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Abstract

Accurate reproduction of human skin color requires knowl-

edge of skin spectral reflectance data, which is often unavail-

able. Traditionally, spectral reconstruction algorithms attempt

to recover the spectra using commonly available RGB camera

response. Among various methods employed, polynomial regres-

sion has proven beneficial for skin spectral reconstruction. De-

spite their simplicity and interpretability, nonlinear regression

methods may deliver sub-optimal results as the size of the data

increases. Furthermore, they are prone to overfitting and require

carefully adjusted hyperparameters through regularization. An-

other challenging issue in skin spectral reconstruction is the lack

of high-quality skin hyperspectral databases available for re-

search. In this paper, we gather skin spectral data from publicly

available databases and extract the effective dimensions of these

spectra using principal component analysis (PCA). We show that

plausible skin spectra can be accurately modeled through a lin-

ear combination of six spectral bases. We propose a new ap-

proach for estimating the weights of such a linear combination

from RGB data using neural networks, leading to the reconstruc-

tion of spectra. Furthermore, we utilize a daylight model to es-

timate the underlying scene illumination metamer. We demon-

strate that our proposed model can effectively reconstruct fa-

cial skin spectra and render facial appearance with high color

fidelity.

Introduction

Faithful representation of human skin color is crucial for

virtual and augmented reality [1], skin cancer detection [2],

forensics [3], prosthetic limb manufacturing [4], and the cos-

metic industry [5]. Indeed, this requires access to detailed spec-

tral reflectance data of the skin. Hyperspectral cameras are able

to record the skin reflectance at high spectral and spatial resolu-

tion [6]. However, these cameras are significantly costly com-

pared to standard consumer RGB cameras. Additionally, the

time-consuming process of high-resolution hyperspectral acqui-

sition renders it impractical for human subjects, who must re-

main still during the acquisition. On the other hand, despite be-

ing more affordable, RGB cameras utilize only three color sen-

sors to capture the scene radiance. As a result, RGB imaging

can only gather a limited information encoded in the scene. To

address this, spectral reconstruction algorithms have been devel-

oped to infer the missing information from the RGB image of the

scene [7]. Although the problem is heavily underconstrained, it

is still feasible to upsample from three channels to more, given

that most hyperspectral bands are highly correlated [8].

The simplest algorithms for spectral reconstruction tasks

utilize regression methods. Linear regression, for example,

maps RGB values to spectra through a linear transformation [7].

Extending this approach, nonlinear regression methods trans-

form RGB values into a set of higher-order polynomial or root-

polynomial terms, offering a more complex model for spectral

reconstruction. These spectral reconstruction approaches are all

pixel-based, meaning that they recover the spectrum of a pixel

independent of the spatial location of that pixel in the image.

In contrast, deep neural network approaches [9] leverage RGB

patches for training. Indeed, they need a large amount of data

and significantly more powerful processing and mapping archi-

tectures.

There is a very limited body of work focused on the spec-

tral reconstruction of human skin from RGB images. One po-

tential reason for this is the difficulty in acquiring high-quality

hyperspectral data specifically for human skin. Although several

hyperspectral image databases of outdoor and indoor scenes are

publicly available for research [11], high-quality databases ded-

icated to skin are scarce, to our knowledge. This results in sig-

nificant challenges for spectral reconstruction algorithms, espe-

cially for patch-based methods like deep neural networks, in ac-

curately reconstructing large skin patches, such as human faces.

In this paper, we introduce a simple paradigm for skin spectral re-

construction utilizing neural networks. Initially, we demonstrate

the feasibility of accurately modeling a plausible skin spectrum

with a set of spectral bases. Following this, we propose a neu-

ral network-based procedure to determine the set of weights re-

quired to linearly combine these bases for reconstructing the skin

spectra. This method also includes estimating the spectrum of

the scene illumination. We further validate the effectiveness of

our method by demonstrating its application in rendering human

faces across various skin tones.

Background
Most off-the-shelf RGB digital cameras contain three types

of sensors, red, green and blue, each with a different sensi-

tivity to a broad range of visible light spectrum. Each sensor

k = r,g,b integrates spectral data over the visible spectral range

ω = [400−700nm]; overall, camera sensors provide trichromatic

color responses of the scene:

ck =
∫

ω

s(λ )l(λ )qk(λ ) dλ + εk, {k = r,g,b} (1)

where s(λ ) denotes the spectral reflectance of the scene imaged

by the camera, l(λ ) refers to the illumination spectrum, qk(λ ) is

the spectral sensitivity of the camera sensor of type k, εk is the

acquisition noise, and c = [cr,cg,cb] is the trichromatic camera

response. Given that spectral data are available at discrete inter-

vals, the integration can be approximated by inner products as

follows:

c = QT s, (2)

where Q is a matrix derived from the element-wise product of

l(λ ) and q(λ ), and T is matrix transpose. All spectral recon-

struction methods aim to accurately recover s using the informa-

tion embedded in c. Among the early methods, linear regression

establishes a relationship between c and Q through a single lin-

ear transformation matrix. Considering the entire database of N

spectral reflectances S, and their corresponding RGB data C, one

can express the relationship as follows:

CM = S, (3)



where M denotes the linear transformation matrix, which is de-

rived using error minimization criteria such as the least squares

method. It is well established that recovering spectral reflectance

from camera responses is inherently prone to the problem of

metamerism: more than one reflectance can give rise to the same

RGB values [12]. Furthermore, the task becomes even more

challenging when dealing with complex surfaces, such as hu-

man skin, which comprises several layers of cutaneous tissue,

each with distinct optical properties [13, 31]. In such cases, a

simple linear transform will not suffice to accurately approxi-

mate the spectra. To address nonlinear relationships, polynomial

[7] and root-polynomial [14] regressions, and neural networks

[15, 16] are likely to provide better reconstruction performance.

In the domain of skin spectral reconstruction, the literature sug-

gests that most of the existing research has benefited from re-

gression methods. In a pioneering work, Imai et al. [17] used

second-order polynomial regression to recover the spectra for

color reproduction on a CRT display. Xiao et al. [18] combined

polynomial regression with principal component analysis (PCA)

to reconstruct skin spectra, benefiting from access to compre-

hensive spectrophotometric measurements of human skin spectra

and silicone skin samples. Recently, Li et al. [19] have aimed to

enhance the accuracy of skin spectral reconstruction using poly-

nomial regression by reevaluating the strategy for preparing the

training dataset.

Method

We propose a straightforward neural upsampling procedure

to transform measured RGB values of skin into spectral data, as-

suming these RGB values are acquired under broadband daylight

illumination conditions. We will first outline the preparation of

the training dataset tailored for this method. Additionally, for

comparison purposes, we apply regression-based spectral recon-

struction models on the same dataset.

Skin dataset

In this research, we use three publicly available databases of

human skin spectral reflectance. The first database [18] includes

4,392 measurements from 482 subjects of Caucasian, Chinese,

and Kurdish ethnicity, taken from the forehead, cheek, inner arm,

and back of the hand, covering a spectral range of 360 to 740

nm at 10 nm intervals. The second database [20] contains mea-

surements of the right inner forearm from 100 subjects, spanning

250 to 2500 nm at 3 nm intervals. Both databases have no age

or gender constraints. Additionally, we use the ISET Hyperspec-

tral Image Database [21], which has 24 hyperspectral images of

human faces, covering 400 to 950 nm at 3.5 nm intervals. We

selected two 10×10 pixel patches from the forehead and cheek,

excluding specular highlights. We then clipped the data to 400

to 700 nm and interpolated it to 31 spectral bands at 10 nm in-

tervals. Altogether, we have a skin spectral reflectance dataset

of approximately 14,600 measurements, as illustrated in Figure

1 (left). For all spectra, we calculate the corresponding CIEXYZ

tristimulus values and CIELAB color values, i.e., L*, a*, b*,

and C*, using the CIE 1931 color matching functions, under the

CIE standard D65 illuminant [22]. In Figure 1 (right), we also

show the distribution of the calculated CIELAB color values for

both non-facial and facial skin on the a*-b* and C*-L* chro-

matic planes. We observe that the color gamut of facial skin falls

within the color gamut of non-facial skin. Consequently, we an-

ticipate that a model trained on skin color data from non-facial

regions could optimistically be applied to the reconstruction of

facial skin color. We note that such a model is highly unlikely

to work properly for facial hair, lips, and special features such as

freckles, moles, and tattoos.

Figure 1. Spectral curves of 14,600 skin reflectance measurements, gath-

ered for our research from three publicly available databases [18, 20, 21]

(left), CIELAB gamuts of facial and non-facial skin colors (right).

Regression-based spectral reconstruction
We utilize linear regression (LR), 6th order polynomial

regression (PR6), and 6th order root-polynomial regression

(RPR6) in our skin spectral reconstruction experiment. To create

the training set for these models, we make use of the gathered

skin reflectance spectra dataset. For each spectrum, we calculate

the corresponding RGB values using the CIE 1931 color match-

ing functions following Equation 2. For illumination, we employ

the new daylight equation proposed in [23]:

l(λ ,T ) = µ1λ−5 f (λ )e−µ2/T λ , (4)

where T refers to daylight correlated color temperature (CCT),

f (λ ) denotes a filter correction function, l(λ ) is the daylight

spectrum, and µ1 and µ2 are constants equal to 3.7418× 10−16

Wm2 and 1.4388×10−2mK, respectively.

To ensure our trained models are versatile and not specific to

any illumination, we calculate skin RGBs across a range of natu-

ral daylight CCTs from warm to cool daylight. Empirical studies

show that a shift of 5.5 Mired temperature units (reciprocal color

temperature 106

T ) is required for the difference in light color to

become perceptible [24]. Therefore, we sample the CCT range

of 2500K to 15000K at intervals of 5.5 Mired units. To help our

models maintain performance with changing light intensity, we

augment the training data by scaling the skin reflectance spectra

with constants from 0.1 to 2, simulating different exposure levels.

Following [10], we prepare the training dataset for the regression

models by dividing the spectra and their corresponding RGB val-

ues into four subsets. Two subsets are used for training, one for

validation and optimizing regularization parameters, and the final

subset for testing. Nonlinear regression models risk overfitting,

where the model performs well on training data but poorly on

unseen data. To prevent this, we use ridge regularization [10].

While regression-based spectral reconstruction is simple

and interpretable, it can become suboptimal and time-consuming

with larger datasets. Managing model complexity is crucial to

prevent overfitting. Although regression models offer regular-

ization strategies like ridge regularization, advanced regulariza-

tion methods in neural networks may better manage overfitting

in large, complex datasets. Therefore, we propose a neural ap-

proach for skin spectral reconstruction, demonstrating that skin

spectral reflectance can be accurately modeled with a set of spec-

tral bases.



Skin spectral bases
The reflectance spectra of most real-world surfaces, such as

human skin, have been proven to be naturally smooth (see Fig-

ure 1, left). Consequently, those spectra can be accurately mod-

eled using a limited number of spectral bases, often as few as

six to nine [8]. Inspired by this fact, we perform principal com-

ponent analysis (PCA) on the database of skin spectra to obtain

the first six spectral bases (i.e., PCA eigenvectors) to represent

all the spectra. Hence, with appropriate weighting factors, any

skin spectrum can be modeled as a linear combination of the six

spectral bases:

s′(λ ) =
6

∑
k=1

wkbk(λ ), (5)

where wk represents the weight for the kth spectral basis, bk(λ )
denotes the kth spectral basis, and s′(λ ) signifies the derived skin

spectral reflectance. In this paper, we define the range of λ as

being from 400 to 700 nm sampled at 10 nm intervals. Figure 2

(left) illustrates the six skin spectral bases derived using PCA. To

demonstrate the effectiveness of this simple model, we calculate

the weights wk for two skin spectra from the database, one repre-

senting a light skin tone and the other representing a darker one,

using the Penrose–Moore pseudo inverse method [26]. We then

apply Equation 5 to reconstruct the spectra.

Figure 2. The six skin spectral bases derived using PCA to represent the

entire skin spectral data (left), two pairs of ground truth skin spectra and

their estimations using the six spectral bases following Equation 5 (right).

Figure 2 (right) presents both the ground truth and the cor-

responding modeled skin spectra. The nearly perfect match be-

tween the ground truth and the reconstructed spectra indicates

that a plausible skin spectrum can be accurately represented us-

ing six linear spectral bases. It is noteworthy that we explored

both a lower and higher number of bases in our experiments.

Utilizing fewer bases led to sub-optimal reconstructions, while

increasing the number of bases did not enhance the model’s per-

formance.

Neural spectral reconstruction
By reducing the effective dimensionality of skin spectra, we

enable the use of shallow neural networks for skin spectral recon-

struction. We design a multilayer perceptron (MLP) and train it

to learn the mapping from the space of skin RGB to the space

of skin spectral bases. This involves finding a set of weights to

linearly combine these bases to accurately reconstruct the skin

spectra. Figure 3 provides a schematic overview of our MLP

architecture designed for skin spectral reconstruction. The archi-

tecture of our MLP comprises three hidden layers with 128, 512,

and 128 nodes, respectively. Both the input and hidden layers

utilize the ReLU activation function. Our observations indicate

that adding more hidden layers or nodes results in only a slight

enhancement of training performance. The final layer consists

of 6 nodes and employs the sigmoid activation function to pro-

vide the estimated weights. The MLP hyperparameters are opti-

mized using the adaptive moment estimation (Adam) optimizer,

aiming to minimize the mean squared error (MSE) between the

predicted and ground truth weights. For training our MLP, we

employ the same dataset used for the regression models. For

each skin spectrum, in addition to RGB values, we determine a

set of six weights wk as outlined in Equation 5. We then split

the dataset into two subsets: one for training and the other for

validating the MLP. On average, the entire training duration is

approximately 45 minutes, using a GPU-accelerated desktop PC

equipped with an Intel(R) Core(TM) 14th Gen i9 3.60 GHz pro-

cessor and 32GB of RAM.

Figure 3. Schematic representation of our fully-connected multilayer per-

ceptron (MLP).

Results
The spectral reconstruction algorithms recover an estimate

of the reflectance spectrum for the given ground truth spectrum.

To measure how closely the estimated spectrum matches the

ground truth, we employ three widely used evaluation metrics:

the Mean Relative Absolute Error (MRAE) [27], the Root-Mean

Squared Error (RMSE) [28], and the CIEDE2000 color differ-

ence ∆E00 [29]. Figure 4 illustrates the spectral curves of three

reconstructed skin spectra by two of the tested models, i.e., PR6

and the proposed MLP.

In Table 1, we present both the mean and the 99th percentile

for MRAE, RMSE, and ∆E00 across 150 skin spectra that were

not seen by the trained algorithms. We compare the performance

of linear regression (LR), 6th order polynomial regression (PR6),

6th order root-polynomial regression (RPR6), and our MLP in

accurately recovering these unseen skin spectra.

Figure 4. Spectral reconstruction results for three skin spectra using the

6th order polynomial regression (PR6) and the MLP, shown from left to right,

correspond to patches 3, 7, and 11 in Figures 5-6, respectively.

It is noteworthy that our exploration extended to polyno-

mial regression orders beyond 6. Despite a significant increase

in training time, the enhancement in reconstruction performance

was minimal. We also assess the performance of the tested mod-

els at three brightness levels i.e., original, half and double, to



ensure consistent performance despite variations in scene expo-

sure. Essentially, the models should recover spectra with con-

sistent shapes across different magnitudes under various expo-

sure settings. To simulate changes in scene exposure, we scale

the RGB values by constants of 1 (original), 0.5 (half), and 2

(double) following the method in [17]. After reconstructing the

respective spectra, we then compare these spectra with the corre-

sponding ground truth spectra, which are also scaled by the same

constants.

Table 1: Evaluation statistics under original exposure.

Mean 99th percentile
Model MRAE RMSE ∆E00 MRAE RMSE ∆E00

LR 0.064 0.021 2.546 0.119 0.042 3.776

PR6 0.039 0.012 1.274 0.076 0.025 3.291

RPR6 0.039 0.013 1.313 0.081 0.030 3.414

MLP 0.033 0.010 1.011 0.094 0.025 3.326

The mean results in Table 1 show that under original ex-

posure, the proposed MLP demonstrates superior performance

across all evaluated metrics, indicating its effectiveness in accu-

rately reconstructing skin spectra. Furthermore, when consider-

ing the 99th percentile scores, the MLP model remains robust,

providing reliable spectral reconstructions even in the tail end

of the distribution. As expected, both PR6 and RPR6 markedly

outperform the linear regression approach, with PR6 perform-

ing slightly better than RPR6. For a pictorial visualization of

the results, Figure 5 showcases the RGB renderings of 24 pairs

of ground truth and recovered skin spectra by the MLP and the

best performing regression model i.e., PR6 in the form of skin

patches. In each image, the ground truth and recovered colors are

displayed within the same patch, with the inner circle represent-

ing the reconstructed spectrum and the outer frame indicating the

ground truth spectrum. We see that under original exposure, the

spectra reconstructed by the MLP yield RGB colors that more

closely match the ground truth RGB colors when compared to

those reconstructed by PR6.

Figure 5. Spectral reconstruction results for 24 skin spectra by the 6th

order polynomial regression (PR6), and the MLP, under original exposure.

The RGB renderings are performed for the CIE 1931 color matching func-

tions and D65 illumination. In each patch, the inner circle corresponds to

the reconstructed spectrum and the outer frame corresponds to the ground

truth spectrum. The mean ∆E00 color difference errors for PR6 and MLP are

1.39 and 0.95, respectively.

When the exposure varies, all the tested models perform

slightly worse. However, the models retain their performance

better when the exposure increases. The MLP performs consid-

erably worse when the testing exposure is halved, while the per-

formance of the LR slightly improves. This trend aligns with

the findings reported in [14], which demonstrated that neural

networks for spectral reconstruction tend to underperform with

changes in image exposure. Although we have tried to over-

come this by augmenting the training data, the MLP still ex-

hibits this shortcoming. As mentioned previously, we augmented

the training dataset not only by a set of scales to address the

models’ exposure variability but also by training our the mod-

els with RGB data calculated across a broad range of daylight

CCTs. This approach enables us to reconstruct the skin spec-

tra from RGB data regardless of the underlying illumination. To

verify the illumination-independency of our proposed model, we

reconstruct the 150 test skin spectra for two extreme daylight

conditions, i.e., warm with a CCT of 3500K and cool with a CCT

of 9000K. The reconstruction results for the same set of 24 test

spectra are depicted in Figure 6. The MLP reconstruction errors,

in terms of mean ∆E00 color difference are 1.065 and 1.019 for

the CCTs of 3500K and 9000K, respectively. This indicates that

the trained MLP can successfully reconstruct skin spectra under

various daylight illumination conditions.

Figure 6. Spectral reconstruction results for 24 skin spectra by the MLP,

under daylight illumination with CCTs of 3500K and 9000K. In each patch,

the inner circle displays the reconstructed color and the outer frame displays

the ground truth color. The mean ∆E00 color difference errors for CCTs of

3500K and 9000K are 1.065 and 1.019, respectively.

Facial spectral reconstruction
As discussed previously, we anticipate that a model trained

on skin color data from non-facial regions such as inner forearm

and back of the hand could be effectively applied to reconstruct

the spectral reflectance of facial skin. To evaluate this hypothesis,

we employ our trained MLP to reconstruct the skin reflectance

spectra of facial images across various skin tones, including fair,

light, and brown. To capture the facial photographs, our acqui-

sition setup features a lighting arrangement with broadband cool

white LED panels that simulate daylight with a CCT of 7000K,

and a Canon EOS 850D DSLR camera. The LED panels are

all cross-polarized with respect to the camera, allowing specular

cancellation. The raw facial RGB images are inputted into the

MLP to estimate the weights of the skin spectral bases for each

pixel in the image, and subsequently reconstruct the spectrum

of that pixel, thereby generating what is termed a hyperspectral

facial image. After reconstructing the spectra, the next step in-

volves estimating the underlying illumination of the face image.

To achieve this, we employ the Nelder-Mead simplex method

[30], in combination with the new daylight model proposed in

[24]. We aim to minimize the ∆E00 color difference between the

ground truth and reconstructed face images, through iteratively

adjusting the CCT value in Equation 2, until the lowest ∆E00 is

achieved. By following this estimation approach, we acknowl-

edge that the estimated illumination of the image, while having

a matching CCT, represents a metamer of the actual scene illu-

mination with a different spectral power distribution (SPD), as

illustrated in Figure 8.

Figure 7 shows comparisons between the ground truth facial

images and their reconstructions using the MLP and the illumi-

nation estimation paradigm described above for three subjects.

We can see that the face reconstructions are a close match to the

ground truth photographs, indicating high fidelity in the recon-

structions. Across all three subjects, the most significant dis-



Figure 7. Comparisons between the ground truth facial images (top row) and their reconstructions (bottom row) using our proposed model. The subjects

represent ’fair,’ ’light,’ and ’brown’ skin tones, from left to right.

crepancies between the ground truth and the recovered images

are observed in the lips and surrounding regions, as well as in

areas with freckles, brown spots, and dimmer pixels. While the

facial features are precisely detailed in the reconstructed images,

the model falls short in accurately reproducing the colors in these

areas. This limitation was anticipated, considering the training

set does not include measured spectra for lips and certain skin

features.

Figure 8. The spectral power distribution (SPD) of the LED panels used

in our facial acquisition setup, with a CCT of 7000K, is shown in black. The

corresponding daylight spectrum, calculated using Equation 4, is depicted

in dark brown. The estimated illumination spectra for the facial images of

the subjects with ’fair’, ’light’, and ’brown’ skin tones are illustrated in distinct

colors.

To effectively evaluate the color reproduction fidelity of our

method, we select patches on the subjects’ foreheads (excluding

the lips). We then calculate the ∆E00 color difference between

the ground truth and reconstructed patches. Figure 9 displays the

renderings of these patches, along with their corresponding color

reproduction error maps in terms of ∆E00. The ∆E00 error maps

reveal a mean ∆E00 of 1.24 for the subject with a fair skin tone,

1.18 for the subject with a light skin tone, and 1.71 for the sub-

ject with a brown skin tone. We can see that the model performs

less effectively for the subject with a brown skin tone, and the

one with pronounced facial features, like freckles. This is pri-

marily due to the fact that the dataset used for training the MLP

contains fewer spectra of darker skin tones compared to those ac-

quired from subjects with lighter skin tones. This underscores the

critical need for a well-balanced, high-quality hyperspectral skin

database to ensure the model’s robustness and accuracy across a

wide range of skin tones and features.

Figure 9. Comparisons between ground truth and their reconstructed skin

patches, selected from the forehead of the subjects with ’fair’ (top row), ’light’

(middle row), and ’brown’ (bottom row) skin tones. The color reproduction

error maps are also displayed on the left.

Conclusion
In this paper, we introduce a new method for high-fidelity

spectral reconstruction of facial RGB images. Our approach

eliminates the need for additional information such as color chart

measurements, the camera’s spectral sensitivities, or the scene’s



illumination spectrum. We achieve close matches to ground truth

facial photographs across a range of skin tones, demonstrating

the method’s effectiveness. We recognize that access to a high-

quality facial hyperspectral database would further enhance the

robustness of our results. We are optimistic about achieving this

in future work.
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