
are translated in cytosolic ribosomes from positive sense RNAs. Both SP and N proteins
are required for the formation of virus like-particles, WT or DIPs. It can be assumed that
ndip

SP ≤ nwt
SP and ndip

N ≤ nwt
N , since the shorter DIP genome will require fewer N proteins for

the formation of the ribonucleocapsid and construction of a viral particle. Translation of N
and SP proteins are described by the following two equations:

d[N]

dt
= ktransl fN [gRNAwt]− kwt

complexnwt
N θcomplex[gRNAwt]

− kdip
complexndip

N θcomplex[gRNAdip]− dN [N], (18)

d[SP]
dt

= ktransl fSP[gRNAwt]− kwt
assembnwt

SPθwt
assemb[N-gRNAwt]

− kdip
assembndip

SP θ
dip
assemb[N-gRNAdip]− dSP[SP], (19)
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where

θwt
assemb =

[SP]
[SP] + Kwt

Vrel
nwt

SP
, (20)

and

θ
dip
assemb =

[SP]

[SP] + Kdip
Vrel

ndip
SP

, (21)

3.4. Assembly and Release of WT SARS-CoV-2 and DIPs

New virions are assembled at the endoplasmic reticulum–Golgi compartment, where
N-RNA complexes become encapsulated. These assembled virions can then exit an infected
cell by exocytosis via the lysosomal pathway, budding, or cell death [57,58]. There is
no competition associated with the release of new infectious and DIP virions, but the
viral assembly rates, θwt

assemb and θ
dip
assemb, depend on the availability of structural proteins,

since DIPs will likely require fewer of them than WT virions. The rates of change of
the ribonucleocapsid and assembled and released infectious SARS-CoV-2 and DIPs are
described below:

d[N-gRNAwt]

dt
= kwt

complexθcomplex[gRNAwt]

− (kwt
assembθwt

assemb + dN-gRNAwt)[N-gRNAwt], (22)

d[Vwt
assembled]

dt
= kwt

assembθwt
assemb[N-gRNAwt]

− (kwt
release + dwt

assembled)[V
wt
assembled], (23)

d[Vwt
released]

dt
= kwt

release[V
wt
assembled]− dwt

V [Vwt
released], (24)

and

d[N-gRNAdip]

dt
= kdip

complexθcomplex[gRNAdip]

− (kdip
assembθ

dip
assemb + dN-gRNAdip)[N-gRNAdip], (25)

d[Vdip
assembled]

dt
= kdip

assembθ
dip
assemb[N-gRNAdip]

− (kdip
release + ddip

assembled)[V
dip
assembled], (26)

d[Vdip
released]

dt
= kdip

release[V
dip
assembled]− ddip

V [Vdip
released]. (27)

In this study, we wish to explore model behaviour for different initial conditions,
[Vwt

f ree](0) and [Vdip
f ree](0), and thus, understand the replication dynamics of WT viral par-

ticles in the presence of DIPs, and how the initial dose of WT or DIP particles regulates
infection and production kinetics of WT virions. We are also interested in investigating the
sensitivities to model parameters of different outputs.

The deterministic model specified by the set of equations Equations (4)–(27) represents
a bounded rate system. Modeling of SARS-CoV-2 replication dynamics amounts to solving
an initial value problem, which describes the system evolution with time for the given
initial conditions of the system.

3.5. Stochastic Markov Chain Model

The deterministic model defined by Equations (4)–(27) can be generalized to a stochas-
tic one formulated as a discrete-state continuous-time Markov chain (DSCT MC). The
stochastic model allows one to account for integer-valued variables, to obtain probability
distributions rather than mean field estimates for the variables of interest, and to com-
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pute the probabilities of productive cell infection at low MOI [59]. It is convenient to
estimate model parameters for the system of ODEs and then, with a calibrated determin-
istic system and a defined Markov chain model, perform stochastic simulations making
use of Monte Carlo methods. We follow our previous effort on the stochastic model-
ing of SARS-CoV-2 [59] and HIV-1 [56] life cycles to formulate and simulate the Markov
chain. The Markov chain corresponding to Equations (4)–(27) is presented in Table 5. It
includes the state transition events and the propensities, am, for the m-th jump process.
The propensity am defines the probability pm = amdt that the m-th process takes place in
the infinitesimal time interval [t, t + dt). This definition yields exponential distributions
for the time between jumps and various Monte Carlo methods can be used to simulate
the stochastic trajectories from these distributions [54,55]. We note that the processes of
ribonucleocapsid formation (m = 33, 34) and virion assembly (m = 37, 38) are formu-
lated as single events, yet involve the simultaneous change of three different variables.
In these processes, protein copy numbers are decreased by the corresponding number of
protein molecules, np, needed to form a complex or assemble a pre-virion particle (i.e.,

by nwt
N , ndip

N , nwt
SP, or ndip

SP , respectively). Alternatively, one can formulate the Markov chain
(MC) with three separate processes for each assembly event, in which the protein molecules
are decreased by only one molecule with the propensity multiplied by np (see Ref. [59]
for an example of the extended MC formulation). We have verified that the extended
and reduced MCs produce similar statistics. This reduction can be viewed as a weighted
sampling strategy used in probability-weighted dynamic Monte Carlo method (PW-DMC)
to accelerate computations [55].

Table 5. The Markov chain models: individual transitions and their propensities.

m Transition Propensity, am

Entry and RNA release (WT):
1 [Vwt

f ree] → [Vwt
f ree]− 1, [Vwt

bound] → [Vwt
bound] + 1 kbind[Vwt

f ree]

2 [Vwt
f ree] → [Vwt

f ree]− 1 dwt
V [Vwt

f ree]

3 [Vwt
f ree] → [Vwt

f ree] + 1, [Vwt
bound] → [Vwt

bound]− 1 kdiss[Vwt
bound]

4 [Vwt
bound] → [Vwt

bound]− 1, [Vwt
endosome] → [Vwt

endosome] + 1 k f use[Vwt
bound]

5 [Vwt
bound] → [Vwt

bound]− 1 dwt
V [Vwt

bound]
6 [Vwt

endosome] → [Vwt
endosome]− 1, [gRNAwt

(+)
] → [gRNAwt

(+)
] + 1 kuncoat[Vwt

endosome]

7 [Vwt
endosome] → [Vwt

endosome]− 1 dwt
endosome[V

wt
endosome]

8 [gRNAwt
(+)

] → [gRNAwt
(+)

]− 1 dwt
gRNA[gRNAwt

(+)
]

Entry and RNA release (DIPs):
9 [Vdip

f ree] → [Vdip
f ree]− 1, [Vdip

bound] → [Vdip
bound] + 1 kbind[V

dip
f ree]

10 [Vdip
f ree] → [Vdip

f ree]− 1 ddip
V [Vdip

f ree]

11 [Vdip
f ree] → [Vdip

f ree] + 1, [Vdip
bound] → [Vdip

bound]− 1 kdiss[V
dip
bound]

12 [Vdip
bound] → [Vdip

bound]− 1, [Vdip
endosome] → [Vdip

endosome] + 1 k f use[V
dip
bound]

13 [Vdip
bound] → [Vdip

bound]− 1 ddip
V [Vdip

bound]

14 [Vdip
endosome] → [Vdip

endosome]− 1, [gRNAdip
(+)

] → [gRNAdip
(+)

] + 1 kuncoat[V
dip
endosome]

15 [Vdip
endosome] → [Vdip

endosome]− 1 ddip
endosome[V

dip
endosome]

16 [gRNAdip
(+)

] → [gRNAdip
(+)

]− 1 ddip
gRNA[gRNAdip

(+)
]

ORF1 translation and competitive viral RNA replication:
17 [NSP] → [NSP] + 1 ktransl fORF1[gRNAwt

(+)
]

18 [NSP] → [NSP]− 1 dNSP[NSP]
19 [NSP] → [NSP]− 1 kwt

trans(−)
[gRNAwt

(+)
][NSP]

20 [NSP] → [NSP]− 1 kwt
trans(+)

[gRNAwt
(−)

][NSP]

21 [NSP] → [NSP]− 1 kdip
trans(−)

[gRNAdip
(+)

][NSP]

22 [NSP] → [NSP]− 1 kdip
trans(+)

[gRNAdip
(−)

][NSP]
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Table 5. Cont.

m Transition Propensity, am

23 [gRNAwt
(−)

] → [gRNAwt
(−)

] + 1 kwt
tr(−)

θRdRp[gRNAwt
(+)

]

24 [gRNAwt
(−)

] → [gRNAwt
(−)

]− 1 dwt
gRNA(−)

[gRNAwt
(−)

]

25 [gRNAwt] → [gRNAwt] + 1 kwt
tr(+)

θRdRp[gRNAwt
(−)

]

26 [gRNAwt] → [gRNAwt]− 1 dwt
gRNA[gRNAwt]

27 [gRNAdip
(−)

] → [gRNAdip
(−)

] + 1 kdip
tr(−)

θRdRp[gRNAdip
(+)

]

28 [gRNAdip
(−)

] → [gRNAdip
(−)

]− 1 ddip
gRNA(−)

[gRNAdip
(−)

]

29 [gRNAdip] → [gRNAdip] + 1 kdip
tr(+)

θRdRp[gRNAdip
(−)

]

30 [gRNAdip] → [gRNAdip]− 1 ddip
gRNA[gRNAdip]

Translation and ribonucleocapsid formation:
31 [N] → [N] + 1 ktransl fN [gRNAwt]
32 [N] → [N]− 1 dN [N]

33
[gRNAwt] → [gRNAwt]− 1, [N] → [N]− nwt

N ,
[N-gRNAwt] → [N-gRNAwt] + 1

kwt
complexθcomplex[gRNAwt]

34 [gRNAdip] → [gRNAdip]− 1, [N] → [N]− ndip
N ,

[N-gRNAdip] → [N-gRNAdip] + 1
kdip

complexθcomplex[gRNAdip]

35 [SP] → [SP] + 1 ktransl fSP[gRNAwt]
36 [SP] → [SP]− 1 dSP[SP]

Assembly and release:

37
[N-gRNAwt] → [N-gRNAwt]− 1, [SP] → [SP]− nwt

SP,
[Vwt

assembled] → [Vwt
assembled] + 1 kwt

assembθwt
assemb[N-gRNAwt]

38
[N-gRNAdip] → [N-gRNAdip]− 1, [SP] → [SP]− ndip

SP ,
[Vdip

assembled] → [Vdip
assembled] + 1

kdip
assembθ

dip
assemb[N-gRNAdip]

39 [N-gRNAwt] → [N-gRNAwt]− 1 dwt
N-gRNA[N-gRNAwt]

40 [N-gRNAdip] → [N-gRNAdip]− 1 ddip
N-gRNA[N-gRNAdip]

41 [Vwt
assembled] → [Vwt

assembled]− 1, [Vwt
released] → [Vwt

released]− 1 kwt
release[V

wt
assembled]

42 [Vwt
assembled] → [Vwt

assembled]− 1 dwt
assembled[V

wt
assembled]

43 [Vwt
released] → [Vwt

released]− 1 dwt
V [Vwt

released]

44 [Vdip
assembled] → [Vdip

assembled]− 1, [Vdip
released] → [Vdip

released]− 1 kdip
release[V

dip
assembled]

45 [Vdip
assembled] → [Vdip

assembled]− 1 ddip
assembled[V

dip
assembled]

46 [Vdip
released] → [Vdip

released]− 1 ddip
V [Vdip

released]

4. Results
4.1. Sensitivity Analysis

We now evaluate how model outputs change with parameter values. To that end,
a Sobol global sensitivity analysis was performed on four different model outputs. We
first considered the variability of WT genomic RNA, [gRNAwt], and DIP genomic RNA,
[gRNAdip], as a result of modifying parameter values within a set range summarized in
Tables 2 and 4. Secondly, we investigated how parameter variability affects the release
kinetics of both WT [Vwt

released] and DIP [Vdip
released] particles 48 h post-infection. These are

illustrated in Figures 2 and 3. Understanding which parameters cause the most vari-
ability in our model will allow us to calibrate it with careful consideration to minimize
output perturbations.

Figure 2 illustrates the first- and total-order sensitivities for WT genomic RNA, [gRNAwt],
and DIP genomic RNA, [gRNAdip], as outputs of the proposed model. For [gRNAdip],
the parameter kdip

tr(−)
was identified as generating the largest variation. kdip

tr(−)
is associated with

the transcription of negative sense RNAs for DIPs, and thus, it is essential in the formation of
new positive sense genomic and subgenomic RNAs. The rate kdip

tr(+)
was also identified as a

high sensitivity parameter, since it is associated with the transcription of positive sense RNAs.
Consequently, kwt

tr(−)
was the second most important parameter in minimizing variation
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in model output for [gRNAwt], following the same reasoning as for DIP positive sense
genomic RNA.

Figure 2. Sensitivity results for genomic RNA. First- and total-order Sobol’ sensitivity indices
from 104 samples with 95% confidence interval (black line). (left): sensitivities for [gRNAdip](48).
(right): sensitivities for [gRNAwt](48). Initial conditions were [Vwt

f ree](0) = 10 and [Vdip
f ree](0) = 10.

A parameter that was of great importance, and not only caused large variation in
model outputs of [gRNA] for WT or DIPs, but also [Vreleased] (Figure 3) was the threshold

parameter of non-structural proteins, KNSP. KNSP causes the most variation for [Vdip
released]

and [gRNAwt] compared to any other parameter, and for [Vwt
released] and [gRNAdip], it is

the second most important parameter. KNSP is associated with the transcription of both
negative and positive sense genomic RNAs, and changes in the value of this parameter will
modify the number of WT virions and DIPs released. kwt

tr(−)
was identified as an important

parameter to minimize variation in the release of both WT [Vwt
released] and DIPs [Vdip

released].
Consequently, transcription of negative sense WT genomic RNAs is an essential first step
in producing positive stranded gRNA, which is then translated to form structural proteins
S, M, and E ([SP]), as well as nucleocapsid proteins ([N]), which are required to form new
viral particles. Parameters associated with WT virion or DIP assembly are also important to
monitor to reduce variation in model outputs. Several of the parameters identified by the
Sobol sensitivity analysis have been previously estimated in Ref. [21] and are summarized
in Table 2. Other parameters required estimation and these are listed in Table 4.
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Figure 3. Sensitivity results for released particles. First- and total-order Sobol’ sensitivity indices
from 104 samples with 95% confidence interval (black line). (left): sensitivities for [Vdip

released](48).

(right): sensitivities for [Vwt
released](48). Initial conditions of [Vwt

f ree](0) = 10 and [Vdip
f ree](0) = 10

were used.

4.2. Parameter Calibration

In our extension of the model proposed by Grebennikov et al. in Ref. [21], we intro-
duced several parameters which have not been previously quantified. To estimate their
values, we performed Bayesian parameter calibration. Since experimental datasets on
co-infection with DIPs is limited, we aimed to achieve the fold reduction experimentally
quantified by Chaturvedi et al. in Ref. [15]. We made use of an ABC rejection algorithm
with 106 sample sets. As previously mentioned, since a choice of ε is hard to determine,
we instead took the 0.1% of parameter sets which minimize the Euclidean distance. We
sampled the exponent of the search ranges shown in Table 4. As a result, our sample
size provided a large coverage of parameter space. We compared the fold log reduction
between the reference solution of a model without DIPs and the one with DIPS to the data
in Table 3, and Figure 4 illustrates the model output where we used the median values
from the accepted 0.1% sample sets. From these median values, we obtained a fold change
of 1.08 (two d.p.) at 24 h post-infection and 1.14 (two d.p.) at 48 h post-infection, compared
to the reference solution [21]. Posterior histograms in Figure A1 showed that with the
dataset and the mathematical model, Bayesian inference has led to poor learning for all but
one of the newly introduced parameters. Posterior distributions are still extremely wide,
with kwt

trans(+)
being the only parameter with a narrow posterior distribution. This was due

to lack of longitudinal data to compare modeled DIP replication dynamics with.
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Figure 5 illustrates the time evolution for each variable in Table 1 given the median
values found via ABC rejection. From the upper panels of Figure 5, we examined that
the entry kinetics of WT virus into the cell are similar to those of the reference solution.
DIPs, however, enter the cell at a faster rate than WT virions. It is important to remember
that we assumed there are sufficient ACE2 receptors mediating viral entry; thus, there is
no competition between WT and DIP for receptor binding. The number of non-structural
proteins is greatly reduced (Figure 5 middle left panel), peaking at 7 h with ≈20 molecules
as opposed to the reference solution, which peaks at roughly 13 h with ≈40 molecules.
The production of [gRNAwt

(−)
] halves and peaks earlier in the time course, with a greater

number of DIP negative sense genomic RNA than WT. Consequently, we then saw an
approximate fold reduction of positive sense genomic RNA, ribonucleocapsid proteins,
and assembled and released WT viral particles.

Figure 4. Dynamics of viral particle production. Viral particle release kinetics predicted by the model
for the parameter values from Table 4 with initial conditions [Vwt

f ree](0) = 10 and [Vdip
f ree](0) = 10

during 48 h post-infection. The calibration was performed using ABC method and data from
Chaturvedi et al. [15]. (Yellow line): the reference solution to a model where DIPs are not considered
in the replication dynamics. (Red line): the production of WT virions [Vwt

released] with DIPs (blue line):

[Vdip
released].

Figure 5. Cont.
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Figure 5. Deterministic model outputs. Dynamics of the model state variables with initial conditions
[Vwt

f ree](0) = 10 and [Vdip
f ree](0) = 10 over a 48 h time course. (upper left): free WT or DIP virions

bind and fuse to the cell and (upper right): virions entering endosomes and uncoating of viral
positive sense genomic RNA. (middle left): generation of a negative sense genome and ORF1 to form
non-structural proteins (NSPs) and (middle right): the production of positive sense genomic RNAs
and N protein. (bottom left): translation of structural proteins and formation of ribonucleocapsid
molecules and (bottom right): assembly and release of WT virions and DIPs. Dashed lines represent
the reference model solution from Ref. [21].

4.3. Stochastic Model Results

Figure 6 shows the kinetics of the stochastic model variables for initial doses of wild-
type virus [Vwt

f ree](0) = 10 and DIPs [Vdip
f ree](0) = 10. The figure illustrates parametric (mean

values) and non-parametric (medians, inter-quartile ranges) statistics computed on an
ensemble of 106 trajectories. Additionally, the histograms of the simulated variable values
at particular time points can be produced from the ensemble for analysis (Figure A2).
The means and medians follow approximately the deterministic model outputs, while the
inter-quartile ranges estimate the uncertainty of the simulations due to stochastic effects
caused by the discrete nature of the model variables. These stochastic effects are more
prominent for variables which are present in a cell in small numbers, and the assumption
that their mean values can be approximated by the deterministic model may not be satisfied.
In particular, the deterministic model predicts that an infection is productive for every
positive initial dose of [Vwt

f ree](0) = 10, while the stochastic trajectories can become extinct
due to stochasticity. Figure 7 illustrates the probability of productive infection as a function
of the initial WT virion (MOI) and DIP doses. As can be seen in Figure 7 (left panel),
the probability of a productive infection tends to one as the initial dose of the WT virus hits
20 viral particles. However, the probability is affected by the initial dose of DIP particles
(Figure 7, right panel), with this probability being reduced linearly as the dose increases.
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Figure 6. Stochastic model outputs. Statistics of the stochastic model trajectories with initial conditions
[Vwt

f ree](0) = 10 and [Vdip
f ree](0) = 10 over a 24 h time course for an ensemble of 106 realization. Solid

lines: medians, dashed lines: mean values, filled areas: inter-quartile ranges.

Figure 7. Probability of productive infection for varying initial doses of both WT [Vwt
f ree](0) = 1–20 and

DIPs [Vdip
f ree](0) = 1–20 at 24 h post-infection. (left): dependence on [Vwt

f ree](0) for various [Vdip
f ree](0),

(right): dependence on [Vdip
f ree](0) for various [Vwt

f ree](0).
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The mean values of WT virion and DIP production 24 h post-infection closely follow
the outputs predicted by the deterministic model. However, a part of the trajectories
simulated with the stochastic model become extinct. The probability of productive infection
as a function of WT MOI and DIP0 is shown in Figure 7. When this probability is close to
one, a change in DIP0 does not significantly modify it. For every WT MOI, an increase in
DIP dose reduces this probability linearly. Figure A5 shows the dependence of this linear
decay in probability, βwt, on WT MOI.

4.4. Dose Response Analysis

We examined the release kinetics, i.e., the abundance of WT virions compared to DIPs,
as a function of the initial doses [Vwt

f ree](0) = [Vdip
f ree](0) = 10. However, one can expect that

initial infection doses might vary from cell to cell. Therefore, we now examined the release
kinetics of WT virions under different initial conditions. Figure 8 illustrates the total number
of WT virions (left) and DIPs (right) released with initial conditions [Vwt

f ree](0) = 1–20 and

[Vdip
f ree](0) = 1–20 over a 24 h time period. As can be seen from Figure 8, a low dose of DIPs

(MOI = 1) with a high dose of WT virus (MOI = 20) results in an approximately 21% reduction
of the WT particles released during DIP co-infection. Furthermore, as we decreased the initial
number of WT virions while DIPs remained at an MOI = 1, we observed a continued decrease
in WT virus released during co-infection compared to the single infection case (no DIPs).
As the dose of DIPs was increased, the total number of WT virions released rapidly decreased,
and at MOI = 10 for WT and DIP MOI = 4 WT particles only account for approximately
30% of particles released. These deterministic results were consistent with median estimates
from the stochastic model presented in Figure A3 (upper panel), while the mean estimates
(Figure A3, lower panel) showed marginally higher release in WT virus and lower release of
DIPs. Additionally, for high doses of WT virus, a productive infection is almost guaranteed
(Figure 7), but as shown in Figure A3, even if an infection is guaranteed the overall number of
WT, and hence infectious particles, is reduced.

Figure 8. Effects of initial doses on viral production. (top): total WT virions and (bottom): DIP parti-
cles released over the 24 h post-infection for varying initial numbers of WT virions [Vwt

f ree](0) = 0–20

and DIPs [Vdip
f ree](0) = 0–20 predicted by the deterministic model. The isolines (white lines) corre-

spond to the white ticks in the colorbars.
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Figure 9 shows viral particle release kinetics predicted by the deterministic model
with fixed initial conditions for [Vwt

f ree](0) ranging from 3 to 20 virions and varying initial

conditions for DIPs [Vdip
f ree](0) = 1–100. DIP release peaks at a MOI = 6 and then begins to

decrease as the dose increases. An increase in dose continues to have an effect on the release
of WT virions, so that for a MOI = 40, total WT virion production is <30 virions released
over the 24 h time period considered. This highlights the ability of DIPs to compete (with
an advantage) for replication resources with WT virions. Consequently, if the dose is high
enough, DIPs sequester so many intra-cellular resources that WT production is significantly
reduced. Finally, the non-linear effects of DIP MOI on WT virion and DIP production per
cell suggest that there might be optimal dosing of DIPs when used as a therapeutic agent.
The maximum effect can potentially be achieved at around 5 to 10 DIPs per cell as this
would maximize the number of new DIPs produced by the infected cells, and these, in turn,
will reduce the WT virion production in other infected bystander cells.
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Figure 9. Effect of initial dose of DIPs on virion production. Total viral particle released kinetics for
initial values of [Vwt

f ree](0) ranging from 3 to 20 virions, as a function of DIP doses [Vdip
f ree](0) = 1–100.

4.5. DIP Dose Effect on WT Virion Production

Given the predicted three-dimensional curves of model outputs as function of initial
doses presented as heatmaps in Figure 8, we asked if the production of WT virions 24 h
post-infection WT24 = [Vwt

released](24) as function of initial doses MOI = [Vwt
f ree](0) and

DIP0 = [Vdip
f ree](0) can be approximated by a compact analytic expression. Figure 9 shows

that WT24 as a function of DIP0, for a fixed MOI exhibits a decay that is slower than expo-
nential (which would be displayed as a straight line on a logarithmic scale). Therefore, we
used several analytical expressions with slower than exponential decay to fit the determin-
istic model predictions for WT virion production for fixed MOI = 10. These include: (a) a
Gompertz curve, and the probability density functions (p.d.f.) of (b) power-law, (c) Weibull,
(d) Cauchy, (e) Burr, (f) Lomax, and (g) generalized Pareto heavy-tailed distributions. The
error that was minimized is the sum of squares between the WT virion production, WT24,
predicted by an analytic expression and predicted by the deterministic model for each
DIP0 ranging from 1 to 100. The generalized Pareto distribution (with a location parameter
equal to zero) was chosen as the optimal analytic expression making use of the Akaike
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information criterion. The parameters of the generalized Pareto distribution ξ (shape) and
σ (scale) can be fitted for different values of MOI, thus giving the functions ξ(MOI) and
σ(MOI). The overall parameterization is the following:

WT24(DIP0 > 0, MOI) ≈ WT24(DIP0 = 0, MOI)×
[

1 + DIP0 ·
ξ(MOI)
σ(MOI)

]− ξ(MOI)+1
ξ(MOI)

, (28)

where WT24(DIP0 = 0, MOI) is the number of released WT virions 24 h post-infection
with zero DIP initial dose for a given WT MOI.

Figure A4 shows the fit of a generalized Pareto function (28) for MOI = 10 and the
dependence of parameters ξ and σ on MOI. One can see that the fit follows the data
closely for suitable numbers of produced WT virions (WT24 > 1) and has some small
discrepancies for WT24 < 1 at large DIP doses DIP0 > 40. The dependences of parameters
ξ(MOI) and 1/σ(MOI) exhibit non-linear patterns. They can be approximated with a
Hill function and a Dagum distribution p.d.f., respectively. However, when these analytic
approximations are substituted in (28), the overall fit of (28) behaves approximately as
an exponential decay function. Therefore, one should use the computed estimates of the
parameters ξ and σ for every MOI, or approximate them with a higher degree polynomial
that would follow the estimates closely, e.g., with a 30-degree Chebyshev polynomial as
shown in Figure A4. Overall, the relative error of the fit (weighted residual sum of squares)
of the closed-form expression (28) reaches its peak for MOI ≈ 6, in the same region where
the parameters ξ and σ shown a non-linear dependence on MOI. The root-mean-square
deviation normalized to WT24(DIP0 = 0, MOI), the maximum value of produced WT
virions for each MOI, shows a similar increase near MOI ≈ 10, as well as a later increase
for large MOIs. This can be explained since the discrepancy in the tail of a generalized
Pareto distribution corresponds to larger numbers of WT24 with an increase of MOI. In
summary, we have provided a closed-form expression, (28), as a prediction of the effect of
DIPs on productive cell infection, i.e., the expected mean number of WT virions produced
in a productive infection scenario for a range of relevant MOIs.

5. Discussion

SARS-CoV-2 still presents a real threat to human health as a result of several com-
pounding factors: emergence of new strains due to mutation and waning immunity among
vaccinated and unvaccinated individuals (for medical reasons or personal choice). There-
fore, it is still important to investigate new treatment options, especially those that could be
implemented early after infection, to alleviate pressure on healthcare systems. One such
potential therapy is defective interfering particles. DIPs are virus-like particles with shorter
genomes that require a wild-type (WT) virus to replicate. In this paper, we investigated
the intra-cellular replication kinetics of WT virus in the presence of DIPs, making use of a
mathematical model. To this end, we extended the model proposed by Grebennikov et al. in
Ref. [21], which focused on the intra-cellular replication kinetics of SARS-CoV-2, to include
co-infection with defective interfering particles, given their therapeutic potential [60,61].
In particular, we investigated the ability of DIPs to reduce WT viral load by competing for
resources required to replicate or encapsulate the viral genome to form new virions. Since
DIP genomes lack key fragments, they need a “helper” virus, which encodes non-structural
and structural proteins, for their replication. There is evidence of DIPs leading to cause
a reduction in viral titres for several viruses including: influenza A, dengue fever, and
SARS-CoV-2 [14,15,62]. With the emergence of new SARS-CoV-2 strains, the effectiveness
of a DIP particle (derived from a particular viral strain) against novel ones remains to
be investigated.

Mathematical models of WT virus and DIP co-infection have been investigated at the
within host-level and either consider a standard infection model with target, eclipse phase,
and infected cells or include different localized areas of infection, such as the upper and
lower respiratory tract [15,19]. There are, however, no models (to the best of our knowledge)
that examine the intra-cellular replication kinetics of SARS-CoV-2 in the presence of DIPs.
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Our aim was to assess the hypothesis that DIPs lead to a reduction not only in the number of
released WT virions, but also negatively impact the transcription of positive sense genomic
RNAs. Additionally, we investigated the effects of initial infection dose (WT and DIP) in
the release of both new WT virions and DIPs. Since experimental datasets are extremely
limited, it is important to note that the parameter values obtained in this manuscript are
based on the dataset used [15], and may not be globally identifiable. By globally identifiable
we mean the identification of a unique parameter value from a dataset.

The extension of the model presented by Grebennikov et al. in Ref. [21] required new
parameters to account for the kinetics of DIPs. Therefore, it was necessary to investigate
the sensitivities of all model parameters. In particular, we made use of the Sobol sensitivity
analysis to understand how variation in parameter values affects four different model
outputs: [gRNAwt], [gRNAdip], [Vwt

released], and [Vdip
released]. We found several parameters that

have an effect on all four model outputs: KNSP, the threshold number of non-structural
proteins, kwt/dip

tr(−)
, transcription rates of negative sense genomic RNA for WT virus and DIPs,

respectively, and kwt/dip
tr(+)

, the transcription rates for positive sense genomic RNA. The rates
associated with cell entry, k f use and kuncoat, also lead to some variation in model outputs.
Finally, if we examine as output WT and DIP release, we find their associated assembly
rates, kwt

assembl and kdip
assembl , as the most sensitive parameters.

DIPs have potential as therapeutics, and thus, it is important to explore how initial
infection doses of WT and DIP alter the release of WT virus, to inform a treatment plan.
We show that even a low MOI = 1 of DIPs can cause a reduction of approximately 50% in
released WT virus compared to an infection in the absence of DIPs, with further reduction
in released WT up to 10-fold for increasing MOIwt and MOIdip. Figure 8 illustrates how
increasing the dose of DIPs leads to a reduction in the fraction of released WT virions,
in relation to the initial WT infection dose. These trends are consistent with the results from
the stochastic model also developed in this paper (Figure A3). The doses of both WT virus
and DIPs also had an effect on the probability of a productive infection, which decreased
with increased doses of DIPs, but is almost certain for high doses of WT virus. We also
investigated the effect of initial MOI of DIPs given a fixed dose of WT virus (MOI = 10) on
viral particle release. Our results show that while DIP release peaks at an initial DIP dose
of MOI = 5, the release of WT virions decreases in a dose-dependent manner. Furthermore,
by an initial DIP dose of MOI = 40, WT virion release is effectively inhibited.

The deterministic and stochastic models we presented are a good first approximation
to the kinetics of WT and DIP co-infection. Yet, there are a number of biological processes
which have not been considered. First and foremost, we omitted the anti-viral response of
the cell. While we need not consider the adaptive immune response since our time interval
is 48 h, the innate immune response would play a pivotal role [63,64]. A family of cytosolic
receptors, known as pattern recognition receptors (PRR), exists that detect viral RNAs
to induce the production of type I interferons. Type I interferons (or viral IFNs), which
are secreted by infected cells, include IFN-α, IFN-β, IFN-ω, and IFN-τ. These molecules
are associated with activation of anti-viral cell states, which in turn lead to inhibition of
viral replication and eventual viral clearance [65]. Furthermore, innate immune responses
have been shown to be induced by DIP binding to PRRs, providing additional stimuli and
magnifying the anti-viral cellular response [60]. As a consequence, it would, therefore, be
ideal to extend the proposed model to consider the role of an innate immune response.
Another limitation of our model is that for WT virions, we do not distinguish between
infectious and non-infectious particles. This would be important to understand the potential
infectivity of the viral particles released. We also fail to characterize the natural generation of
DIPs during the WT replication cycle (which is inherently characterized by mutations). This
process would contribute to the release of other defective interfering particles, and would
potentially reduce the number of WT virions released. However, a complete calibration of
such a model would require a dataset not currently at hand.
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In our study, we have analyzed the possibility of utilizing the competitive interactions
between viruses for the benefit of the infected host. Whether a similar phenomenon could
be examined for other pathogens of major public concern, e.g., bacterial infections with
Salmonella typhi Leptospira, using available mathematical models deserves a systematic
multidisciplinary investigation [66,67].

Studies of other virus infections such as dengue virus, Zika virus, yellow fever virus
respiratory syncytial virus, and influenza A virus showed that DIP treatment of human
target cells inhibited virus production via activation of cellular innate immunity, which
included interferon-dependent antiviral responses. Future direction of DIP-integrating
mathematical modeling should incorporate a broad spectrum of virus–host interaction
processes in order to robustly quantify and predict the function which the DIPs could have
in vaccines, modulation of viral disease, innate immune responses, virus persistence, and
virus evolution [68,69]. Although the DIPs offer a novel approach to antiviral therapy,
the efforts to translate the in vitro studies to in vivo models are still limited. Recently,
the Syrian hamster model of lethal Nipah virus (NiV) disease was used to examine the
potential of DIPs to improve clinical outcomes. The results strongly support further
research on the development and optimization of DIP-mediated treatment against high-
consequence pathogens [70], which requires calibrated mathematical models as a powerful
analytical tool.

To conclude, we believe the model we have proposed shows the potential benefits
of DIPs as a therapeutic tool to reduce WT virus production. We also have shown that
even low doses of these particles can have a positive effect on limiting WT virus pro-
duction and reducing the probability of a successful infection. This reduction continues,
in a dose-dependent manner, to greatly reduce WT virus production. Future work will
focus on incorporating immune responses and the natural production of DIPs into the
mathematical model presented here but will require further carefully curated data to assist
in parameter estimation.
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Abbreviations
The following abbreviations are used in this manuscript:
ABC Approximate Bayesian computation
MC Markov chain
MOI Multiplicity of infection
ODE Ordinary differential equation
SDE Stochastic differential equation
RSSA Rejection stochastic simulation algorithm
TIP Therapeutic interfering particle
DIP Defective interfering particle
WT Wild-type

Appendix A

Figure A1. Posterior histograms. Posterior histograms of the top 0.1% sampled parameter sets from a
total of 106 accepted sets. Table 4 lists the search ranges used to obtain the above posterior histograms.
Purple histogram: posterior histogram of accepted parameter sets; blue histogram: histogram of
prior beliefs; and black dashed line: the median parameter value listed in Table 4 used to generate
Figures 4–9.
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Figure A2. Stochastic model outputs 24 h post-infection. The histograms for the numbers of
(left) genomic RNA ([gRNAwt](24), [gRNAdip](24)) and (right) produced virions ([Vwt

released](24),

[Vdip
released](24)) are shown for an ensemble of 106 stochastic simulations with initial doses

[Vwt
f ree](0) = 10 and [Vdip

f ree](0) = 10. The histograms are normalized to approximate a true prob-
ability density distribution.

Figure A3. Effects of varying initial dose on viral particle release (as predicted by the stochastic
model). (left panels): Median values, (right panels): mean values are presented as the outputs of
ensembles of 105 trajectories simulated for each combination of the initial conditions. (top): Total
WT virions released over the 24 h post-infection for varying initial conditions of free WT virions
[Vwt

f ree](0) = 0–20 and free DIPs [Vdip
f ree](0) = 0–20 from the stochastic model. (bottom): Total DIP

particles released for varying initial doses. The isolines shown on the heatmaps as white lines coincide
with the corresponding ticks in the colorbars.
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Figure A4. Fitting WT virion production as a function of initial DIP doses with analytic expression.
(left): fit of the deterministic model output (blue lines) for fixed MOI = 10 using Equation (28),
which is based on the probability density function of a generalized Pareto distribution (red dotted
and green dashed lines). The upper plot is presented in linear scale, the lower one in logarithmic
scale. The formula with estimated parameters is shown in the annotation of the upper plot. (center):
fit of the parameters of the analytic expression (28) for various MOIs. The upper plot shows the fitted
values of the parameter ξ and the lower one the reciprocal of the parameter σ. The fitted estimates
ξ(MOI) and 1/σ(MOI) can be approximated closely with a 30-degree Chebyshev polynomial (red
lines). The overall fit in the left panel denotes the fit with Equation (28), where the polynomials are
used as ξ(MOI) and 1/σ(MOI). (right): the error of the fit with Equation (28) for various MOIs.
The upper plot shows the residual sum of squares (RSS) weighted by the data values for each DIP0.
The lower plot shows the root-mean-square deviation (RMSD) normalized by the number of produced
WT virions with DIP0 = 0.

Figure A5. The estimation of the effect of DIP dose, DIP0, on the probability of productive infection
as a function of MOI. (left): for each MOI, the probability decreases linearly as DIP0 increases. (right):
the linear decay rate, βwt, and therefore, the effect of DIP0 decreases with an increase in MOI.
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