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Abstract

Distributive laws of various kinds occur widely in the theory of coalgebra, for instance to model

automata constructions and trace semantics, and to interpret coalgebraic modal logic. We study

steps, which are a general type of distributive law, that allow one to map coalgebras along an

adjunction. In this paper, we address the question of what such mappings do to well known notions

of equivalence, e.g., bisimilarity, behavioural equivalence, and logical equivalence.

We do this using the characterisation of such notions of equivalence as (co)inductive predicates

in a fibration. Our main contribution is the identification of conditions on the interaction between

the steps and liftings, which guarantees preservation of fixed points by the mapping of coalgebras

along the adjunction. We apply these conditions in the context of lax liftings proposed by Bonchi,

Silva, Sokolova (2021), and generalise their result on preservation of bisimilarity in the construction

of a belief state transformer. Further, we relate our results to properties of coalgebraic modal logics

including expressivity and completeness.
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1 Introduction

The theory of coalgebras provides a general perspective on state-based systems, parametric

in an endofunctor which models the type of system [19]. Accordingly, many interesting

constructions on state-based systems arise as functors between categories of coalgebras.

These functors between categories of coalgebras often arise as liftings of left or right

adjoints between the underlying base categories. Such liftings are central to, for instance,

coalgebraic approaches to trace semantics and determinisation [13, 20, 33, 6, 22, 32] as well

as testing semantics and algebraic semantics of modal logics [27, 31, 5, 24, 8, 23].

A central question is how these constructions on coalgebras affect behavioural equivalence.

For instance, determinisation of automata turns a coalgebra on, e.g., the category Set of

sets and functions, into a coalgebra on the category of Eilenberg-Moore algebras for a

monad, so that the canonical notion of behavioural equivalence changes from bisimilarity to

language semantics. Subsequently, the algebraic structure may be forgotten again, turning

the determinised coalgebra back into a Set coalgebra, and this simple operation does not
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affect behavioural equivalence. But when determinisation is not given by a distributive law,

such as in the construction of belief-state transformers in [4], proving that this “forgetting”

preserves and reflects behavioural equivalence can be non-trivial (see op. cit. , [35]).

A different type of example of a construction given by a lifting of an adjoint is the

algebraic semantics of modal logic, where the semantics yields a transformation that takes a

coalgebra (e.g., a Kripke model) and turns it into an algebra (here viewed as a coalgebra

on an opposite category, for uniformity of the presentation). As we show later, one form of

preservation of behavioural equivalence amounts to adequacy and expressivity of the logic.

We propose an abstract framework to analyse whether a coalgebra lifting of an adjoint

preserves behavioural equivalence. The basic infrastructure is as follows.

We use functor liftings in fibrations, which is a standard approach to define coalgebraic

bisimilarity [17] and other (co)inductive predicates [14]. This approach to define coin-

ductive predicates beyond bisimilarity has recently been used, for instance, in general

expressivity proofs of modal logics [29, 26], closely connected to the current paper.

We use the notion of a step to lift left and right adjoints to categories of coalgebras. Steps

are a variant of distributive laws (also known as morphisms of endofunctors) over a left

or right adjoint, named as such in [32] but widely used before. They are relevant in all of

the above-mentioned examples on language semantics, determinisation and modal logic.

This paper connects steps and fibrations, to speak generally about preservation of coinductive

(and inductive) predicates by coalgebra constructions. The key technical idea is to use a

variant of fibred adjunctions [21]. We start with an adjunction and a step, and assume a

fibration and functor lifting on both sides of the adjunction to formulate the coinductive

predicates that we wish to relate. We then lift this adjunction to the total categories of

the fibrations involved [16]. This setting allows us to formulate sufficient conditions for

preservation of coinductive predicates by coalgebra constructions induced by steps.

There are two main variants of this abstract story: one that starts from a step that lifts

the left adjoint to coalgebras, and one for lifting the right adjoint. The first allows us, for

instance, to speak about adequacy and expressivity of modal logics, without referring to

initial algebras. This connects to recent work that uses Galois connections [1], and in fact we

recover those Galois connections from our adjunctions between fibrations. We also study

an example that has not occurred in previous abstract frameworks for expressivity: proving

expressivity of a logic by relating it to apartness instead of bisimilarity [12, 11].

The second variant – constructions arising as liftings of right adjoints – includes preserva-

tion of bisimilarity on belief-state transformers [4]. More generally, it follows from our results

that any right adjoint in a lax lifting situation preserves and reflects bisimilarity (assuming

split monos instead of injectivity), generalising the result for belief-state transformers. By

using opposite categories we also get a very different example in this context, which connects

preservation of coinductive predicates to completeness of coalgebraic modal logic.

2 Preservation of coinductive predicates in lattices

Before moving to the general theory of fibrations and steps, we start with introductory

examples on preservation of (co)inductive predicates in the context of lattices, forming a

special (and well-known) case of steps on Galois connections. In subsequent sections, we will

use the structure of steps, being certain natural transformations allowing us to transform

coalgebras along an adjunction. A similar structure is already known in order theory, where

we may consider inequalities between compositions of monotone maps, as in:

∆ Γ

f

b

g

l

⊣

(1)
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with ∆ and Γ lattices, and f, g, b, l monotone maps. We call the inequality bg ≤ gl a forward

step, and gl ≤ bg a backward step. Central to our study of steps is the following standard

result found in, e.g., [9], relating them to preservation of greatest fixed points (which we

denote here using the operator ν).

▶ Lemma 1. Given the setting of (1):

1. If gl ≤ bg, then g(νl) ≤ νb;

2. If bg ≤ gl, then g(νl) ≥ νb.

Now, if bg = gl in the setting of (1), the inequalities combine to give g(νl) = νb. This has

been shown more generally in the context of coalgebras in [17], where the equality bg = gl is

instead a natural isomorphism BG GL
∼ , with F,G,B,L functors. It is shown in op. cit.

that this allows the lifting of the adjunction F ⊣ G to coalgebras (generalising post-fixed

points) so that the right adjoint preserves the final coalgebra (generalising the greatest fixed

point) as right adjoints preserve limits.

2.1 Example: Closed and Convex Relations

We will first consider two instances where the lattices consist of relations on sets on one side,

and relations with either topological or convex structure on the other, i.e.:

RelX CRelX RelA ConRelA

c

b

u

v

⊣

h

b

u

d

⊣

(2)

where CRelX consists of closed relations on a compact Hausdorff space X and ConRelA consists

of convex relations on a convex algebra A. The monotone maps v, d will be such that the post-

fixed points are bisimulations and the greatest fixed points are bisimilarity on systems with

topological (X) or convex (A) structure, and the maps b characterise bisimulations/bisimilarity

on systems where this structure has been forgotten (X and A respectively). Lemma 1, thus,

tells us how bisimilarity on each side can be related via the right adjoint.

These settings arise in examples of ultrafilter extensions for coalgebras and the trans-

formation of probabilistic automata into belief-state transformers. In the first instance, the

closed relations can in fact be restricted to Stone topological spaces (those compact Hausdorff

spaces which are zero-dimensional), where we consider coalgebras for the Vietoris functor

in Stone. It is shown in [2] that these coalgebras correspond to descriptive frames, which

arise in the first stage of the construction of the ultrafilter extension of a Kripke frame

given in [28]. The second stage given there is to transport these back to a coalgebra in

Set. The construction of a belief-state transformer from a probabilistic automaton (PA) has

a similar structure, where the second stage is to transport a system with extra algebraic

structure back to a Set coalgebra. In each case, it is important that behavioural equivalence

is preserved and reflected in the second stage, shown in [2, 4] respectively for the above

examples. These results are recovered already in [35]. However, the approach taken there

does not immediately apply to the examples of adequacy and expressivity of modal logics, so

we prefer the conditions given in the current paper for their generality.

2.2 Example: Expressivity

Another example relates to work on expressivity of coalgebraic logics [29, 1, 24, 23], where

we wish to relate bisimilarity and logical equivalence (or indistinguishability). The lattices

involved are equivalence relations on the carrier X of a coalgebra and predicates on 2X .

ERelX Predop
2X

f

b

g

l

⊣

(3)
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6:4 Forward and Backward Steps in a Fibration

This gives us the setting shown in (3), where we define g(Γ ⊆ 2X) = ¶(x, y) ♣ ∀S ∈ Γ. x ∈

S ⇐⇒ y ∈ S♢. In words, we relate those elements which are in exactly the same sets of

Γ. Next, the action of f on an equivalence relation R is to give those subsets which are

closed under R, i.e., they are a union of equivalence classes of R. More formally, we have

f(R) = ¶Γ ⊆ X ♣ ∀(x, y) ∈ R. x ∈ Γ ⇐⇒ y ∈ Γ♢.

The monotone map b is taken to be such that the greatest fixed point is bisimilarity. The

map l is dual to the map whose least fixed point we can think of as those predicates obtainable

as the interpretation of a formula of a modal logic. In essence, these are the formulas which

we generate from some propositional constants and applications of the operators of our logic.

Applying g to these “reachable” predicates gives an equivalence relating states which

satisfy exactly the same formulas. This is exactly logical equivalence, and the above picture

then allows us to relate this to bisimilarity. Namely, if g(νl) ≥ νb, then bisimilarity implies

logical equivalence, which is precisely adequacy of the logic. If, conversely, g(νl) ≤ νb, then

logical equivalence implies bisimilarity, called expressivity of the logic.

Now, Lemma 1 gives us a way to obtain these inclusions via inequalities capturing the

interaction between the logic and behaviour in a rather general way. Later, we will show in

more detail how these conditions relate to existing approaches to the semantics of coalgebraic

modal logic and the properties of adequacy and expressivity.

3 Fibrations and Bisimulations

We give the basic definitions related to fibrations (for details see [21]).

Given a functor p : E → C, a morphism b : R → S in E is (p-)Cartesian over f : X → Y

in C, if pb = f and for every c : T → S s.t. pc = f ◦ g for some g : pT → X, there is a unique

d : T → R with c = b ◦ d. A functor p : E → C is now a (Grothendieck) fibration if for all

objects S ∈ E and arrows f : X → pS, there is a Cartesian arrow b : R → S in E with pb = f

(and thus also pR = X). We say that R is above pR and b : R → S is above pb : pR → pS.

We will also call C the base category and E the total category of the fibration.

For an object X ∈ C, the fibre above X is the category EX whose objects are those

objects in E above X, and arrows are above the identity on X. A choice of Cartesian lifting

for every f : X → Y in C is called a cleavage, and any cleavage defines, for each such f ,

a reindexing functor f∗ : EY → EX defined on objects exactly by the choice of Cartesian

arrow f(S) : f∗(S) → S. We assume below that reindexing functors have left adjoints∐
f ⊣ f∗ (called direct-image). This is equivalent to the condition that both p : E → C and

pop : Eop → Cop are fibrations, in which case, p is also called a bifibration.

Given fibrations p : E → C and q : F → D, a morphism of fibrations from p to q is a pair

of functors (F : E → F, F : C → D) such that q ◦ F = F ◦ p. In that case, for every object we

have a restriction FX : EX → EF X , denoted by F if the type is clear from the context. We

will also call F a lifting of F . If F preserves Cartesian morphisms, it is called fibred. This is

equivalent to having the equation FX ◦ f∗ = (Ff)∗ ◦ FY for all morphisms f : X → Y .

We will work with fibrations with the additional assumption that the fibres form complete

lattices and reindexing preserves meets, i.e., the fibrations have fibred meets:

▶ Assumption 2. We assume that for any fibration p : E → C, the fibres EX form complete

lattices and reindexing preserves meets. We will also call such a fibration a CLat∧-fibration.

This ensures that the fibrations have many desirable properties, while being general enough

for our purposes of defining coinductive predicates. In particular, such fibrations are always

bifibrations. For a more detailed treatment of CLat∧-fibrations see, e.g., [25, 34].
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3.1 Subobject and Relation fibrations

Take a category C which is complete and well-powered (subobjects of a given object form a

set). Then, the category Pred(C) is defined as follows: objects are subobjects f : S ↣ X, i.e.,

equivalence classes of monos; and morphisms are maps u : X → Y in C such that there is a

(necessarily unique) arrow making the diagram on the left in (4) commute. Then the functor

p : Pred(C) → C sending a subobject f : S ↣ X to X, is a fibration, with reindexing given

by pullbacks, referred to as the predicate fibration. Since the base category is complete and

well-powered, the fibres Pred(C)X are complete lattices [7, Cor. 4.2.5]. Since reindexing is

defined by pullback, it preserves meets, so that p is a CLat∧-fibration.

S T

X Y
u

Rel(C) Rel′(C) Pred(C)

C C × C C

⌟ ⌟

∆ ×

(4)

As C is complete, it furthermore has products, so we can form the relation fibration

Rel(C) via the pullbacks as on the right in (4). The fibration Rel′(C) consists of relations

on all pairs of objects (X,Y ) ∈ C × C, whereas we will use the fibration Rel(C) consisting

of relations for which X = Y . By this definition, we obtain that an object of Rel(C) is a

subobject R ↣ X × X of the product of X with itself. The functor part of the fibration

sends a relation R ↣ X × X to X and a morphism to the underlying arrow u : X → Y ,

analogously to (4). By the same argument as for Pred(C), Rel(C) is a CLat∧-fibration.

▶ Example 3. In Set, subobjects are just subsets U ⊆ X, and reindexing is inverse image,

i.e., f∗(V ⊆ Y ) = ¶x ∈ X ♣ f(x) ∈ V ♢. Similarly, relations are subsets R ⊆ X × X, with

f∗(S ⊆ Y × Y ) = ¶(x1, x2) ∈ X ×X ♣ (f(x1), f(x2)) ∈ S♢. Notice Set is complete, and the

collection of subsets of a set is its powerset which is again a set. Each powerset is thus a

complete lattice with join and meet given by union and intersection, respectively.

For a monad T : Set → Set, let EM(T ) be the category of Eilenberg-Moore algebras. Then

Pred(EM(T )) consists of subalgebras, and Rel(EM(T )) consists of congruences, i.e., relations

that are closed under the algebra structure (not necessarily equivalence relations).

We can restrict Rel(C) to the category ERel(C) of equivalence relations, defined internally

(e.g., [21]), and define reindexing and meets for equivalence relations in the same way as for

relations since these are defined as pullbacks. This turns ERel(C) → C into a CLat∧-fibration.

3.2 Predicate and Relation liftings

Here we recall a method for lifting functors to predicates and relations based on factorisation

systems. For a factorisation system (E ,M), we refer to elements of E as abstract epis and

write them as · ·, and maps in M abstract monos written as · ·. As an example, for

Set we can take E to be the class of all surjective functions, and M to be the class of all

injective functions. The factorisation of a function f : X → Y is the image factorisation,

where e : X Im(f) acts as f and m : Im(f) Y embeds the image of f into the original

codomain Y . Another important example is that of regular categories, where maps factorise

as a regular epi (i.e., an epi which is the coequaliser of some parallel pair of morphisms)

followed by a mono. In fact, the existence of such factorisations is part of the defining

property of a regular category.

CALCO 2023



6:6 Forward and Backward Steps in a Fibration

Assuming a category D with a factorisation system (E ,M) such that all maps in M are

monos, we can define the (canonical) predicate and relation liftings Pred(F ) and Rel(F ) of

a functor F : C → D via the following factorisations, where p : P ↣ X is a predicate and

r : R↣ X ×X a relation:

FP FX FR F (X ×X) FX × FX

Pred(F )(P ) Rel(F )(R)

F p

e

F r

e

⟨F π1,F π2⟩

m m
(5)

By the assumption that all maps in M are monos, the above constructions define functors

Pred(F ) : Pred(C) → Pred(D) and Rel(F ) : Rel(C) → Rel(D) respectively, with the actions

on arrows defined by orthogonality.

3.3 Invariants and Coinductive Predicates

We will now recall the notion of coinductive invariants and predicates, defined as post and

greatest fixed points of certain monotone maps respectively (see also [19, 14]). Assumption 2

ensures that the monotone maps always have such fixpoints.

Assuming a fibration p : E → C, a coalgebra f : X → BX with X in C, and a lifting

B : E → E of B : C → C, we can define a monotone map f∗ ◦BX : EX → EX using reindexing.

Instantiating this to the category Set, and the fibration with Rel(Set) as total category, we can

consider the canonical relation lifting (5) of B, given explicitly by Rel(B)(R) = ¶(y1, y2) ∈

BX ×BX ♣ ∃z ∈ BR.Bπ1(z) = y1 ∧Bπ2(z) = y2♢. As mentioned earlier, reindexing for the

relation fibration is given by pullbacks, which amounts to taking the inverse image, so that:

f∗ ◦ Rel(B)(R) = ¶(x1, x2) ∈ X ×X ♣ ∃z ∈ BR.Bπ1(z) = f(x1) ∧Bπ2(z) = f(x2)♢ (6)

Taking a post-fixed point R ≤ f∗ ◦ Rel(B)(R) of such a monotone map (also called an

invariant), we recover the usual notion of coalgebraic bisimulation. The greatest fixed point

ν(f∗ ◦ Rel(B)(−)) is then bisimilarity.

More generally, for a lifting B of B, we call such a greatest fixed point the coinductive

predicate defined by B on f . This covers many more examples than bisimilarity. For a

simple instance, take B to be the powerset functor P : Set → Set, and P : Pred → Pred

with B(P ⊆ X) = ¶S ⊆ X ♣ P ∩ S ≠ ∅♢. A P-coalgebra is a transition system, and the

coinductive predicate on it defined by P is the set of all states which have an infinite path.

For other examples of coinductive predicates defined in this way see, e.g., [14, 3, 34, 18, 25].

4 Lifting adjunctions in a fibration

Let F ⊣ G : D → C be an adjunction, and assume fibrations p : E → C and q : F → D. Further,

assume an adjunction F ⊣ G : F → E, as in (7). If we have q ◦ F = F ◦ p, p ◦G = G ◦ q, and

the unit and counit of the adjunction F ⊣ G are above the unit and counit of the adjunction

F ⊣ G respectively, then we say that F ⊣ G is a lifting of the adjunction F ⊣ G (alternatively,

this is an adjunction in Cat→, the 2-category of functors and commuting squares [16]).

E F

C D

p

F

q
G

⊣

F

G

⊣

(7)
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This definition differs from the usual notion of a fibred adjunction, as we do not assume

fibredness of either adjoint. However, it has been shown in [36, Lemma 4.5] for fibrations over

a single base category, and later generalised in [16, Lemma 3.3.3] to fibrations over arbitrary

base categories, that the right adjoint in a lifting of an adjunction is in fact always fibred.

Dually, we have that the left adjoint is co-fibred (i.e., it preserves op-Cartesian maps).

A family of instances is given by predicate and relation liftings.

▶ Lemma 4. Let C,D be complete and well-powered categories with factorisation systems

(E1,M1), (E2,M2) with M1 and M2 consisting of monos. Given an adjunction F ⊣ G : D →

C such that F (E1) ⊆ E2, the predicate and relation liftings form liftings of the adjunction:

Pred(C) Pred(D) Rel(C) Rel(D)

C D C D

Pred(F )

Pred(G)

⊣

Rel(F )

Rel(G)

⊣
F

G

⊣

F

G

⊣

(8)

From these liftings, especially the case for predicates, we can lift also to quotients and

equivalence relations given some extra conditions. For a category C, we denote by Quot(C) the

category of co-subobjects of objects of C, that is, equivalence classes of epimorphisms. This

is exactly the category Pred(Cop)
op

, so that also Pred(Cop) ≃ Quot(C)
op

and Quot(Cop) ≃

Pred(C)
op

. Further, we can define quotient lifting dually to predicate lifting. The following

is then the dual of the above result.

▶ Corollary 5. Let C,D be co-complete and co-well-powered categories with factorisation

systems (E1,M1), (E2,M2) with E1, E2 consisting of epis. Then, given an adjunction F ⊣

G : D → C, s.t. G(M1) ⊆ M2, the quotient liftings form a lifting of the adjunction:

Quot(C) Quot(D)

C D

Quot(F )

Quot(G)

⊣

F

G

⊣

(9)

As discussed above, predicates and quotients in the opposite category are (as objects)

exactly quotients and predicates in the original category respectively. In the following result,

we take a dual adjunction, so that the lifting gives an adjunction between predicates and

quotients. We further give conditions under which the quotients correspond to equivalence

relations (ERel). We then have adjunctions between predicates and equivalence relations,

which we require for our applications to modal logic in Section 6.

▶ Corollary 6. Let C and D be complete, well-powered and co-complete, co-well-powered

categories respectively, with factorisation systems (E1,M1), (E2,M2) with M1 consisting of

monos, and E2 consisting of epis. Suppose also an adjunction F ⊣ G : Dop → C, such that

F (E1) ⊆ M2. If D is an (Barr) exact category in which all epis are regular, we obtain a

lifting of the adjunction as on the left below. If instead C is exact and all epis are regular we

obtain the lifting of the adjunction as on the right:

CALCO 2023



6:8 Forward and Backward Steps in a Fibration

Pred(C) ERel(D)
op

ERel(C) Pred(D)
op

C Dop C Dop

Pred(F )

Pred(G)

⊣

Quot(F )

Quot(G)

⊣

F

G

⊣

F

G

⊣

(10)

Our goal is now to relate liftings of adjunctions to adjunctions defined between fibres.

In [21] it is shown how this can be done for fibrations over a single base category. Also

studied in [15, 16] is how adjunctions between fibrations with distinct base categories arise

from adjunctions between fibrations with a common base category.

▶ Lemma 7. Suppose we have a lifted adjunction as in (7). Then we also have the following

adjunctions between fibres, for all objects X of C and Y of D, where η and ε are the unit

and counit of the adjunction F ⊣ G respectively.

EX FF X EGY FY

F

η∗

X
◦G

⊣

∐
εY

◦F

G

⊣
(11)

Returning to the example of adjunctions for predicate and relation liftings (Lemma 4),

Lemma 7 allows us to obtain adjunctions between fibres, which are of interest when we study

invariants and coinductive predicates in the coming section. In particular, we recover the

adjunctions from Section 2.

▶ Example 8 (Eilenberg-Moore). For the case of an adjunction monadic over Set, each

category (Set and EM(T ) for a monad T ) has a (RegEpi,Mono)-factorisation system as they

are regular. Also, the abstract epis are preserved by left adjoints and these categories are

complete and well-powered. We thus obtain a lifting of any monadic adjunction to predicates,

relations and quotients by Lemma 4 and Corollary 5. Furthermore, the adjunction between

fibres as on the right in Equation (11) then exactly instantiates to the adjunctions discussed

in Section 2.1 for the cases of compact Hausdorff spaces and convex algebras. The left adjoint

in each case takes the closure or convex hull of a relation on a set.

In fact, each of these “local” adjunctions implies the existence of the other. Note that we

do not assume a (global) lifted adjunction, so we must assume (co-)fibredness explicitly.

▶ Lemma 9. Suppose we have an adjunction F ⊣ G : D → C and bifibrations p : E → C,

q : F → D. Also, suppose G is a fibred lifting of G and F is a co-fibred lifting of F . Then we

have a adjunctions FX ⊢ η∗
X ◦GF X for all X iff we have adjunctions

∐
εY

◦FGY ⊢ GY for

all Y , that is, the adjunctions in (11) can be derived from each other.

Due to results of [16, 15] on factorisation of fibred adjunctions, we can also go from

the existence of adjunctions between fibres (above all objects of our base category) to an

adjunction between the total categories. As mentioned before, we drop the requirement of

fibredness as much as possible.

▶ Lemma 10. Suppose we have an adjunction F ⊣ G : D → C and fibrations p : E → C and

q : F → D. Then the following are equivalent

1. A lifting of the adjunction to F ⊣ G : F → E

2. A fibred lifting G of G and for each object Y of D, a left adjoint to G : FY → EGY

3. A fibred lifting G of G and for each object Y of D, G : FY → EGY preserves meets.
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This allows us, under certain conditions, to lift an adjunction to equivalence relations.

▶ Lemma 11. In the context of Lemma 4 and assuming that we use a factorisation system

on C with all abstract epis being split epi, Rel(G) maps equivalence relations to equivalence

relations. Further, its restriction to equivalence relations has a left adjoint F , forming a

lifting of the adjunction between base categories.

▶ Remark 12. The condition on abstract epis of Lemma 11 is stronger than our earlier as-

sumption that the left adjoint preserves abstract epis, as having a factorisation system (E ,M)

with E ⊆ SplitEpi and M ⊆ Mono implies that in fact E = SplitEpi (cf. [19, Exercise 4.4.2])

and split epis are absolute in the sense that all functors preserve them.

5 Comparing coinductive predicates along steps

In this section, we consider endofunctors in the setting of an adjunction, and will study

coalgebras for these endofunctors – and sometimes algebras, viewed as coalgebras in an

opposite category. These endofunctors are connected via the notion of a step [32], which is a

natural transformation that allows one to transport coalgebras along the adjunction. More

formally, steps give rise to liftings of the right and left adjoint (depending on which kind of

step) to categories of coalgebras. The key question that we address in this section is whether

these liftings to categories of coalgebras preserve a coinductive predicate of interest.

▶ Definition 13. Consider an adjunction with endofunctors as follows:

C D
F

B

G

⊣

L (12)

Then a forward step is a natural transformation δ : BG → GL and a backward step is a

natural transformation ι : GL → BG.

Due to the adjunction F ⊣ G, a natural transformation δ : BG → GL has a mate δ̂ : FB → LF

given by δ̂ = εLF ◦FδF ◦ηF B . This then gives rise to liftings of F and G to coalgebras, called

step-induced coalgebra liftings and denoted F̂ : CoAlg(B) → CoAlg(L) and Ĝ : CoAlg(L) →

CoAlg(B) respectively. These are defined on objects by

f : X → BX 7→ δ̂X ◦ Ff : FX → LFX (13)

g : Y → LY 7→ ιY ◦Gg : GY → BGY (14)

On arrows, they act simply as F and G. This is well defined due to functoriality of F and G

and naturality of the involved steps.

▶ Remark 14. The names “forward” and “backward” steps are from [35], where they are

assumed to be one-sided inverses. In the current paper, we make no such assumption and

study forward and backward steps independently from each other. In [32] only what we refer

to as a forward step appears. There is a clear asymmetry between the two; forward steps have

a mate correspondence, and at least two other equivalent presentations via transposing along

the adjunction. For backward steps there seem to be no such equivalent characterisations, as

the left adjoint is on the “wrong” side.

▶ Example 15. An example of such transformations occurs in a determinisation procedure

for probabilistic automata given in [4]. There, the functors B and L are taken to be B = PA

and L = PA
c with A a set of labels and Pc the convex powerset on EM(D), equivalent to
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6:10 Forward and Backward Steps in a Fibration

the category of convex algebras. Note that we allow the empty set in the definition of

Pc(X) = ¶S ⊆ X ♣ S convex♢. It is shown in op. cit. that there is an injective natural

transformation ι : U ◦ PA
c → PA ◦ U , induced by an analogous transformation for B = P

and L = Pc. Such a transformation without labels simply includes convex subsets into the

powerset. This has a componentwise inverse which forms, for each subset, its convex hull.

Aside from this example, which we will revisit later, steps occur, e.g., as the one-step

semantics of coalgebraic modal logics (more usually, the mate of a forward step) [31, 24, 32],

and have been used to construct ultrafilter extensions of coalgebras [28]. In the case of

ultrafilter extensions for powerset coalgebras, the steps are those defining a weak lifting in

the sense of Garner [10]; the forward step forms the topological closure of all subsets, and

the backward step includes closed subsets into the powerset.

5.1 Comparing coinductive predicates

We have now seen how steps defined for an adjunction with endofunctors on each of the

categories allow us to map coalgebras along this adjunction. Further, when we have fibrations

on each of the categories of the adjunction, and liftings of the involved functors, we can

define predicates on these coalgebras. Next, we will combine these transformations and give

conditions on the steps and liftings, which allow us to link predicates on a coalgebra with

predicates on the coalgebra obtained by applying a step-induced lifting.

▶ Assumption 16. Throughout this section, we assume a lifting F ⊣ G : F → E of an

adjunction F ⊣ G : D → C, together with endofunctors B,L on C and D and liftings B and

L to E and F respectively.

These assumptions give us coinductive predicates on B-coalgebras, using B, and on L-

coalgebras, using L. This setting allows us to put conditions on forward and backward steps.

These conditions, in turn, allow us to obtain steps at the level of the induced adjunctions

between fibres, which puts us back into the setting of Section 2. In particular, it allows us to

apply Lemma 1 to preserve the relevant coinductive predicates. We now explain this in more

detail for backward and forward steps separately.

5.1.1 Preservation via backward steps

Consider a backward step ι : GL → BG. Given an L-coalgebra (Y, g) together with this

backward step and Assumption 16, we have the following setting.

EGY FY(ιY ◦Gg)∗◦B

∐
εY

◦F

G

⊣

g∗◦L (15)

The greatest fixed point ν(g∗ ◦ L) is a coinductive predicate on the L-coalgebra (Y, g). The

greatest fixed point ν((ιY ◦Gg)∗ ◦B) is instead a coinductive predicate on the B-coalgebra

obtained by applying the lifting Ĝ : CoAlg(L) → CoAlg(B) induced by the step ι to (Y, g).

Like in Section 2, we ask whether the right adjoint GY preserves the greatest fixed point,

that is, maps ν(g∗ ◦ L) to ν((ιY ◦Gg)∗ ◦B).

The following result gives a sufficient condition for constructing a step in the above

adjunction between fibres; this condition is in terms of the backward step ι and the liftings.
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▶ Lemma 17. For a (backward) step ι : GL → BG and an L-coalgebra g : Y → LY :

1. If G ◦ L ≤ ι∗ ◦B ◦G, then GY ◦ g∗ ◦ LY ≤ (ιY ◦Gg)∗ ◦BGY ◦GY ;

2. If ι∗ ◦B ◦G ≤ G ◦ L, then GY ◦ g∗ ◦ LY ≥ (ιY ◦Gg)∗ ◦BGY ◦GY .

We note that the condition of Item 1 is equivalent to having a lifting ι : GL → BG of ι,

using the existence of a Cartesian lifting of ι. The inequality of Item 2 often requires further

assumptions and more work. We will give some instances where it is satisfied in Section 6.

Together, the assumptions are equivalent to ι itself being a Cartesian map. Using Lemmas 1,

7, and 17 we obtain the following preservation result for coinductive predicates.

▶ Corollary 18. Suppose we have a (backward) step ι : GL → BG. Then for any g : Y → LY :

1. If G ◦ L ≤ ι∗ ◦B ◦G, then GY (ν(g∗ ◦ LY )) ≤ ν((ιY ◦Gg)∗ ◦BGY );

2. If ι∗ ◦B ◦G ≤ G ◦ L, then GY (ν(g∗ ◦ LY )) ≥ ν((ιY ◦Gg)∗ ◦BGY ).

Corollary 18 thus gives sufficient conditions for GY to map the greatest fixed point of the

coinductive predicate on an L-coalgebra (Y, g) to the greatest fixed point of the coinductive

predicate on the B-coalgebra Ĝ(Y, g) constructed via ι, in the setting of (15).

▶ Remark 19. It is in fact not necessary that ι is natural; that is, Lemma 17 and Corollary 18

go through even if ι is just a collection of arrows.

5.1.2 Preservation via forward steps

We proceed to focus on forward steps. Recall from Lemma 7 that the lifted adjunction

between fibrations induces two types of adjunctions between fibres; for backward steps we

used one of them, for forward steps we use the other. We thus work in the following setting:

EX FF Xf∗◦B

F

η∗

X
◦G

⊣
(δ̂X ◦F f)∗◦L (16)

where (X, f) is a B-coalgebra. We have the following result on constructing steps in this

adjunction between fibres.

▶ Lemma 20. Suppose we have a (forward) step δ : BG → GL, then for f : X → BX:

1. If δ∗◦G◦L ≤ B◦G and B is fibred, then η∗
X ◦GF X ◦(δ̂X ◦Ff)∗◦LF X ≤ f∗◦BX ◦η∗

X ◦GF X ;

2. If B ◦G ≤ δ∗ ◦G ◦ L, then η∗
X ◦GF X ◦ (δ̂X ◦ Ff)∗ ◦ LF X ≥ f∗ ◦BX ◦ η∗

X ◦GF X

Similarly to backward steps, we get the following result from Lemmas 1, 7, and 20, giving

a sufficient condition for preservation of the coinductive predicate by the right adjoint in (16).

▶ Corollary 21. Suppose we have a (forward) step δ : BG → GL and a lifting of the adjunction

as in Equation (7). Then for f : X → BX:

1. If δ∗ ◦G ◦L ≤ B ◦G and B is fibred, then η∗
X ◦GF X(ν((δ̂X ◦Ff)∗ ◦LF X)) ≤ ν(f∗ ◦BX);

2. If B ◦G ≤ δ∗ ◦G ◦ L, then η∗
X ◦GF X(ν((δ̂X ◦ Ff)∗ ◦ LF X)) ≥ ν(f∗ ◦BX)

▶ Remark 22. Contrary to the case of backward steps (see Remark 19), for forward steps

we use naturality, in the proof of Lemma 20. That proof is more involved than that of

Lemma 17, emphasising again the asymmetry between forward and backward steps.

▶ Remark 23. We have assumed that the adjunction between base categories lifts to the

total categories of the fibrations, even though the results in Corollary 21 and Corollary 18

are about the adjunctions between fibres. Therefore, one might be tempted to only assume

these adjunctions between fibres instead of an adjunction between total categories. However,
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6:12 Forward and Backward Steps in a Fibration

in Lemma 17 and Lemma 20 (on which the aforementioned results rely) we also use that the

right adjoint G is fibred, and if we additionally assume this then it is equivalent to having

an adjunction between the total categories (Lemma 10).

▶ Remark 24. Our focus is on the separate analysis of ι and δ. If we assume instead

that: ι and δ both exist; their liftings form an isomorphism ι : GL ≃ BG; and we have

a fibred lifting G of G such that its restriction to fibres preserves meets, then we have

GY (ν(g∗ ◦ LY )) = ν((ιY ◦Gg)∗ ◦BGY ) where ι = pι, for any L-coalgebra (Y, g). Restricting

ourselves to fibrations over a single base category, B = L, and a lifting of the identity between

the total categories, we recover [34, Prop. 6.2].

6 Examples

6.1 Lax liftings

Our first application of the results of the previous section continues on from Example 15,

where we are now able to apply Corollary 18 to show the preservation and reflection of

bisimilarity by the second stage of the construction given in the example.

That construction goes from probabilistic automata, which combine probabilistic trans-

itions with non-deterministic choice, to belief-state transformers, where the probabilities

occur in the state space rather than on the transitions. It has its roots in the generalised de-

terminisation procedure of [33], but requires an alternative approach due to the non-existence

of a lifting of the powerset monad to convex algebras. The determinisation starts from a

monadic adjunction over Set, and then proceeds in two steps: first a lifting of the left adjoint

gives a “determinised” system with algebraic structure, then a lifting of the right adjoint

forgets this structure to give a system in Set. Here, we consider the second stage and take a

lifting of the adjunction and endofunctors B and L to Rel fibrations as in (17), so that we

may apply our earlier results to show preservation and reflection of bisimilarity.

Rel(Set) Rel(EM(T ))

Set EM(T )

Rel(F)

Rel(B)

Rel(U)

Rel(L)

⊣

F

B

U

L

⊣

(17)

The lifting of the right adjoint to coalgebras uses a ι which comes from a so-called lax

lifting [4]. Given a functor B : Set → Set, a lax lifting of B is a functor L : EM(T ) → EM(T )

such that there is an injective natural transformation ι : U ◦ L → B ◦ U . We show the

following result for transformations that are componentwise split mono, and then show how

this applies to the example of probabilistic automata.

▶ Lemma 25. The lifting Û : CoAlg(L) → CoAlg(B) induced by a componentwise split mono

transformation ι : U ◦ L → B ◦ U preserves and reflects bisimilarity.

Taking B = PA and L = PA
c in the setting of Equation (17) (recall also Example 15),

we have a componentwise split mono ι because we have an injective transformation, and

U ◦ PA
c (X) is only empty when A is empty, in which case also PA ◦ U(X) is empty. In [35], a

similar result is shown for behavioural equivalence instead of bisimilarity in case the functor

B preserves weak pullbacks.
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6.2 Expressivity

In this subsection, we will establish the well-known expressivity of modal logic with respect to

P-bisimilarity using our abstract framework. Note that for simplicity we consider (unlabelled)

transition systems modelled as P-coalgebra with P : Set → Set the (full) powerset functor.

We relate bisimilarity to the logic defined by the following grammar:

ϕ ::= ♢

 ∧

i∈I

ϕi ∧
∧

i∈J

¬ϕi



There are no size restrictions on I and J , so that the collection of formulas forms a proper

class. As a consequence, the usual syntax based on initial algebras (living in Set) is not

well founded. While this expressivity result is not new – [30] shows expressivity of a similar

infinitary modal logic for P-bisimilarity – we include this example as it demonstrates that

this fundamental expressivity result of modal logic fits into our general framework. So, these

considerations leads to the contravariant adjoint situation between Set and Setop as depicted

in (18).

Now taking inspiration from [24] where this is done for the finitary case, we consider the

coalgebraic modal logic (L, δ), where the syntax is given by the endofunctor L = P(2 × −)

on Set and the “one-step” semantics δ : P2− → 2L is defined as follows:

δX(S)(U) =
∨

ϕ∈S

 ∧

(1,x)∈U

φ(x) ∧
∧

(0,x)∈U

¬φ(x)

.

Note that the step-induced coalgebra lifting of δ turns a transition system with set X of states

into an L-algebra on 2X (cf. (13)). This gives an abstract notion of definability: precisely

those sets φ ∈ 2X which are “reachable”, that is, contained in the least subalgebra of all

predicates on LX. So we consider the fibrations Pred and ERel of predicates and equivalence

relations (see (18)) on Set (note ERel is chosen since P-bisimilarity is an equivalence).

ERel Predop

Set Setop

Pred(F )

Rel(P)

Pred(G)

⊣

Pred(L)

F =2−

P L=P(2×−)

G=2−

⊣

(18)

Next we define the corresponding liftings of the functor in order to invoke Corollary 21

in proving expressivity of our logic. For a predicate P ↣ Y we fix Pred(2−)(P ) = ¶(φ,ψ) ♣

∀p ∈ P.φ(p) ↔ ψ(p)♢ and Pred(L)(P ) = (P(2 × P ) ↣ P(2 × Y )).

▶ Remark 26. It should be noted that the Galois connection (cf. Section 2) between the

lattices ERelX ,Predop
2X can be reconstructed from the adjunction between the total categories

ERel and Predop. In particular, Lemma 7 gives: F ⊣ η∗
X ◦G : Predop

F X → ERelX . Moreover,

η∗
X ◦G = g (recall g from Section 2).

Now adequacy and expressivity of our logic L follows by proving their corresponding sufficient

condition (cf. Corollary 21) as in the following proposition.

▶ Proposition 27. For any P ↣ X, we have δ∗(Pred(G) Pred(L)(P )) = Rel(P) Pred(G)(P ).

6.3 Apartness

In this subsection, we again consider (unlabelled) transition systems and rather show how

our framework allows us to prove the dual of the Hennessy-Milner theorem: two states are

P-apart [12, 11] (i.e., not bisimilar) iff there is a distinguishing formula between them.

CALCO 2023



6:14 Forward and Backward Steps in a Fibration

ERelfop ERel Predop

Set Set Setop

¬

¬

Pred(F )

Pred(G)

⊣

Pred(L)

P

F =2−

L=P(2×−)

G=2−

⊣

(19)

Recall that an apartness relation R on a set X is an irreflexive, symmetric, and co-transitive

relation (i.e., ∀x, y ∈ X.x R y → ∀z ∈ Z. (x R z ∨ y R z)). Following [12], the fibration

of apartness relations on Set can be seen as the fibred opposite of ERel. In particular, the

functor ¬ maps a tuple (X,R) (when R is an equivalence/apartness on X) to the tuple

(X,¬R). Note that, alternatively, one can also directly recover the above adjoint situation

from (10). Moreover, on fibres, the functor ¬ ◦ Pred(G) takes a predicate P ↣ X and

produces an apartness relation P¬G on 2X given as follows:

φP¬Gφ
′ ⇐⇒ ∃x ∈ P . (φ #x φ

′ ∨ φ′ #x ϕ), where φ #x φ
′ ⇐⇒ φ(x) ∧ ¬φ′(x).

For the lifting ERelfop(P), we consider the following definition1:

U ERelfop(P)(R) V ⇐⇒ ∃x ∈ U.∀y ∈ V . x R y ∨ ∃y ∈ V . ∀x ∈ U. x R y

Now we are in the position to use Corollary 21 and establish the dual of Hennessy-Milner

theorem, which was also recently shown in [11] though for image-finite transition systems.

▶ Proposition 28. For any P ↣ X, ERelfop(P)(P¬G) = δ∗(¬ Pred(G) Pred(L)(P )).

6.4 Completeness

We now turn to the example of completeness of (finitary) basic modal logic by using a

backward step ι. Consider the functor B = P with the dual adjunction of Equation (20) for

F = homSet(−, 2) and G = homBA(−, 2).

Set BAop
F

B

G

⊣

L (20)

We obtain basic modal logic as coalgebraic modal logic for B using the predicate lifting

■ : F → F ◦ B where for X ∈ Set and U ∈ FX we put ■X(U) = ¶V ∈ BX ♣ V ⊆ U♢.

Consider a sound and complete deduction system D for propositional logic. We define modal

derivability ⊢ML by extending D with the derivation rules

a ↔ b ∧ c
□a ↔ □b ∧ □c

a ↔ ⊤
□a ↔ ⊤

We call a set of formulas Φ inconsistent if there are formulas φ1, . . . , φn ∈ Φ such that

⊢ML φ1 ∧ · · · ∧ φn →⊥, otherwise Φ is consistent. Our goal is to prove completeness of the

logic, i.e., we would like to show that any consistent set of formulas Φ is satisfied in some

B-coalgebra. The proof usually proceeds via a canonical model construction, that equips

the set of maximally consistent sets of formulas (“theories”) with a B-coalgebra structure.

1 Note that our definition differs from the lifting of an apartness relation given in [12], where the two logical
formulae (∃x ∈ U. ∀y ∈ V. x R y and ∃y ∈ V . ∀x ∈ U. x R y) are composed incorrectly by conjunction.
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We will adjust this by viewing canonical models as fixpoints of a construction that defines

models on possibly inconsistent theories and iteratively removes inconsistent theories until

only consistent ones are left. An issue is that inconsistent theories will not have a model

and thus we cannot define a meaningful B-coalgebra structure on them. Instead, we leave

the coalgebra structure “undefined”. To model such a partial B-coalgebra structure we

switch to B⊥-coalgebras with B⊥ = 1 +B. The intuition behind our construction is that the

coalgebra structure maps a theory to inl(∗) iff it is inconsistent. Ultimately we are left with a

B-coalgebra based on the set of all consistent theories. The full setup is as in Equation (21).

Pred Congop

Set BAop

F

B⊥

G

⊣

L

F

B⊥=1+P L

G

⊣

(21)

Here Cong denotes the category of congruences over Boolean algebras, i.e., objects are pairs

(A,≡) with A being a Boolean algebra and ≡ ⊆ A × A being a congruence on A. It is

well known that Cong is isomorphic to the category Quot of quotients of Boolean algebras.

Therefore the above situation can be seen to meet the requirements of Cor. 6 and we obtain

suitable liftings F and G of F and G, respectively.

Given a congruence ≡ ⊆ A × A, the predicate G(≡) on GA can be given by u ∈

G(≡) iff ∀a ∈ u.a ̸≡ ⊥ (equivalently to the “canonical” lifting of Corollary 6, so that we have

a left adjoint). Intuitively, G(≡) contains all ultrafilters that are consistent with respect

to ≡. The lifting B⊥ of B⊥ = 1 +B is defined using the canonical predicate lifting for B,

i.e., for all t ∈ B⊥X and a predicate U ⊆ X we have t ∈ B⊥(U) iff t = inr(V ) for some

V ⊆ U . Finally, the lifting L of L is defined by letting (LA,≡LA) be the smallest Boolean

congruence containing □a ∧ □b ≡LA □c for a ∧ b ≡ c and □a ≡LA ⊤ for a ≡ ⊤. We turn

now to the definition of a suitable backward step ι : GL → B⊥G that will allow us to prove

completeness. To this aim we let u ∈ GLA and consider the following intersection:

sem(u) =
⋂

□a∈u

■â ∩
⋂

□a̸∈u

BGA \ ■â

where â = ¶v ∈ GA ♣ a ∈ v♢. We define a ι by selecting for each u ∈ GLA an element

t ∈ sem(u) if such an element exists and by putting ιA(u) := inr(t). Otherwise we put

ιA(u) = inl(∗). Note that with this definition ι will not necessarily be natural, but this is not

required in our setting. In addition, using topological machinery, we could ensure naturality

of ι by requiring ι(u) to be closed in the Vietoris topology (cf. e.g. [28]).

We now show that ιA(u) = inl(∗) iff u ̸∈ GL(≡) = G(≡LA), by case distinction:

Case u ̸∈ G(≡LA) because there exists a, b, c ∈ A with a∧ b ≡ c but □a,□b ∈ u and □c ̸∈ u.

Then sem(u) ⊆ ■â ∩ ■b̂ ∩BGA \ ■ĉ and the latter is empty because any element would

need to contain an ultrafilter v ∈ GA with a ∈ v, b ∈ v and c ̸∈ v which contradicts the

assumption that a ∧ b ≡ c and v ∈ G(≡A).

Case All other cases with u ̸∈ G(≡LA) can be proven in the same way as the first case.

Case u ∈ G(≡LA). In this case one can use compactness to argue that sem(u) is non-empty:

by compactness and the definition of ■, if sem(u) = ∅, there would need to be some

□a ∈ u and ¶□a1, . . . ,□ak♢ ⊆ LA \ u such that ■â∩
⋂k

j=1 BGA \■âj = ∅ which can be

seen to entail that a ≤ aj for some j ∈ ¶1, . . . , k♢. By monotonicity of □ (a well-known

consequence of the axiomatisation above) we obtain □a ≤LA □aj . Therefore, as □a ∈ u
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and u ∈ G(≡LA) by assumption, we get □aj ∈ u which is a contradiction. This shows

that sem(u) ̸= ∅ as required. Note that in the standard completeness proof of coalgebraic

modal logic this case is the key step, proving so-called one-step completeness of the logic.

The claim above can be used to show that G ◦ L = ι∗ ◦B⊥ ◦G. Furthermore, for a given

g : LA → A we observe that ν((ιA ◦Gg)∗ ◦ (B⊥)A) consists precisely of those ultrafilters in

GA on which (ιA ◦Gg) restricts to a B-coalgebra structure, i.e., that cannot reach a state

u ∈ GA for which (ιA ◦Gg)(u) = inl(∗). On the other hand, spelling out the definitions one

can show that for an L-algebra g : LA → A, µ(
∐

g ◦LA) yields the least congruence ≡ over

A that satisfies the modal axioms. Corollary 18 then implies that any ultrafilter u ∈ GA

satisfying ν((ιA ◦ Gg)∗ ◦ (B⊥)A) is ≡-consistent (“soundness”) and that any ≡-consistent

ultrafilter of A is satisfiable (“completeness”). Here satisfiable simply means that there is

B-coalgebra structure defined on u. To establish a precise connection with with the standard

notions of soundness and completeness, one would need to define the usual semantics of □

via a forward step δ. Standard completeness then follows when starting from the Boolean

algebra consisting of all modal formulas quotiented by equivalence in propositional logic.

7 Related and future work

In [35] we studied a preservation result assuming both a forward step δ and a backward step ι,

which form one-sided inverses, that is, δ ◦ ι = id. In the current paper, we treat preservation

of coinductive predicates by forward and backward steps as separate cases, which we realise

by formulating the conditions in a purely fibrational way instead of assuming inverses. This

allows us, for instance, to provide a general preservation result for lax liftings (Section 6.1),

which can not be obtained from the results in op. cit. : the latter requires a natural inverse

δ, which is not part of the assumptions of a lax lifting (only componentwise inverses are

assumed), and can in fact be non-trivial to provide; for instance, in [35] the argument for

existence went via weak distributive laws. Moreover, in the current paper we are more

general by moving from the relation fibration to general CLat∧-fibrations; this allows us, for

instance, to use fibrations of predicate and equivalence relation fibrations, as we do in the

analysis of expressivity and completeness.

In [29] a general approach to expressivity of logics with respect to coinductive predicates

is proposed. In that paper, there is a fibration only on one of the two categories, and the

coinductive predicate of interest is related to logical equivalence. Logical equivalence is

defined there via the semantics of the logic, which is in turn obtained via the universal

property of an initial algebra. In contrast, in the current paper, we do not use initial algebras

and instead obtain logical equivalence by characterising “modally definable” on the coalgebra

of interest, which yields a notion of logical equivalence by applying the right adjoint in a

Galois connection between equivalence relations and predicates. This Galois connection was

also used in [23], and in the recent [1] as the starting point for proving expressivity. Here,

instead, we obtain this Galois connection from an adjunction between fibrations.

Future Work. In [1] it was shown how the functional characterising bisimilarity can be

synthesised from a “logic” function. Using the notations of this paper, this meant defining B

in terms of L. This question and its symmetric one (constructing L from B) are of interest

at the global level of contravariant adjunctions. An answer to these questions would pave the

way not only for sufficient conditions for expressivity, but also provide the means to establish

them in a more structured manner. Last, it would be interesting to try and apply our results

on comparing coinductive predicates and lifting adjunctions in the quantitative setting of

(pseudo-)metrics.
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