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Abstract—The development of automated vehicles has the
potential to revolutionize transportation, but they are currently
unable to ensure a safe and time-efficient driving style. Reliable
models predicting human behavior are essential for overcoming
this issue. While data-driven models are commonly used to this
end, they can be vulnerable in safety-critical edge cases. This
has led to an interest in models incorporating cognitive theory,
but as such models are commonly developed for explanatory
purposes, this approach’s effectiveness in behavior prediction
has remained largely untested so far. In this article, we in-
vestigate the usefulness of the Commotions model – a novel
cognitively plausible model incorporating the latest theories of
human perception, decision-making, and motor control – for
predicting human behavior in gap acceptance scenarios, which
entail many important traffic interactions such as lane changes
and intersections. We show that this model can compete with or
even outperform well-established data-driven prediction models
across several naturalistic datasets. These results demonstrate
the promise of incorporating cognitive theory in behavior
prediction models for automated vehicles.

Index Terms—autonomous vehicles, gap acceptance, behavior
prediction, cognitive theory.

I. INTRODUCTION

Automated vehicles have become a major focus of the car

industry in recent years due to their potential to revolutionize

transportation. The promised benefits of automated vehicles

include fewer accidents caused by human errors, increased

accessibility of mobility solutions, and more efficient use

of time while traveling [1]–[3]. However, despite significant

investments [4], there are still only prototypes of automated

vehicles on the street, and they are not yet widely available

to the public [5], [6]. One major challenge to the widespread

adoption of automated vehicles is ensuring that they are both

efficient and safe, traveling in a timely and efficient manner

while also maintaining a level of safety that is at least equiva-

lent to human driving [5], [7]. However, many automated ve-

hicles currently focus on ensuring safety, avoiding any action

that could potentially lead to an accident. While this approach

may reduce the risk of traffic participants being harmed,

it misses out on travel efficiency and acceptance, requiring

further efforts to make automated vehicles truly useful [5],
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and by the UK EPSRC grant EP/S005056/1. For the purpose of open access,
the author(s) has applied a Creative Commons Attribution (CC BY) license
to any Accepted Manuscript version arising.
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[6]. One potential solution is to incorporate prediction models

to reduce uncertainty about future human behavior and allow

for more actions to be classified as safe [8], [9].

Accurate predictions of human behavior are especially

critical in scenarios involving gap acceptance [10], which

form a significant subset of space-sharing conflicts in traffic,

including situations such as crossing an intersection or chang-

ing lanes [11]. Many models for predicting human behavior

in these scenarios have been developed, including trajectory

prediction models [12], [13] and models predicting the binary

choice of either accepting or rejecting the gap [14], [15].

However, most of these include few assumptions about hu-

man decision-making – using a mainly data driven approach

known for being unreliable in safety-critical edge cases [10],

[16].

Meanwhile, there is a separate literature of cognitive theory

developed to explain human decision-making in traffic [17],

[18]. Inclusion of such theory into predictive models might

help overcome the unreliability issues of purely data-driven

approaches [16]. However, current cognitively plausible mod-

els have a number of limitations which hinder their use

for behavior prediction. In particular, most such models

are limited to a specific scenario [14], [18] and cannot

handle complex inputs which prevents their applications to

naturalistic datasets. As a result, it is currently unknown if

incorporating cognitive theories in behavior prediction mod-

els could actually yield any benefits in terms of prediction

accuracy and robustness.

This study aims to explore the potential of one possible

approach of incorporating cognitive theory into prediction

models: the adaption of a specific existing explanatory

model [17] to function as a prediction model, using gap

acceptance as target scenario type. Adaptation of this model

for prediction purposes is non-trivial, and does in itself

represent a significant contribution to the field (Section III).

Furthermore, we also conduct an ablation study to find the

most promising configurations for the model (Section IV).

Finally. we compare the performance of the resulting configu-

rations of this model to state-of-the-art data-driven prediction

models (Section V).

II. BACKGROUND

This section provides a description of the general type of

gap acceptance scenarios addressed here, a brief overview of
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Fig. 1. A depiction of the Commotions model [17] and its high-level parts,
showing how the position of ego vehicle VE is updated at one point in
time. Simultaneously, the target vehicle VT also updates its kinematic state
by using the same mechanics – only with mirrored inputs.

the tested cognitive model, and an introduction to a frame-

work that facilitates unbiased comparisons of the model’s

predictive performance against existing benchmarks. We also

discuss our changes of the tested model that enable its use

as a predictive model.

A. Gap acceptance

Gap acceptance problems are a type of traffic interaction

that involves a space-sharing conflict between two agents

with intersecting paths, such as intersections, pedestrian

crossings, and lane changes on highways [10], [11]. There,

these two agents can be differentiated by the possession of

the right of way, with the vehicle with priority being referred

to as the ego vehicle VE . In such a situation, the other agent,

designated as the target vehicle VT , must then decide whether

to cross VE’s path in front of VE (i.e., accepting the offered

gap) or to wait until VE has passed, thereby rejecting the

gap. For example, if VT approaches an intersection via a

secondary road, it needs to decide whether the gap to the

vehicle coming from the perpendicular direction is large

enough to cross the intersection without waiting for that car

to pass (Fig. 1). Accurately predicting VT ’s decision in such

scenarios is crucial for VE , as VT ’s future behavior could

limit VE’s options, such as VE being forced to slow down to

prevent a collision by VT accepting the gap.

B. The Commotions model

Markkula et al. [17] proposed a cognitive framework for

modeling road user interactions in gap acceptance scenarios.

Their framework includes a wide range of cognitive mech-

anisms, such as decision-making based on evidence accu-

mulation [14], noisy perception [19] and applying a theory

of mind [20] (Fig. 1). They implemented this framework in

models for interactions between vehicles and/or pedestrians

on straight crossing paths, i.e., including gap acceptance

scenarios between two vehicles. What we will refer to here

as the Commotions model (after the name of the project in

which the model was developed) is the most successful model

variant identified in [17], applied to such scenarios.

As illustrated in Fig. 1, the proposed model postulates that

at each time step, both ego vehicle VE and target vehicle

VT concurrently determine their current control inputs. This

decision-making process of each agent is subject to sensory

noise and Bayesian filtering during the perception of the

position of the other agent. Based on their own short-term

control input u (A is a discrete set) and both vehicles’

long-term behavior bE and bT (i.e., preference for going

first or second through the contested space), corresponding

pairs of future trajectories – represented by pairs of χ̃E

and χ̃T – are generated, with the constraint that the result-

ing interactions are safe. Each pair of trajectories is then

evaluated (punishing large control inputs, time delays, and

traffic rule violations), resulting in the value ṼE representing

the agent’s own opinion and the value V̂T , which is the

value the agent assumes that the other agent assigns to each

trajectory pair for each possible combination of behaviors

and control inputs. Each agent then weighs the evaluation

ṼE of their own trajectory based on the probability of the

other vehicle behaving accordingly, assuming per the theory

of mind that this probability is correlated with the respective

value V̂T . Evidence accumulation is used to ensure no abrupt

and seemingly arbitrary changes in behavior, by combining

the weighted values with previous evaluations of a potential

action u and only changing the applied control input u∗

if this entails a sufficiently substantial improvement in this

accumulated value, i.e., control is intermittent. Based on the

currently chosen control input u∗ each agent’s states are then

projected forward to the next time step. By repeatedly using

this process for both agents, the model can generate a pair

of simulated trajectories on the perpendicular intersection.

To represent the models randomness, np different trajectory

pairs are generated in repeated simulations.

C. The framework for benchmarking gap acceptance models

To compare several prediction models in a fair and unbi-

ased manner, we utilize a framework previously developed

by Schumann et al. [10]. This framework facilitates the

comparison of such models in any gap acceptance scenario

according to a wide selection of metrics. Moreover, it grants

precise control over the timing of the evaluated predictions

and the allocation of individual samples to training and

testing sets.

The framework also permits the conversion of different

types of predictions, including between binary and trajectory

predictions, increasing the number of metrics that can be

employed to compare models. For instance, the benchmark

enables models that originally predict only gap acceptance

probabilities to also generate predictions of full trajectories.

Specifically, to transform a predicted probability apred ∈ [0, 1]
of accepting the gap into a set of predicted trajectories for a

given sample, the framework uses two instances of a state-of-

the-art trajectory prediction model [12]. One of these models

is trained exclusively on samples with accepted gaps, while

the other is trained on samples with rejected gaps. Both

models are utilized to predict a set of trajectories based on



the given sample’s input, from which the final set is sampled

with weights adjusted by apred [10].

III. COMMOTIONS AS A PREDICTIVE MODEL

Although the Commotions model’s capability of expressing

a number of empirically observed human interaction phenom-

ena was demonstrated successfully in the original paper [17],

it was not developed for use as a prediction model. As

such, it has many limitations compared to existing models

developed for this purpose. For once, the computational

efficiency of its existing implementation makes training and

testing on most datasets infeasible. In this paper, we address

this problem by implementing parallel processing of multiple

model predictions on a GPU and using analytical instead of

numerical integration inside the model. This achieves a speed

increase of roughly four orders of magnitude.

Another problem with the Commotions model is that it

is constrained to the scenario of perpendicular intersections

with straight trajectories seen in Fig. 1, which is incongruent

to most real world situations. We utilize an expansion of

the benchmarking framework II-C allowing us to project

real-world two-dimensional trajectories onto the quasi-one-

dimensional-scenario required as the input data. Namely,

for each agent, we define a method for determining the

most probable path from their current location towards the

contested space, where the trajectories of the ego vehicle VE

and the target vehicle VT intersect. The length of this path

is then assumed to be equal to the distances of those agents

to the contested space (the purple square in Fig. 1) along the

respective perpendicular streets.

While it might be possible to use the same approach to

project predicted trajectories from the quasi-one-dimensional

scenario to the original two-dimensional space, they could

solely be projected onto the aforementioned predefined most

probable paths. As this would drastically limit the solution

space, we instead use scenario-independent information from

the predicted trajectories. For each pair of trajectories from

simulation p we can determine if the contested space was

reached first by VT (apred,p = 1 represents an accepted

gap) or VE (apred,p = 0). Simultaneously, the time tA,pred,p

of VT reaching the contested space can be extracted as

well. Averaging over all predictions allows us to calculate

the probability apred ∈ [0, 1] of VT accepting the gap.

Combined with the predicted time of acceptance tA, which

the framework accepts as another type of prediction [10],

generating predicted trajectories in the original space then

becomes possible (II-C).

Finally, the Commotions model is able to process merely

the current position and velocity of only the two principal

actors in a gap acceptance scenario as initial model input,

i.e., VE and VT , and not any other agents in the scene. How-

ever, as this only hinders but does not prevent the model’s

predictive usage, this issue remains currently unaddressed.

IV. EVALUATING COMMOTIONS’ CONFIGURATIONS

In this section, we investigate the predictive performance

of several configurations of the Commotions model stemming

from a number of design decisions that have to be made when

using the commotions model to predict human behavior. For

example, the modeling of the interaction between VE and

VT can utilize either an interactive approach, where both

agents utilize all aspects of the Commotions model (Fig. 1)

to determine their current control inputs u∗ (IM), or a non-

interactive approach (NM), where only the behavior of VT

is predicted by the model, with VE set to maintaining its

original velocity. Meanwhile, another decision pertains to

selecting the form of short-term control inputs u, with the

options being the application of either a constant acceleration

(AC) or constant jerk (JC).

As important parts of the model such as the creation

of the trajectories χE and χT (Fig. 1 and II-B) are non-

differentiable, we use Bayesian optimization [21] to fit the

Commotions model’s parameters. However, regarding the op-

timization procedure, some open questions still remain. First,

the user must decide whether to train the model in a single

optimization round (1O) or use a two-stage optimization

(2O), wherein the second stage of optimization is carried

out over a reduced parameter search space surrounding the

optimized parameters obtained in the first stage. Second, a

choice between the two available loss functions L1 and L2

used to fit the Commotions model’s parameters must be made.

L1 is adapted directly from the work of Zgonnikov et al.

[18] (with tC being the time when VE reaches the purple

intersection in Fig. 1) and evaluates every prediction p for

each sample i, while L2 expands upon this by enforcing more

varied predictions:

L1 =
∑

i

1

np

np∑

p=1

4 |ai − apred,i,p|+ (ti − tA,pred,i,p)
2

L2 =L1 +
∑

i

100Vi − 20
√
Vi + 1

ti = min {tA,i,max {tC,i, tA,pred,i,p}}

Vi = min

{
Vp (tA,pred,i,p) ,

1

100

}

(1)

A. Setup

1) Datasets: The predictive performance of the different

model configurations is compared using three datasets, each

focusing on a different scenario.

• L-GAP [18], a driving simulator dataset, contains sce-

narios in which VT must decide whether to turn left in

front of or behind VE approaching on the opposite lane.

• rounD [22], a real-world dataset captured by a drone,

covers roundabouts where VT must decide whether to

enter the roundabout in front of or behind VE which is

already inside the roundabout.

• The UDISS dataset [23], created in a driving simulator,

focuses on a perpendicular intersection where VT must

cross either in front of or behind VE , which is driving

along the other road with the right of way.

While the latter two datasets include other agents besides

VE and VT , in this paper we ignore those due to the afore-

mentioned limitations of the Commotions model, with the



TABLE I
ASSESSING THE INFLUENCE OF THE BINARY CONFIGURATION CHOICES IN THE Commotions MODEL (IV) ON THE PREDICTIVE PERFORMANCE.

Binary choice C C1 vs C2 Cases C1 better than C2 C2 better than C1

Ego vehicle’s modeling Interactive (IM) vs Non-interactive (NM) 88 7% (7%) 2% (22%)

Vehicles’ control input Jerk (JC) vs Acceleration (AC) 88 20% (23%) 26% (25%)

Optimization method Single round (1O) vs Two rounds (2O) 88 2% (15%) 6% (11%)

Optimized loss function L1 vs L2

24 (ADE) 79% (29%) 0% (13%)

64 (Other) 0% (11%) 52% (30%)

The individual results underlying the values shown here can be found in the form of figures and tables in the supplementary materials. In the two right-most
columns, statistical significance of the differences in metrics is tested with a paired Student t-test (significance level α = 0.05). The first number in each
cell represents percentage of cases on the randomly split testing sets, whereas the number in the parentheses corresponds to the critical split (i.e., the testing
set including the most unintuitive samples). In the last row, results are split by metric.

resulting datasets being referred to respectively as rounD2V

and UDISS2V. We also restrict the provided input trajectories

to two input time steps (nI = 2), as this provides sufficient

information to extract the two agents’ current positions and

velocities, which are the only inputs the Commotions model

is able to process.

2) Train/test splits: On each dataset, we perform eleven

training-and-testing cycles for each configuration. In ten of

these, the split between training and testing set is random.

In the last split however, we place the 20 % of samples that

exhibit the most unintuitive human behavior – respectively

smallest accepted gaps and largest rejected gaps – into the

critical testing set. This latter approach allows us to evaluate

the robustness of the model’s predictive capabilities against

the most challenging and safety-critical cases.

3) Metrics: To evaluate the models’ predictions made

on the testing set, we employ three metrics which have

previously been used to assess different aspects of gap

acceptance predictions [10], [12], [15]. First, the area under

the receiver-operator curve (AUC) assesses binary predictions

(accept/reject gap) at two different time points: the initial

opening of the gaps and the time corresponding to a fixed

(dataset-specific) characteristic gap size [10]. Second, the

average displacement error (ADE) metric evaluates full pre-

dicted trajectories at the characteristic gap size. Third, we use

the true negative rate under perfect recall [10] (TNR-PR), a

metric that rates the usefulness of binary predictions made on

the smallest possible gaps at the last point in time when they

can aid in adjusting VE’s planned path accordingly. However,

due to a lack of gaps accepted after this point in time on

the UDISS dataset, the TNR-PR cannot be calculated on that

scenario, resulting in eleven viable combinations of metrics

and datasets we can use to compare model configurations.

Furthermore, when we transform binary predictions into

trajectory predictions, so that for example ADE metric can be

applied to the Commotions model, we use Trajectron++ [12],

a state-of-the-art trajectory prediction model, in accordance

to the method laid out in Section II-C.

B. Results

Following the setup described above, we test 16 con-

figurations of the Commotions model (resulting from four

independent design choices) on the eleven combinations of

datasets and metrics, resulting in 88 comparisons for each

design choice on both random and critical split test sets. For

example, on the L-GAP dataset, the AUC averaged over the

ten random test sets for predictions made at the fixed-size

gap (a size of 3.36 s) ranges from 0.936 to the value 0.970
produced by CMNA12, which utilizes the non-interactive

modeling approach (NM) and acceleration control (AC) and

was trained in one round of optimizing (1O) L2.

Comparison between the configurations of the Commo-

tions model (Tab. I) indicates that there was no consistently

better alternative for any of the four design choices. Still,

we are able to make some recommendations. For example,

the non-interactive modeling approach (NM) appears to be

more likely to outperform its opposite on the critical test

set, while having the added advantage of faster evaluations

by obviating half of the Commotions model’s calculations

updating χE (Fig.1). Similarly, using acceleration control

(AC) produces better predictions slightly more often, possibly

by enabling the model to predict faster human reactions.

Although the number of optimization rounds appears to be

largely irrelevant, using only one round of optimization (1O)

may make the model even more robust on the critical test sets,

with faster training being another benefit. Comparatively, the

most significant factor seems to be the choice of the loss

function – as long as one differentiates by metric. Specifi-

cally, L1 is a better choice when minimizing ADE, while L2

is superior on the other three metrics. This is expected, as

the regularization achieved by L2 enforcing some variance

in the predictions also leads to a larger spread of predicted

trajectories, resulting in a larger average displacement error.

When seeking the best configuration of the Commotions

model, rather than comparing the binary choices, we can

compare the 16 configurations among themselves as well,

either by the average result over the ten random test sets

or the result on the critical test sets. As model performance

mainly depends on the chosen metric, here we discuss ADE

separately from other metrics. Specifically, we found that the

CMNA11 configuration is best, having a lower ADE in 79%
of all the 90 possible comparisons – i.e, on two types of

results, three datasets, and against 15 other configurations.

Using the same approach on the remaining metrics, we find

the most promising configuration to be CMNA12 with better
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Fig. 2. Behavior prediction performance of the two Commotions model
(CM) configurations compared to Trajectron++ (T++) and logistic regres-
sion (LR) across three datasets (L-GAP, rounD, and UDISS) according
to considered metrics (AUC, ADE, TNR-PR). Large markers indicate the
average over repeated simulations.

metric values in 70% of all cases. These results further

support CMNA11 and CMNA12 (non-interactive modeling,

acceleration vehicle input, single-round optimization) as the

optimal configurations of the Commotions model.

V. COMPARING COMMOTIONS TO ESTABLISHED MODELS

In this section, we assess the potential of the Commotions

model by comparing the predictive performance of two of

its configurations (CMNA11 for ADE and CMNA12 for other

metrics) against established prediction models. Besides the

Trajectron++ model (T++) introduced in Section IV-A3, we

also used a logistic regression model (LR) as a baseline,

with both methods having previously demonstrated good

performance on similar gap acceptance problems [10]. While

these models have far fewer restrictions on the type of

input data they can process, we artificially constrain the

used input data to the Commotions model’s limitations to

allow for an equitable comparison. The only exception is the

dimensionality of the input for T++, as this model can only

process the original two-dimensional trajectories, but not the

projected quasi-one-dimensional inputs of the Commotions

model.

Here, the datasets, metrics, as well as testing and training

splits are identical to the ablation study (IV-A).

A. Results

Comparison of the models (Fig. 2 and Tab. II) demon-

strates that the Commotions model can compete with estab-

lished models, although variations were observed depending

on the metric and dataset. Notably, the Commotions model

routinely outperforms the other models in terms of ADE,

TABLE II
PERCENTAGE OF CASES IN WHICH THE Commotions MODEL PERFORMED

SIGNIFICANTLY BETTER OR WORSE COMPARED TO THE OTHER TESTED

MODELS, BASED ON THE RESULTS SHOWN IN FIG. 2.

Model M Cases CM better than M CM worse than M

T++

3 (ADE) 100% (0%) 0% (0%)

2 (Other, UDISS) 0% (0%) 0% (0%)

6 (Other, Other) 17% (0%) 33% (33%)

LR1D
3 (ADE) 67% (67%) 0% (0%)

8 (Other) 13% (75%) 25% (0%)

Notation similar to Tab. I. The configuration CMNA11 is used for ADE

and CMNA12 for the other metrics. The results are split by metric, and for
T++ partially by dataset.

consistently on the random test sets and, when compared

to LR, even on the critical test sets. This may be attributed

to the model’s capacity to forecast both the probability of

accepting a gap and the time at which it may be accepted,

with the additional information being used to filter out the

most aberrant trajectories suggested by the transformation

function (II-C).

However, on the other metrics, the Commotions model’s

performance is mostly similar to the other two models (no

significant difference on 10/16 random and 8/16 critical

splits). Nonetheless, it appears to be more robust than LR

when predicting unintuitive human behavior, with consis-

tently better outcomes on the critical test. This suggests that

constraining a model’s predictions using cognitive theory to

make it less susceptible to out-of-domain edge cases is a

viable way to improve the model’s reliability.

The Commotions model’s worst performance can be ob-

served on the L-GAP and rounD datasets when compared to

T++ on metrics other than ADE. While this might indicate a

superiority of the T++ model, this deviation in performance

may be at least partly explained by the aforementioned

differences in the inputs provided to the models.

To investigate the extent of potential impact of this dif-

ference on our results, we compared the second LR model

taking two-dimensional inputs to the original LR model

processing the one-dimensional inputs. The results of the

comparison (Tab. III) show that, at least for the LR model,

processing the two-dimensional original inputs (as T++ does)

appears to simplify the prediction task compared to using

the quasi-one-dimensional inputs that the Commotions model

relies on. This seems plausible, as the projection employed

to transform the input data from two-dimensional to one-

dimensional likely leads to information loss, leaving fewer

cues for the models to make accurate predictions. However,

more research is required to accurately assess the impact of

input dimensionality on predictions. Thus, a final verdict on

the comparative advantage of the Commotions model or T++

is still pending.

VI. CONCLUSION

This study evaluates the predictive performance of the dif-

ferent configurations of the Commotions model, which inte-

grates state-of-the-art theories of human perception, decision-



TABLE III
EVALUATING THE IMPACT OF THE INPUT DIMENSIONALITY ON THE

PREDICTIVE PERFORMANCE OF A LOGISTIC REGRESSION MODEL.

Dataset Cases LR2D better than
LR1D

LR1D better than
LR2D

UDISS 3 0% (33%) 0% (0%)

Other 8 38% (13%) 0% (13%)

Notation similar to Tab. I

making, and motor control, in gap acceptance scenarios,

comparing the best configurations with other established

models. We demonstrate that the Commotions model can

compete with or even outperform state-of-the-art behavior

prediction models, as long as the same input information

is provided. Notably, the average displacement error of

predicted trajectories is most often significantly lower than

the one achieved by other tested models.

We also seek to assess the potential impact of the Com-

motions model’s restriction to the quasi-one-dimensional

scenario of a perpendicular intersection on its performance.

Unable to overcome this restriction, we instead compare two

versions of the logistic regression model for this investiga-

tion. Our findings suggest that allowing Commotions model

to instead process two-dimensional trajectories as inputs

would be beneficial. As an added benefit, this expansion

could also enable the model to function as a dedicated

trajectory prediction model. Consequently, such an expansion

of the Commotions model is likely worlatex set unionthwhile,

even if it comes at the cost of more expensive computations.

In addition, investigating the impact of other limitations, such

as the number of processable input time steps, or the number

of interacting road users, should be addressed in future

research, as it would provide benefits for model designing

even beyond the Commotions model.

However, due to its theoretical basis, the Commotions

model will always be restricted to scenarios such as gap

acceptance, where a small number of potential behaviors,

like accepting or rejecting a gap, make it feasible to create

and evaluate all distinct future trajectories χ̃. This lim-

its the model’s general applicability compared to models

like Trajectron++. Additionally, as the model itself is non-

differentiable, the resulting need for gradient-free optimiza-

tion makes the model’s training process relatively cumber-

some, hampering its feasibility further. Nevertheless, our

findings provide encouraging evidence supporting the useful-

ness of the Commotions model, at least for predicting human

behavior in gap acceptance scenarios, justifying further re-

search into both this specific model and the general approach

of integrating cognitive theory into prediction models. For

example, it would be worthwhile to investigate how the

cognitive assumptions in the Commotions model (or other

cognitive models) might be leveraged in model architectures

that are specificallylatex set union designed for use in the

prediction context.
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