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Abstract
Recent results have shown that the secret-key rate of coherent-one-way (COW) quantum key
distribution (QKD) scales quadratically with the system’s transmittance, thus rendering this
protocol unsuitable for long-distance transmission. This was proven by using a so-called zero-error
attack, which relies on an unambiguous state discrimination (USD) measurement. This type of
attack allows the eavesdropper to learn the whole secret key without introducing any error. Here,
we investigate the feasibility and effectiveness of zero-error attacks against COWQKD with
present-day technology. For this, we introduce two practical USD receivers that can be realized
with linear passive optical elements, phase-space displacement operations and threshold
single-photon detectors. The first receiver is optimal with respect to its success probability, while
the second one can impose stronger restrictions on the protocol’s performance with faulty
eavesdropping equipment. Our findings suggest that zero-error attacks could break the security of
COWQKD even assuming realistic experimental conditions.

1. Introduction

Quantum key distribution (QKD) [1–3] has emerged as a cornerstone of quantum cryptography, enabling
two remote parties, commonly referred to as Alice and Bob, to share an information-theoretically secure
cryptographic key. While QKD networks are currently being deployed worldwide [4–7], QKD still faces
certain inherent limitations such as channel loss, which fundamentally restricts the secret-key rate in
point-to-point configurations [8, 9], as well as device imperfections that jeopardize the security of practical
implementations [2, 10, 11].

Various strategies have been proposed to mitigate these limitations and improve the security, practicality,
and performance of QKD systems, including e.g. decoy-state QKD [12–14],
measurement-device-independent QKD [15–20], twin-field QKD [21–25], and distributed-phase-reference
(DPR) QKD. Among the latter protocols, coherent-one-way (COW) QKD [26–29] has attracted great
attention in recent years for its simplicity and its promise to overcome the photon-number-splitting (PNS)
attack [30, 31], thus achieving long transmission distances. Indeed, commercial systems implementing the
COW protocol have been developed [32] and experimental demonstrations have achieved distances of over
300 km [29]. However, it is important to note that security analyses of COW-QKD that allow for
long-distance communications —i.e. that provide lower bounds on the secret-key rate that scale linearly with
the channel transmittance η—have been established solely against a restricted class of attacks termed
collective attacks [29]. This contrasts with known lower bounds of the order of O(η2) against general
attacks [33], a key-rate scaling that has not been improved in recent variants of COW-QKD that disregard its
characteristic inter-round interference [34–36].
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Crucially, González-Payo et al [37] showed very recently that indeed the key rate of COW-QKD scales at
most quadratically with the system’s transmittance, rendering all long-distance demonstrations of this
scheme performed so far insecure against general attacks. This was achieved using a class of
intercept-and-resend attacks known as sequential attacks [38–41]. Intercept-and-resend attacks effectively
transform the quantum channel into an entanglement-breaking channel, thus preventing the possibility of
secret-key generation [42]. Trényi and Curty [43] further refined this strategy by introducing a sequential
attack that does not introduce errors in the system. Notably, this latter so-called zero-error attack—which is
based on the use of unambiguous state discrimination (USD) measurements [44, 45]— is essentially
optimal, in the sense that no other zero-error attack [46] can further limit the maximum achievable distance
of COW-QKD.

Importantly, the works in [37, 43] assume an idealized eavesdropper (Eve) with technological capabilities
only limited by quantum mechanics. Indeed, this is the standard scenario considered when proving the
security of QKD. However, this could be overconservative in certain cases, as the technology required by Eve
to implement her attack might not be available in the mid-term future. For instance, the noisy-storage model
[47–50] considers the physical assumption that Eve does not have a large reliable quantum memory.

Similarly, in this work we assume that Eve is restricted to use present-day technology and cannot perform
perfect quantum operations but employs faulty devices. In this framework, we investigate the practical
feasibility of the optimal zero-error attack against COW-QKD proposed in [43]. For this, we introduce two
USD receivers that only require off-the-shelf linear passive optical elements, phase-space displacement
operations and threshold single-photon detectors (SPDs). Remarkably, the first receiver corresponds to an
optimal USD measurement, in the sense that it maximizes the probability of obtaining a conclusive
measurement result when distinguishing Alice’s signals, but it can only discriminate data signals. The second
USD receiver has a lower success probability but can discriminate both data and decoy signals. This latter
condition translates into stringent restrictions on the performance of COWQKD with flawed eavesdropping
equipment. For both receivers, we derive analytical expressions for the expected values of the key metrics that
characterize the COW protocol as a function of the parameters that describe the noise and inefficiencies of
Eve’s apparatuses. In doing so, we provide a comprehensive framework for evaluating the security of
COW-QKD in realistic scenarios. We find that the most critical experimental parameter for the success of
Eve’s attack seems to be the quality of interference between Alice’s weak coherent pulses and her strong light
during the displacement operation. Importantly, our results suggest that zero-error attacks are not only a
great threat against COW-QKD, but they could break its security with present-day technology.

The paper is structured as follows. In section 2 we introduce the COW-QKD protocol. Next, in section 3,
we present the zero-error attack studied in [43]. Then, in section 4 we introduce the first USD receiver, which
is able to implement the optimal USD measurement considered in [43]. Besides, in this section we provide a
model to incorporate its most relevant imperfections in a practical setting. Next, in section 5 we derive
analytical expressions for the expected values of the relevant metrics required to evaluate the security and
performance of COWQKD as a function of Eve’s faulty equipment, and we investigate the feasibility of the
zero-error attack in [43] with present-day technology in section 6. Finally, in section 7 we present our
conclusions. The paper also includes several Appendices with additional calculations, which includes the
analysis associated to a second USD receiver.

2. COWQKD

The setup for the original COW system [26, 27] is shown in figure 1. In each round, Alice transmits a signal
|φi⟩ to Bob with probability pAi , where i ∈ {0,1,2}. These signals are composed of two optical pulses that
could either be in a vacuum state |0⟩ or in a coherent state |α⟩, where α> 0. Specifically, the data signals
|φ0⟩= |0⟩|α⟩ and |φ1⟩= |α⟩|0⟩ correspond to the bit values 0 and 1, respectively, and are generated with an
equal a priori probability pA0 = pA1 = (1− f)/2, whereas the decoy signal |φ2⟩= |α⟩|α⟩ is prepared with
probability pA2 = f. Here, temporal sequences of states or signals are represented from right (earlier time) to
left (later time).

At Bob’s side, an asymmetric beamsplitter with transmittance tB distributes the incoming signals between
the data line and the monitoring line. The former consists of an SPD DD and is used for raw key generation.
Specifically, Bob assigns the bit value 0 (1) to a round if DD clicks in the first (second) time slot of that round,
and a random bit is assigned in the case of a double click. On the other hand, the monitoring line consists of
a Mach-Zehnder interferometer followed by two SPDs DM1 and DM2, for constructive and destructive
interference, respectively. This line monitors the coherence between adjacent pulses. In particular, the
interference is such that two consecutive coherent states |α⟩ cannot trigger DM2, but only DM1 (see figure 1).
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Figure 1. Schematic illustration of the original COW system [26, 27]. Alice sends Bob a random sequence of signals |φi⟩, with
i ∈ {0,1,2}. In the figure, we represent coherent (vacuum) states with a grey (white) pulse. Temporal sequences of states or
signals are represented from right (earlier time) to left (latter time). Bob uses a beamsplitter with transmittance tB to distribute
the received signals between the data line and the monitoring line. The former is used for key generation, while the latter
implements a Mach–Zehnder (MZ) interferometer that measures the coherence between adjacent coherent pulses. This is used to
detect eavesdropping. IM refers to the intensity modulator;∆τ is the time delay between consecutive pulses; DD, DM1, and DM2

are Bob’s SPDs.

Once the quantum communication phase of the protocol ends, Bob publicly announces in which rounds
he observed at least one detection click at DD. Then, Alice announces in which of these rounds she prepared a
data signal. The bits assigned to this set constitute the sifted key.

Three parameters are specially relevant in COW-QKD. The gain, G, which is the probability that a signal
sent by Alice produces at least one detection click in Bob’s data line; the quantum bit error rate (QBER) of
Alice and Bob’s sifted keys; and the visibilities V s, which quantify the coherence between adjacent coherent
pulses, and are computed from the click probabilities in the monitoring line. Specifically, these visibilities are
defined as

Vs :=
pM1|s − pM2|s

pM1|s + pM2|s
, (1)

where s ∈ {2,01,02,21,22} represents a sequence of COW signals that contains two adjacent coherent states
|α⟩, and pMi|s is the conditional probability that detector DMi clicks when such two coherent pulses interfere,
given that Alice prepared the sequence s. For example, V2 characterizes the visibility between the two
coherent pulses contained in a decoy signal |φ2⟩, whereas V02 characterizes the visibility between the second
optical pulse of |φ2⟩ and the first one of |φ0⟩, both of them in the state |α⟩. The other visibilities are
interpreted in a similar way. Finally, it is convenient to consider the average visibility, which is given by [29,
37]

Vave :=
pM1 − pM2

pM1 + pM2
, (2)

where pMi =
∑

s pspMi|s, being ps the probability that Alice prepares the sequence s.

3. Zero-error attacks against COW-QKD

In a zero-error attack Eve intercepts all of Alice’s signals and performs a USD measurement on each of them
[37, 43]. We denote by pEj|Ai

the probability that Eve obtains the result Ej, given that Alice emits the signal
|φi⟩. Here, E0, E1 and E2 identify the signals |φ0⟩, |φ1⟩ and |φ2⟩, respectively, and E3 represents an
inconclusive outcome. Obviously, in the ideal scenario in which the USD measurement is implemented
perfectly, we have by definition that pEj|Ai

= 0 ∀i ̸= j, with i, j < 3.
Next, Eve groups the measured outcomes into blocks for processing them before she sends Bob a

regenerated sequence of signals. Precisely, a block of (k+ 1) signals corresponds to k ∈ {0,1, . . . ,Mmax}
consecutive conclusive measurement outcomes, followed by an inconclusive measurement result. For
example, when k= 0 the block corresponds to one inconclusive measurement outcome, and Eve sends Bob
two vacuum pulses, |φvac⟩= |0⟩|0⟩. If k= 1, the block has one conclusive measurement outcome, say |φi⟩,
followed by an inconclusive one for which Eve sends Bob the vacuum signal |φvac⟩. For all cases where
1< k<Mmax, the interpretation is similar. Finally, if Eve obtainsMmax consecutive conclusive measurement
outcomes, she ignores the next signal from Alice, and simply treats it as an inconclusive result. The parameter
Mmax allows Eve to cap the block length, thereby limiting the maximum delay she introduces in the channel.
Throughout this paper, we shall use the term block to denote the k conclusively measured signals together
with the inconclusive measurement outcome, and the term conclusive-block when ignoring the latter.
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Figure 2. Scheme to implement Eve’s optimal USD measurement. (a) Ideal theoretical setup: Eve applies a displacement operator
D̂(−α) on each pulse |χ⟩ of the signal, and subsequently measures the outcome pulses with a threshold detector DE. (b)
Experimental implementation of the ideal setup: The displacement operation can be approximated in practice with an
asymmetric beamsplitter of transmittance T≈ 1, which has at one of its input ports a laser source that emits coherent pulses with
amplitude β.

For each conclusive-block, Eve searches for the first and last instances of a vacuum pulse within the block.
She then resends to Bob all the optical pulses situated between these two, exactly as she identified them—i.e.
if the measurement result with respect to a particular signal is Ej, she resends |φj⟩— but substitutes the
coherent pulses |α⟩ by |γ⟩, with |γ|2 ≫ |α|2, to increase the detection probability at Bob’s side. The
remaining pulses within the block that are outside this interval are resent to Bob as vacuum pulses. As
already mentioned, the last signal of a block, which corresponds to an inconclusive measurement outcome, is
resent as |φvac⟩. For a more detailed description of the attack, we refer the reader to [43].

Notably, if Eve’s equipment is flawless—as considered in [43]— the attack described above introduces no
errors on Bob’s side, while it reveals Eve full information about the key. This is because Eve’s USD
measurement ensures that she never misidentifies Alice’s signals, while the block processing strategy takes
advantage of the fact that vacuum pulses do not introduce errors in the monitoring line.

In particular, [43] showed that, whenever f/(1− f)≤ 2e−|α|2 , a regime typically satisfied by practical
implementations of COW-QKD, Eve’s optimal USD measurement (i.e. the one that maximizes her
probability of a conclusive result) satisfies pE0|A0

= pE1|A1
= 1− e−|α|2 and

pE0|A1
= pE1|A0

= pE2|Ai
= 0 ∀i ∈ {0,1,2}.

4. Implementation of zero-error attacks

In this section, we now introduce a linear optics circuit to implement Eve’s optimal USD measurement for
the zero-error attack described above. It is illustrated in figure 2(a). The input state |χ⟩, with χ ∈ {0,α},
corresponds to each of the two optical pulses sent by Alice within a signal. That is, for each signal, Eve uses
the same scheme in figure 2(a) twice, once per pulse. Precisely, each pulse is displaced according to the

transformation |χ⟩ → D̂(−α)|χ⟩= |χ−α⟩, where D̂(x) := exâ
†−x∗â is the displacement operator, and â†

and â are the creation and annihilation operators, respectively. Finally, the resulting signal is measured with a
SPD.

If DE clicks only in the first (second) time slot, the signal is identified as |φ1⟩ (|φ0⟩); in all other cases, the
result is inconclusive. This is so because after the optical displacement, the data signals |φ0⟩ and |φ1⟩ are
transformed into | −α⟩|0⟩ and |0⟩|−α⟩, respectively, while the decoy signal is turned into a vacuum signal
|φvac⟩. Consequently, a single click uniquely identifies a data signal, which occurs with probability 1− e−|α|2 ,
thus matching the optimal probability obtained in [43]. Indeed, this measurement is unable to identify decoy
signals, effectively removing E2 from the POVM set and making pE2|Ai

= 0 ∀i.
In practice, it is well-known that a displacement operation can be approximated with a highly

asymmetric beamsplitter of transmittance T≈ 1 [51], which has at one of its input ports a coherent state |β⟩,
as shown in figure 2(b). This scheme transforms |χ⟩ into |

√
Tχ+

√
1−Tβ⟩, so the displacement D̂(−α) can

be approximated by setting

β =−
√

T

1−T
α. (3)

Indeed, with this choice, the states |0⟩ and |α⟩ are transformed, respectively, into | −
√
Tα⟩ and |0⟩. This

means that the detection probability at DE decreases slightly when Alice transmits |0⟩ (when compared to the
case where Eve can use an ideal displacement). However, it remains zero when Alice sends |α⟩. That is, the
approximated displacement does not introduce errors.

4
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Figure 3. Theoretical model of the setup illustrated in figure 2(b), now incorporating the effect of the main experimental
imperfections. |χ⟩ represents the state of Alice’s transmitted pulse, and ϕ represents a phase shift. The beamsplitter
transmittances t1 and t2 quantify the mode overlap between Alice’s pulse and a coherent state |σ⟩, whose intensity deviates
slightly from that of |β⟩, at the beamsplitter with transmittance T (see figure 2(b)). The three outputs of the circuit represent
different optical modes in coherent states |κx⟩, with x ∈ {m,p,q}. The total intensity received in DE is calculated as the sum of
the intensities in each of these modes.

4.1. Effect of device imperfections
Now, we investigate the performance of the setup above in a realistic setting, in which we accommodate the
most relevant device imperfections. For this, we allow the optical phase of the incoming pulses |χ⟩ to the
beamsplitter in figure 2(b) to be slightly shifted with respect to the laser pulses |β⟩. We denote such phase
shift by ϕ. Also, we allow for an imperfect mode overlap between the two interfering pulses |χeiϕ⟩ and |β⟩ at
the beamsplitter. To characterize this effect we use the model introduced in [52], which defines two
parameters, t1 and t2, to quantify, respectively, the fraction of each of Alice’s and Eve’s input pulses that is
properly mode matched at the beamsplitter (see appendix A). In addition, we allow for a non-ideal efficiency
ηE and a dark-count probability pEd in Eve’s SPD DE. Finally, we also account for small intensity fluctuations.
For this, we consider a simple model in which the amplitude of |β⟩ is slightly deviated from its ideal value
(see equation (3)). In particular, we compute its amplitude, which we call now σ to distinguish it from the
ideal case, as

σ =
√
1+ δβ, (4)

where the parameter δ∈ [−1,∞) characterizes the deviation between the ideal and actual intensity.
The schematic of the model that incorporates these imperfections is illustrated in figure 3. First, the

incoming pulse |χ⟩ is phase shifted by ϕ. Then, |χeiϕ⟩ and |β⟩ are split into two modes each, according to the
quantities t1 and t2. Two of these optical modes contain the fraction of the input pulses that properly
interfere at the beamsplitter with transmittance T. We use the label ‘m’ to denote the optical mode associated
with the output port of this latter beamsplitter that is connected to Eve’s detector. The remaining output
modes, namely those labeled ‘p’ and ‘q’ in figure 3, go through the beamsplitter without interfering. The total
optical intensity at DE given that Alice sent the state |χ⟩, which we shall denote as µE|χ, is thus the sum of the
intensities from the three output modes. That is, µE|χ = |κm|2 + |κp|2 + |κq|2, where |κx⟩ denotes a coherent
state in the output mode x, with x ∈ {m,p,q}. We find, therefore, that

µE|χ = T
[
|χ|2 + |α|2 (1+ δ)− 2

√
t1t2 (1+ δ)Re

{
χα∗eiϕ

}]
. (5)

Let pE|χ=0 (pE|χ=α) denote the probability of a no-click event in DE, given that χ= 0 (χ= α) in that

time slot. These probabilities can be computed as pE|χ = (1− pEd)exp{−ηEµE|χ}. That is,

µE|χ=0 =T|α|2 (1+ δ) ,

µE|χ=α =T|α|2
[
2+ δ− 2

√
t1t2 (1+ δ)cosϕ

]
.

(6)

This means, in particular, that the probabilities pEj|Ai
can be expressed as follows:

pE0|A0
= pE1|A1

= pE|χ=α

(
1− pE|χ=0

)
,

pE0|A1
= pE1|A0

= pE|χ=0

(
1− pE|χ=α

)
,

pE0|A2
= pE1|A2

= pE|χ=α

(
1− pE|χ=α

)
,

pE2|A0
= pE2|A1

= pE2|A2
= 0,

pE3|Ai
= 1−

(
pE0|Ai

+ pE1|Ai

)
for i ∈ {0,1,2} .

(7)

5
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5. Performance evaluation

To evaluate the performance of Eve’s zero-error attack with current technology, here we derive analytical
expressions for the expected values of the three metrics defined in section 2 —namely the gain, the QBER,
and the different visibilities V s— as a function of the parameters that characterize Eve’s imperfect operation,
as well as the parameters of the protocol.

In the calculations below, we shall consider that γ is sufficiently large to ensure that the signals Eve sends
Bob always trigger his detectors unless she sends him a vacuum state, in which case Bob only records a click if
a dark count occurs. The dark-count probabilities at Bob’s detectors DD, DM1, and DM2 are denoted as pDd ,
pM1
d , and pM2

d , respectively.
First, we derive the expected gain G. Then, we present the expressions to compute the QBER and the

visibilities V s. The full derivation of these latter parameters can be found in appendix B.

5.1. Gain
The gain is defined as the probability that Bob observes at least one click in DD in a round. This quantity can
be written as G= Nclk/Nsig, where Nclk is the average number of signals within a block that produce a
click—single or double—at Bob’s side, and Nsig is the average number of signals within a block.

Let pEc be the probability that Eve’s USD measurement is conclusive, computed as

pEc =
2∑

i,j=0

pAjpEi|Aj
. (8)

Also, let pcb(k) be the probability that Eve processes a conclusive-block of length k, which is given by [43]

pcb (k) =


pkEc (1− pEc) when 0≤ k<Mmax,

pMmax
Ec when k=Mmax,

0 otherwise.

(9)

Then, we have that Nsig =
∑Mmax

k=0 pcb(k)(k+ 1), and therefore [43]

Nsig =
1− pMmax+1

Ec

1− pEc
. (10)

The average Nclk admits a similar decomposition in terms of the length of a block. In particular,

Nclk =

Mmax∑
k=0

pcb (k)
[
nclk (k)+ plastclk (k)

]
, (11)

where nclk(k) is the average number of signals within a conclusive-block of length k in which Bob observes at
least one click in DD, and plastclk (k) is the probability that a click occurs in the last vacuum signal |φvac⟩ of the
block, corresponding to the inconclusive measurement outcome that happened after a conclusive-block of
length k. If we define pclk|Bv as the probability that Bob observes at least one click in a round where he receives
a vacuum signal from Eve, then it is clear that

plastclk (k) = pclk|Bv = 1−
(
1− pDd

)2
, (12)

for k ∈ [0,Mmax].
Now, let pEj|Ec be the probability that Eve obtains the outcome Ej, given that her measurement was

conclusive. Its value is given by

pEj|Ec =
1

pEc

2∑
i=0

pAipEj|Ai
. (13)

Then, one can express

nclk (k) =
2∑

i=0

pEi|Ecnclk (k|i) , (14)

6
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where nclk(k|i) is defined as the average number of signals where a click occurs within a conclusive-block of
length k, given that the first signal of the block was identified by Eve as |φi⟩. Importantly, we note that the
quantities nclk(k|i) admit recursive formulations [43], which one can solve to compute nclk(k).

To illustrate this, let us focus on nclk(k|0), i.e. the case where the first signal of the block is identified by
Eve as |φ0⟩. According to her block-processing strategy, Eve translates this first signal into vacuum, since the
first optical pulse of this signal is a coherent state |α⟩. Consequently, we can disregard it and consider the
reduced conclusive-block of length (k− 1). Importantly, according to Eve’s processing strategy, this also
implies that the first signal in the resulting truncated conclusive-block will be resent exactly as identified by
her. This is so because it is preceded by a vacuum pulse, given by the second optical pulse of |φ0⟩. Then, it
only remains to find the last signal of the conclusive-block that is not resent as vacuum.

There are three possibilities, which depend on the last signal identified by Eve. If this signal is |φ0⟩, then it
directly becomes the last non-vacuum signal of the block, and thus (k− 1) non-vacuum signals will arrive at
DD. If the last signal is |φ1⟩, it is translated into vacuum, and the preceding (k− 2) non-vacuum signals will
arrive at DD. Finally, if the last signal is |φ2⟩, this signal is also translated into vacuum, and, by definition, Bob
will observe, on average, nclk(k− 1|0) clicks in DD. Putting all this together, one can write nclk(k− 1|i) as

nclk (k|0) = pE0|Ec
(
k− 1+ pclk|Bv

)
+ pE1|Ec

(
k− 2+ 2pclk|Bv

)
+ pE2|Ec

[
nclk (k− 1|0)+ pclk|Bv

]
,

nclk (k|1) = pE0|Eck+ pE1|Ec
(
k− 1+ pclk|Bv

)
+ pE2|Ec

[
nclk (k− 1|1)+ pclk|Bv

]
,

nclk (k|2) = nclk (k− 1)+ pclk|Bv .

(15)

Moreover, the starting points for the previous recursions are nclk(1|0) = nclk(1|1) = pclk|Bv and nclk(0) = 0.
With this, one can solve the recursion and obtain

nclk (k) = k+ kRk
(
1− pDd

)2 − 1+R

1−R

(
1−Rk

)(
1− pDd

)2
, (16)

where we have used R as a shorthand for the recursion factor,

R≡ pE2|Ec . (17)

5.2. QBER
Next, we analyze the QBER. This quantity can be written as QBER= perr/pkey, where pkey is the probability
that Bob distills a key bit in a given round, and perr the probability that he distills an erroneous key bit. We
have that, asymptotically, pkey = Nkey/Nsig and perr = Nerr/Nsig, where Nkey (Nerr) is the average number of
key bits (erroneous key bits) distilled by Bob from a block sent by Eve. Therefore, one can rewrite the error
rate as [43]

QBER=
Nerr

Nkey
. (18)

To determine Nkey and Nerr we decompose them according to the length of the block processed by Eve.
For this, we define nkey(k) (nerr(k)) as the average number of key bits (erroneous key bits) distilled from a
conclusive-block of length k, and plastkey(k) (p

last
err (k)) as the probability that Bob distills a key bit (erroneous key

bit) from the vacuum signal |φvac⟩ that is sent after a conclusive-block of length k, due to an inconclusive
result. Then, we have that

Nkey =

Mmax∑
k=0

pcb (k)
[
nkey (k)+ plastkey (k)

]
,

Nerr =

Mmax∑
k=0

pcb (k)
[
nerr (k)+ plasterr (k)

]
.

(19)

All that remains is to calculate the values of nkey(k), nerr(k), plastkey(k) and plasterr (k) that appear in the
previous equations. For this, let us define perr|Bv as the probability that Bob obtains an incorrect bit from a
vacuum signal sent by Eve, given that he distills a bit that round. Its value is given by

perr|Bv =
pDd

(
2− pDd

)
2

. (20)
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Then, it can be shown (see appendix B) that nkey(k) has the form

nkey(k) =
pA0

pEc

{
k
(
2− pE3|A0

− pE3|A1

)
+ kRk−1

(
1− pDd

)2 (
pE2|A0

+ pE2|A1

)
− 1−Rk

1−R

(
1− pDd

)2 (
2− pE3|A0

− pE3|A1
+ pE2|A0

+ pE2|A1

)}
;

(21)

the parameter plastkey is given by

plastkey (k) =


pA0pclk|Bv(pE3|A0+pE3|A1)

1−pEc
if 0≤ k<Mmax,

2pA0pclk|Bv if k=Mmax,
(22)

the parameter nerr(k) has the form

nerr(k) =
pA0

2pEc

{
k
[(

pE0|A0
+ pE1|A1

)
pDd + pE2|A0

+ pE2|A1
+
(
pE0|A1

+ pE1|A0

)(
2− pDd

)]
+ kRk−1

(
pE2|A0

+ pE2|A1

)(
1− pDd

)2
+

1−Rk

1−R

[(
pE0|A0

+ pE1|A1

)
pDd

−
(
pE0|A1

+ pE1|A0

)(
2− pDd

)
− 2

(
pE2|A0

+ pE2|A1

)(
1− pDd

)](
1− pDd

)}
,

(23)

and the parameter plasterr (k) can be expressed as

plasterr (k) =


pA0perr|Bv(pE3|A0+pE3|A1)

1−pEc
if 0≤ k<Mmax,

2pA0perr|Bv if k=Mmax.
(24)

5.3. Visibilities
To calculate the resulting visibilities V s, we start by expressing the probabilities that appear in equation (1) as
pMX|s = pMX,s/ps, with X ∈ {1,2}. The joint probabilities pMX,s can be written as pMX,s = NMX,s/Nsig. Here,
NMX,s is the average number of times in which the sequence s appears within a block and a click is registered
in DMX during the time slot associated with the interference of the two intermediate coherent pulses of the
sequence. This means that V s can be expressed as

Vs =
NM1,s −NM2,s

NM1,s +NM2,s
. (25)

Let us now start with the case s= 2, since this is the only one that considers interference between pulses
within the same signal. By applying analogous reasoning to that used to derive equations (11) and (19), it can
be shown that NMX,2 can be expressed as

NMX,2 =

Mmax∑
k=0

pcb (k)
[
nMX,2 (k)+ plastMX,2 (k)

]
, (26)

where nMX,2(k) represents the average number of signals within a conclusive block of length k in which Alice
sends |φ2⟩ and DMX clicks, and plastMX,2(k) is the probability that this event occurs in the last signal of the full
block. Precisely, it is shown in appendix B that these quantities can be written as

nM1,2(k) =
pA2

pEc

{
k
(
1− pE3|A2

)
+ kRk−1pE2|A2

(
1− pM1

d

)
− 1−Rk

1−R

(
1+ pE2|A2

− pE3|A2

)(
1− pM1

d

)}
,

nM2,2(k) =
pA2

pEc

{
k
(
pE0|A2

+ pE1|A2

)
− kRk−1pE2|A2

pM2
d − 1−Rk

1−R

[(
pE0|A2

+ pE1|A2

)(
1− pM2

d

)
− 2pE2|A2

pM2
d

]}
,

(27)

and

plastMX,2 (k) =

{
pA2pE3|A2p

MX
d

1−pEc
if 0≤ k<Mmax,

pA2p
MX
d if k=Mmax,

(28)

where R is given by equation (17).
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Figure 4. Schematic illustration of the different interference events at Bob’s side considered within a block, and the quantities
involved in the computation of NMX,s2s1 (see equation (29)). For simplicity, this figure shows a block with k= 3. White pulses
represent vacuum states, |0⟩, sent to Bob by Eve, whereas the stripped pulses may be either |0⟩ or |α⟩. Being a valid block, it has
two vacuum pulses at the conclusive-block’s surrounding borders, as well as a vacuum signal |φvac⟩ at the end of the block.

We now consider the remaining visibilities, where we denote the two-signal interference sequence as
s≡ s2s1, meaning Alice first prepares |φs1⟩ and subsequently prepares |φs2⟩. Importantly, a subtle nuance
must be considered in the definition of the averages NMX,s2s1 . Since we are dealing with the interference
between adjacent pulses in consecutive rounds, these rounds may belong to different blocks. If this happens,
we will consider that the observed clicks are attributed to the first block. This is an arbitrary decision, but it
does not impact the final result.

Once again, we express the averages under analysis as a decomposition over the block length. For this, we
define nMX,s2s1(k) as the average number of times within a conclusive-block of length k where Alice sends
s= s2s1 and a click is registered in DMX in the time slot associated with the interference between the two
signals. Those events in which one of the signals of the sequence s does not belong to the considered
conclusive-block are not accounted in nMX,s2s1(k). Moreover, we denote as plastMX,s2s1 the probability that Alice
prepares |φs1⟩ in the last round of a conclusive-block of length k and |φs2⟩ in the next round, and Bob
observes a click in DMX in the time slot associated with the interference of these two signals. Similarly, we

define pedgeMX,s2s1 as the probability that Alice prepares |φs1⟩ in the last round of the full block of k+ 1 signals,
|φs2⟩ in the first round of the next block, and Bob observed a click in DMX in the time slot associated with the
interference of these two signals. With these definitions, which are illustrated in figure 4, we can write
NMX,s2s1 as

NMX,s2s1 =

Mmax∑
k=0

pcb (k)
[
nMX,s2s1 (k)+ plastMX,s2s1 (k)+ pedgeMX,s2s1 (k)

]
. (29)

Finally, let pAi|Ec (pAi|E3) be the probability that Alice sent the signal |φi⟩, given that Eve’s measurement
was conclusive (inconclusive). These values can be written as

pAi|Ec =
pAi

(
1− pE3|Ai

)
pEc

,

pAi|E3 =
pAipE3|Ai

1− pEc
,

(30)

for i ∈ {0,1,2}. Then, appendix B shows that

nM1,s2s1(k) =
pAs1

pAs2

p2Ec

{
(k−1)

[(
1−pE3|As1

)(
1−pE3|As2

)
− pE0|As1

pE1|As2

(
1− pM1

d

)]
+(k− 1)Rk−2

(
1− pM1

d

)
pE2|As1

pE2|As2
− 1−Rk−1

1−R

(
1− pM1

d

)[(
1− pE3|As1

)
pE2|As2

+ pE2|As1

(
1− pE3|As2

)]}
,

(31)
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and

nM2,s2s1(k) =
pAs1

pAs2

p2Ec

{
(k− 1)

[
pE0|As1

pE0|As2
+ pE0|As1

pE2|As2
+ pE1|As1

pE1|As2
+ pE2|As1

pE1|As2

+ pM2
d

(
pE0|As1

pE1|As2
+ pE1|As1

pE0|As2
+ pE1|As1

pE2|As2
+ pE2|As1

pE0|As2
+ pE2|As1

pE2|As2

)]
− 1−Rk−1

1−R

(
1− pM2

d

)(
pE0|As1

pE2|As2
+ pE2|As1

pE1|As2

)}
,

(32)

while the parameters plastMX,s2s1(k) and pedgeMX,s2s1(k), for X∈ {1,2}, are given by

plastMX,s2s1(k) =


0 if k= 0,

pAs1 |EcpAs2 |E3p
MX
d if 0< k<Mmax,

pAs1 |EcpAs2
pMX
d if k=Mmax,

pedgeMX,s2s1(k) =

{
pAs1 |E3pAs2

pMX
d if 0≤ k<Mmax,

pAs1
pAs2

pMX
d if k=Mmax.

(33)

Finally, we note that Vave, as defined in equation (2), can be directly obtained from the previous averages
NMX,s as follows

Vave =

∑
sNM1,s −

∑
sNM2,s∑

sNM1,s +
∑

sNM2,s
(34)

where the sums run for s ∈ {2,01,02,21,22}.

6. Simulation results

In this section we now evaluate the feasibility of the zero-error attack analyzed above in realistic conditions.
We shall denote the attack that uses the optimal USD measurement discussed in section 4 as USD1. Here, we
shall include as well the results derived in appendix C regarding an alternative, suboptimal USD
measurement for Eve, which is able to discriminate not only data signals but also decoy signals, although its
success probability is lower than that of USD1. We shall denote this second strategy as USD2. We refer the
readers to appendix C for more details. As it is shown below, USD2 can outperform USD1 in the presence of
imperfections.

We consider that Eve’s attack is successful if she can keep the resulting QBER and visibilities within
certain acceptance intervals. For illustration purposes, we shall use QBERth = 0.05 and Vth = 0.95 as the
threshold values defining these acceptance intervals, i.e. the QBER and the visibilities V s must satisfy
QBER≤QBERth and Vs ≥ Vth for the attack to be successful. We remark, however, that these values are just
an example chosen for continuity with previous studies [37], which in turn selected them to reflect the
metrics attainable by state-of-the-art experiments [28, 29]. In any case, our analysis can be applied to any
other threshold values used to calculate the secret-key rate by considering a specific security proof.
Importantly, some commercial systems only check the average visibility Vave out of all the visibilities [29, 32].
Below we show that this provides Eve a crucial advantage for her attack.

Figure 5 illustrates the resulting gain G and QBER as a function of an error parameter ε, which is directly
related to the quality of the mode overlap at Eve’s beamsplitters. Specifically, we set t1 = t2 = 1− ε for USD1,
and t1 = t2 = t3 = t4 = 1− ε for USD2 (see appendix C). Here we focus on the mode overlap because our
results suggest that this is the main limiting experimental factor in Eve’s attack, while its effectiveness varies
only slightly when the experimental parameters that model other imperfections are changed over realistic
ranges of values (see appendix D for further details). In particular, for the simulations in figure 5, we assign
to other imperfections the values given in table 1. For simplicity, we consider the same dark-count
probability pd for all detectors, i.e. p

E
d = pDd = pMX

d = pd, with X∈{1,2}. Besides, we set the parameters of the
COW protocol, namely α and f, to typical values, also shown in table 1, and we fixMmax = 10, as we observe
essentially no improvement of the metrics when increasing this value, given that the intensity of Alice’s pulses
is kept within practical margins (further details are discussed in appendix D).

Remarkably, figure 5 shows that the gain G grows with ε. To understand this, we note that, for low values
of |α|2 and small imperfections, both USD measurements have a small probability of being conclusive.
However, as imperfections escalate, the probability of a conclusive measurement increases slightly due to a
slight rise in the click probability of Eve’s detectors. As expected, USD1 allows for a higher gain than USD2,
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Table 1. Protocol and experimental parameters used in the simulations. We consider the same dark-count probability pd for all
detectors, i.e. pEd = pDd = pMX

d = pd.

f |α|2 Mmax ϕ T δ ηE pd
0.155 0.1 10 1◦ 0.99 0.05 0.6 10−7

Figure 5. Resulting gain G and QBER for a COWQKD system in the presence of Eve’s attack as a function of the error parameter
ε. This parameter models Eve’s imperfect mode overlap in her measurement implementation. Solid lines correspond to USD1,
while dashed lines correspond to USD2. For the simulations we considered the parameters given in table 1.

Figure 6. Resulting visibilities for a COWQKD system in the presence of Eve’s attack as a function of the error parameter ε. This
parameter models Eve’s imperfect mode overlap in her measurement implementation. Solid lines correspond to USD1, while
dashed lines correspond to USD2. For the simulations we consider the parameters given in table 1.

as the former has been designed to maximize the probability of identifying data signals. As for the QBER, the
figure shows that Eve can keep it below the chosen threshold value of 0.05 for reasonably high values of ε.

The visibilities are illustrated in figure 6. We observe that those corresponding to sequences containing a
decoy signal are well below the threshold Vth, being this particularly evident for V2, which is in fact always
zero for USD1. This is expected, as USD1 is unable to identify |φ2⟩. Indeed, when receiving |φ2⟩, Eve will
mostly resend vacuum signals to Bob. Certainly, due to measurement errors, she could occasionally
misidentify Alice’s signal and resend Bob |φ0⟩ or |φ1⟩. However, these signals can trigger both detectors in
Bob’s monitoring line with equal probability, and consequently do not increase the visibility. Needless to say,
dark counts cannot increase the expected visibility either, as they occur with equal probability in both
detectors. Interestingly, even for USD2, the visibility V2 is notably low. The reason for this behavior is
twofold: first, the probability that Eve identifies |φ2⟩ is relatively low. Second, the probability of obtaining a
conclusive measurement outcome is also low for the considered value of |α|2, so most blocks processed by
Eve are expected to be short. Therefore, it is likely that those few |φ2⟩ that are correctly identified are located
at the edge of a block, where they are consequently erased due to Eve’s block-processing strategy.

Similar arguments apply to V22, V21, and V02 (which is equal to V21 due to the symmetry of the setups).
In these cases, however, the visibilities are non-zero even for USD1. This is because their corresponding
sequences are occasionally translated by Eve to the sequence ‘01’, which positively contributes to the visibility
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Figure 7.Maximum intensity that Alice can use while still being able to detect Eve’s attack, µmax, and upper bound of the key rate,
Kmax, for different channel transmittances. The lines labeled as ideal in the legend were computed by considering no
imperfections in Eve’s measurement besides the mode mismatch characterized by ε, while those labeled table used the parameters
in table 1. The dotted (dashed) black line is added as a reference to show linear (quadratic) scaling with ηch.

(see appendix E for further details). Remarkably, we note that USD2 performs better than USD1 for most
visibilities in this scenario. This is because the probability of erroneously identifying |φ0⟩ as |φ1⟩ (or
viceversa), given that Eve’s measurement is conclusive, is smaller in USD2. For the same reason, V01 is also
larger for USD2. This is relevant because Alice typically transmits the sequence ‘01’ much more frequently
than the other sequences, as f is usually set to a small value to increase the number of data rounds. As a
consequence, V01, the highest visibility, is also the largest contributor to the average visibility Vave, which
thus remains relatively high for reasonably small values of ε.

To compare the performance of Eve’s attack with respect to prior studies [37, 43], we compute here a
simple upper bound on the secret-key rate. With this in mind, let us conveniently refer to Eve’s attack as
undetectable if the following two conditions are met. Firstly, both the QBER and the average visibility Vave

observed for the attacked system must fall within their corresponding acceptance regions, i.e.
QBER<QBERth and Vave > Vth. Secondly, the gain G of the attacked system must equal or exceed that
expected from a legitimate system, which we will denote as Gā to indicate that no attack is launched. In
particular, in the simulations we consider a typical lossy channel model for which [43]

Gā = 1−
[
(1− f)e−ηBηchtB|α|2 + f e−2ηBηchtB|α|2

](
1− pDd

)2
, (35)

where ηB is the efficiency of Bob’s detectors, tB is transmittance of the beamsplitter used by Bob to separate
between data and monitoring line (see figure 1), ηch = 10−αchd/10 is the channel transmittance, d is the
channel distance (in km), and αch is the attenuation coefficient (in dB/km). Importantly, if for a given ηch
Eve’s attack meets the previous two conditions —i.e. if it is undetectable—it immediately follows that no
secret key can be distilled by Alice and Bob based on the observed metrics. Indeed, the secret-key rate K can
be simply upper bounded as [37, 43]

K< (1− f)ηchηBµmax ≡ Kmax, (36)

where µmax is the maximum value of µ for which Eve cannot perform an undetectable attack. We remark
that, in general, µmax depends on ηch. For example, for long distances Gā is expected to be low, and so it is
easier for Eve to guarantee the condition G≥ Gā. However, one could compensate the low Gā by reducing µ
to make Alice’s signals harder to identify, thereby reducing G. That is, µmax typically decreases with the
channel distance. In particular, previous works [37, 43] showed that µmax scales linearly with ηch when no
technological constrains are placed on Eve. Since ηch already appears in equation (36), the resulting scaling of
Kmax is quadratic with ηch.

To investigate if a technologically constrained eavesdropper can impose the same restrictive scaling, we
plot µmax and Kmax against ηch in figure 7. We consider two scenarios, which we evaluate for two different
values of ε each, and for both USD1 and USD2. In the first scenario, we assume that all of the devices used by
Eve and the legitimate users are ideal, and the only imperfection is the mode mismatch characterized by ε.
The second scenario considers the practical parameters introduced in table 1, and sets ηB = ηE = 0.6 (notice
that this is a rather conservative assumption, since Eve’s technological capabilities are expected to surpass
those of the legitimate users). We set f= 0.155 and tB = 0.9 in both instances. In terms of imperfect mode
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Figure 8. Fraction τ a (in percentage) of the rounds that can be attacked by Eve while maintaining QBER≤ 0.05 and Vave ≥ 0.95,
and percentage of sifted key EXTK that Eve can extract in such case, as a function of the error parameter ε and the transmission
distance d between Alice and Bob. The parameter εmodels Eve’s imperfect mode overlap in her measurement implementation.
For the simulations we set the attenuation coefficient of the channel to αch = 0.2 dB km−1 and consider the parameters given in
table 1, as well as the efficiency of Bob’s detectors to be equal to that of Eve’s. Note that the plots for the cases d= 30 km and d=
60 km in the right graph are almost overlapped for both USD1 and USD2, with the plot for d= 0 km just above them with some
amount of overlap too.

overlap, we run the simulations for ε= 0.002, which is sufficiently low to guarantee that Vave > Vth for both
USD1 and USD2 and typical values of α (see figure 6), and for ε= 0.004, which results in a Vave slightly
below Vth. The results are plotted for a range of ηch that corresponds to channel lengths between 30 and
300 km when considering a typical fiber-loss coefficient αch = 0.2 dB km−1.

In line with [37, 43], a quadratic scaling across the entire range of ηch is observed for both the USD1 and
USD2 when considering the ideal parameters and ε= 0.002. However, this is no longer the case when
considering the parameters from table 1, for which the quadratic scaling is only observed for up to
ηch ≈ 10−2.5. When a smaller ηch —i.e. longer channel—is considered, µmax becomes so small that Eve’s
attack can no longer fulfill the condition Vave > Vth. Therefore, as there is no need to reduce G to prevent
Eve’s attack from being undetectable, µmax remains constant from there on, and the scaling of Kmax turns
from quadratic to linear over ηch. Interestingly, even though the upper bound imposed by the USD1 is
stricter than that imposed for the USD2, the latter remains in the quadratic regime for longer. This is because
the performance of the USD2 is worse in terms of gain, but better in terms of visibility (see figures 5 and 6).

Moving to ε= 0.004, we see that the USD2 barely allows to maintain the upper bound in the quadratic
regime, and indeed the scaling is linear for ηch ⪆ 10−1.5. Naturally, larger errors in the implementation imply
that Eve requires a higher value of µ to successfully attack the system. Therefore, by keeping µ below this
level, it is guaranteed that Eve’s attack is detectable. Moreover, the implementation using USD1 is completely
unable to impose a bound on the secret-key rate at any distance. This is because the metrics under attack
improve with µ, but only up to a certain optimal point. This point may appear at a different value of µ for
each metric, and is a consequence of several factors (e.g. very high values of µmay result in lots of erroneous
clicks at Eve’s detectors, preventing her attack from remaining undetectable). This means that if for one of
these optimal intensities the metrics do not all fall within their acceptance regions, then the attack will be
unsuccessful at any other intensity, and so µmax →∞ and Kmax →∞.

It is clear that, according to our simple model, achieving a precise mode overlap within the beamsplitters
is crucial to the success of Eve’s attack. Nonetheless, an eavesdropper encountering challenges in this regard
might still manage to extract some amount of information by launching a partial attack, in which she acts
only on a reduced subset of the transmitted signals. Figure 8 illustrates, for different values of the channel
distance d, the fraction τ a of the rounds that can be attacked by Eve while still maintaining her success with
respect to the QBER and Vave, as well as the maximum percentage of sifted key that she can extract in this
scenario (see appendix F for details about how these quantities are computed). In particular, this means that
both metrics are maintained within their corresponding acceptance ranges. Here, we assume a typical
fiber-based channel with attenuation coefficient αch = 0.2 dB km−1. Figure 8 shows that a shorter channel
length results in a higher amount of rounds that can be attacked by Eve. This is to be expected, since the
metrics are calculated from all the rounds, those intercepted by Eve and those that are not. Consequently, the
better measurement statistics observed by Bob at short distances from the unattacked rounds favorably
impact the overall value of the metrics. Moreover, figure 8 also shows that the number of rounds that Eve
may attack falls very sharply for longer channel lengths once the metrics of her attack are outside of the
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acceptability ranges. Again, this is due to the degradation of the legitimate users’ metrics, as it is clear that in
the extreme case where the QBER and visibility obtained during the unattacked rounds are equal to the
threshold values QBERth and Vth, no additional error is permissible, and so Eve cannot attack any rounds
without becoming detectable unless her metrics are an improvement over those of Alice and Bob.
Nevertheless, the amount of sifted-key bits distilled during the unattacked rounds also increases at short
distances, meaning that the ratio of sifted key known to Eve decreases. For the scenario described by the
parameters in table 1, these two opposite effects result in very little variation of EXTK over the distance d, as
can be seen at the right in figure 8. Crucially, the figure shows that Eve’s attack has the potential to
compromise the entire secret key at low values of ε. What is more, even for higher values of ε, Eve can still
successfully attack an important fraction of the rounds and obtain part of the sifted key.

7. Conclusions

Security proofs of QKD typically consider that the eavesdropper’s capabilities are only limited by the laws of
quantum mechanics. Here, we have evaluated a less conservative scenario in which Eve is actually restricted
by current technology. In particular, we have studied the feasibility of zero-error attacks against COWQKD
in this framework. To do so, we have introduced two practical receivers to perform an USD measurement of
Alice’s emitted signals, which is the essential step of this type of attack.

Both proposed USD receivers are rather simple, and employ only linear passive optics, phase-space
displacement operations and threshold single-photon detectors. We have derived analytical expressions for
the expected values of the main metrics (i.e. the gain, the QBER and the visibilities) of a COWQKD protocol
assuming realistic experimental conditions, i.e. as a function of the most relevant device imperfections of
Eve’s equipment. In doing so, we have found that the most critical experimental parameter seems to be the
quality of interference between Alice’s weak coherent pulses and Eve’s strong light during her displacement
operation. Overall, our results indicate that zero-error attacks could break the security of COWQKD with
present-day technology, particularly if Alice and Bob only consider the observed average visibility in their
monitoring line, as it is done e.g. in commercial setups and long-distance implementations of this scheme.
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Appendix A. Model for the imperfect mode overlap

Let us consider a real beamsplitter with transmittance T in which the two input optical pulses are not
perfectly mode-matched, and therefore do not interfere perfectly (see figure 9). This imperfect mode overlap
can be simplistically modeled by splitting each of the two inputs into two modes [52]. One of these modes
from each pulse interferes as desired, while the two remaining modes do not interfere and only have their
amplitudes diminished by the beamsplitter. The fraction of light from the first (second) input that is
perfectly matched and therefore interferes in the beamsplitter is determined by the parameter t1 (t2), and the
total degree of overlap in the beamsplitter is defined asM := t1t2 [52].

In order to model the splitting of the first (second) input into two modes, namely one that is properly
matched, say âm (b̂m), and one that does not interfere, say âp (b̂q), an ideal beamsplitter of transmittance t1
(t2) can be used, as illustrated in figure 9. After that, the modes that are properly matched (i.e. âm and b̂m)
interfere in an ideal beamsplitter with the original transmittance T, resulting in a new mode, say m̂, at one
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Figure 9. Simple model to characterize the imperfect mode overlap at one output of a beamsplitter with two coherent pulses |α⟩
and |β⟩ as inputs. The original (blue) beamsplitter of transmittance T at the left, where pulses |α⟩ and |β⟩ do not perfectly
interfere, can be modeled as the network of perfectly mode-matched (orange) beamsplitters shown at the right. In this network,

the input state |α⟩ (|β⟩) is first split into two optical modes, âm and âp (b̂m and b̂q), according to the parameter t1 (t2) that

describes the corresponding beamsplitter transmittance. Subsequently, the optical modes âm and b̂m interfere in a beamsplitter

with transmittance T, while each of the modes âp and b̂q interferes with vacuum in a beamsplitter with transmittance also T,
resulting in the final output modes of the network p̂, m̂ and q̂.

output of the beamsplitter. The other modes (i.e. âp and b̂q) interfere with vacuum at ideal beamsplitters with
transmittance T, resulting in new modes, say p̂ and q̂, at one output of each beamsplitter.

Appendix B. Derivation of the metrics

Section 5 of the main text provides all the necessary expressions to compute the expected values of the
metrics for a system in the presence of Eve, given the configuration of the involved parties. It also includes a
step-by-step derivation of the gain, G. This appendix provides the most relevant intermediate results for the
derivation of both the QBER and visibilities, alongside with guidance on the interpretation of certain values.

B.1. QBER
Here we derive analytical expressions for the quantities nkey(k) and nerr(k) presented in equations (21)
and (23). The derivation of equations (22) and (24) is straightforward.

First, we note that both nkey(k) and nerr(k) admit a decomposition similar to that used for nclk(k) in
equation (14). That is, we can express

nkey (k) =
2∑

i=0

pEi|Ecnkey (k|i) ,

nerr (k) =
2∑

i=0

pEi|Ecnerr (k|i) ,

(B1)

where nkey(k|i) (nerr(k|i)) denotes the average number of key bits (erroneous key bits) distilled from a
conclusive-block of length k given that the first signal in the block is identified by Eve as |φi⟩.

Let Akey represent the event in which Alice emits a data signal, i.e. Akey = A0∪A1. Then, it follows that
pAkey = pA0 + pA1 , pAkey|Ej = pA0|Ej + pA1|Ej , and pAkey|Ec = pA0|Ec + pA1|Ec . Additionally, let perr|Bi be the
probability that Bob distills an incorrect key bit (i.e. a key bit different from the one sent by Alice), given that
he receives |φi⟩ from Eve. Note that this implies that the result of Eve’s measurement for that signal was Ei and
this signal was not discarded by her processing. Moreover, we define perr|Bc =

∑2
i=0 perr|Bi as the probability

that Bob distills an erroneous bit given that he received a signal different from |φvac⟩. Then, we have that

perr|B0 = pA0|E0
pDd
2

+ pA1|E0

(
1−

pDd
2

)
,

perr|B1 = pA0|E1

(
1−

pDd
2

)
+ pA1|E1

pDd
2
,

perr|B2 =
pA0|E2 + pA1|E2

2
.

(B2)
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With this, we can express both nkey(k|i) and nerr(k|i) in a recursive form. Specifically, we have that

nkey(k|0) = pE0|Ec
[
pAkey|E0

(
1+ pclk|Bv

)
+ pAkey|Ec(k− 2)

]
+ pE1|Ec

[(
pAkey|E0 + pAkey|E1

)
pclk|Bv + pAkey|Ec(k− 2)

]
+ pE2|Ec

[
nkey(k− 1|0)+ pAkey|E2pclk|Bv

]
,

nkey(k|1) = pE0|Ec
[
pAkey|E0 + pAkey|E1 + pAkey|Ec(k− 2)

]
+ pE1|Ec

[
pAkey|E1

(
1+ pclk|Bv

)
+ pAkey|Ec(k− 2)

]
+ pE2|Ec

[
nkey(k− 1|1)+ pAkey|E2pclk|Bv

]
,

nkey(k|2) = nkey(k− 1)+ pAkey|E2pclk|Bv ,

(B3)

and

nerr(k|0) = pE0|Ec
[
pAkey|E0perr|Bv + perr|B0 + perr|Bc(k− 2)

]
+ pE1|Ec

[(
pAkey|E0 + pAkey|E1

)
perr|Bv + perr|Bc(k− 2)

]
+ pE2|Ec

[
nerr(k− 1|0)+ pAkey|E2perr|Bv

]
,

nerr(k|1) = pE0|Ec
[
perr|B0 + perr|B1 + perr|Bc(k− 2)

]
+ pE1|Ec

[
perr|B1 + pAkey|E1perr|Bv + perr|Bc(k− 2)

]
+ pE2|Ec

[
nerr(k− 1|1)+ pAkey|E2perr|Bv

]
,

nerr(k|2) = nerr(k− 1)+ pAkey|E2perr|Bv .

(B4)

The starting points for the recursions above are

nkey(1|i) = pAkey|Eipclk|Bv ,

nerr(1|i) = pAkey|Eiperr|Bv ,

nkey(0) = 0,

nerr(0) = 0,
(B5)

for i ∈ {0,1}. By solving the recursions, one finally obtains equations (21) and (23).

B.2. Visibilities
We focus first on the visibility V2. According to equations (1) and (26), this visibility can be computed from
the values of nMX,2(k) and plastMX,2(k), with X ∈ {1,2}. It is straightforward to obtain the value of plastMX,2(k),
shown in equation (28), so we will focus here on nMX,2(k).

Let pEi|Aj,Ec denote the conditional probability that the outcome of Eve’s USD measurement is Ei, given
that Alice prepared the signal |φj⟩ and Eve’s measurement was conclusive. That is,

pEi|Aj,Ec =
pEi|Aj

pE0|Aj
+ pE1|Aj

+ pE2|Aj

, (B6)

for i, j ∈ {0,1,2}. Now, we express nMX,2(k) in the form

nMX,2 (k) =
2∑

i=0

pEi|EcnMX,2 (k|i) , (B7)

where nMX,2(k|i) is the average number of signals sent by Alice as |φ2⟩ that prompt a click in DMX within a
conclusive-block of length k, given that the first signal of the block is |φi⟩. We can write recursive expressions
to describe these quantities, such as

nM1,2(k|0) = pE0|Ec
[
pA2|E0

(
1+ pM1

d

)
+ pA2|Ec(k− 2)

]
+ pE1|Ec

[(
pA2|E0 + pA2|E1

)
pM1
d + pA2|Ec(k− 2)

]
+ pE2|Ec

[
nM1,2(k− 1|0)+ pA2|E2p

M1
d

]
,

nM1,2(k|1) = pE0|Ec
[
pA2|E0 + pA2|E1 + pA2|Ec(k− 2)

]
+ pE1|Ec

[
pA2|E1

(
1+ pM1

d

)
+ pA2|Ec(k− 2)

]
+ pE2|Ec

[
nM1,2(k− 1|1)+ pA2|E2p

M1
d

]
,

nM1,2(k|2) = nM1,2(k− 1)+ pA2|E2p
M1
d ,

(B8)
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and

nM2,2(k|0) = pE0|Ec
[
pA2|E0

(
1+ pM2

d

)
+ pA2|Ec

(
1− pE2|A2,Ec

)
(k− 2)

]
+ pE1|Ec

[(
pA2|E0 + pA2|E1

)
pM2
d + pA2|Ec

(
1− pE2|A2,Ec

)
(k− 2)

]
+ pE2|Ec

[
nM2,2(k− 1|0)+ pA2|E2p

M2
d

]
,

nM2,2(k|1) = pE0|Ec
[
pA2|E0 + pA2|E1 + pA2|Ec

(
1− pE2|A2,Ec

)
(k− 2)

]
+ pE1|Ec

[
pA2|E1

(
1+ pM2

d

)
+ pA2|Ec

(
1− pE2|A2,Ec

)
(k− 2)

]
+ pE2|Ec

[
nM2,2(k− 1|1)+ pA2|E2p

M2
d

]
,

nM2,2(k|2) = nM2,2(k− 1)+ pA2|E2p
M2
d ,

(B9)

being the starting points of the recursions

nMX,2 (1|i) =pA2|Eip
MX
d , nMX,2 (0) = 0, (B10)

for X ∈ {1,2} and i ∈ {0,1}. By solving the recursions, one obtains equation (27).
Now we focus on the visibilities V s of sequences s= s2s1 that contain two signals. From equation (29), we

have that these visibilities can be computed from the quantities nMX,s2s1(k), p
last
MX,s2s1(k) and pedgeMX,s2s1(k),

introduced in section 5.3. The quantities plastMX,s2s1(k) and pedgeMX,s2s1(k) are given in equation (33), and their
derivation is straightforward. Thus we focus on the derivation of nMX,s2s1(k).

Following a similar approach as with the previous metrics, first we write

nMX,s2s1 (k) =
2∑

i=0

pE2|EcnMX,s2s1 (k|i) , (B11)

and then we focus on finding the quantities nMX,s2s1(k|i). Now, let pMX,s2s1|Bc denote the conditional
probability that Alice originally prepares the sequence s2s1 and DMX registers a click in the time slot
associated with the interference between the last pulse of s1 and the first pulse of s2, given that Bob received a
non-vacuum signal in both rounds. This implies that Eve measured both signals conclusively and they were
not discarded during her processing. Then we have that

pM1,s2s1|Bc = pAs1 |EcpAs2 |Ec

[
1− pE0|As1 ,Ec

pE1|As2 ,Ec

(
1− pM1

d

)]
, (B12)

and

pM2,s2s1|Bc = pAs1 |EcpAs2 |Ec

[
pM2
d +

(
pE0|As1 ,Ec

+ pE1|As2 ,Ec
− 2pE0|As1 ,Ec

pE1|As2 ,Ec

)(
1− pM2

d

)]
. (B13)

Putting all together, we have that the recursive expressions for the required quantities, as well as the
starting points of the recursions, are given by

nM1,s2s1(k|0) = pE0|Ec

{
pAs1 |E0pAs2 |Ec

[
1− pE1|As2 ,Ec

(
1− pM1

d

)]
+ pAs1 |EcpAs2 |E0 + pM1,s2s1|Bc(k− 3)

}
+ pE1|Ec

{
pAs1 |E0pAs2 |Ec

[
1− pE1|As2 ,Ec

(
1− pM1

d

)]
+ pAs1 |EcpAs2 |E1

[
1− pE0|As1 ,Ec

(
1− pM1

d

)]
+ pM1,s2s1|Bc(k− 3)

}
+ pE2|Ec

[
nM1,s2s1(k− 1|0)+ pAs1 |EcpAs2 |E2p

M1
d

]
,

nM1,s2s1(k|1) = pE0|Ec

[
pAs1 |E1pAs2 |Ec + pAs1 |EcpAs2 |E0 + pM1,s2s1|Bc(k− 3)

]
+ pE1|Ec

{
pAs1 |E1pAs2 |Ec + pAs1 |EcpAs2 |E1

[
1− pE0|As1 ,Ec

(
1− pM1

d

)]
+ pM1,s2s1|Bc(k− 3)

}
+ pE2|Ec

[
nM1,s2s1(k− 1|1)+ pAs1 |EcpAs2 |E2p

M1
d

]
,

nM1,s2s1(k|2) = nM1,s2s1(k− 1)+ pAs1 |E2pAs2 |Ecp
M1
d ,

(B14)
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and

nM2,s2s1(k|0) = pE0|Ec

{
pAs1 |E0pAs2 |Ec

[
1− pE1|As2 ,Ec

(
1− pM2

d

)]
+ pAs1 |EcpAs2 |E0

[
pM2
d + pE0|As1 ,Ec

(
1− pM2

d

)]
+ pM2,s2s1|Bc(k− 3)

}
+ pE1|Ec

{
pAs1 |E0pAs2 |Ec

[
1− pE1|As2 ,Ec

(
1− pM2

d

)]
+ pAs1 |EcpAs2 |E1

[
1− pE0|As1 ,Ec

(
1− pM2

d

)]
+ pM2,s2s1|Bc(k− 3)

}
+ pE2|Ec

[
nM2,s2s1(k− 1|0)+ pAs1 |EcpAs2 |E2p

M2
d

]
,

nM2,s2s1(k|1) = pE0|Ec

{
pAs1 |E1pAs2 |Ec

[
pM2
d + pE1|As2 ,Ec

(
1− pM2

d

)]
+ pAs1 |EcpAs2 |E0

[
pM2
d + pE0|As1 ,Ec

(
1− pM2

d

)]
+ pM2,s2s1|Bc(k− 3)

}
+ pE1|Ec

{
pAs1 |E1pAs2 |Ec

[
pM2
d + pE1|As2 ,Ec

(
1− pM2

d

)]
+ pAs1 |EcpAs2 |E1

[
1− pE0|As1 ,Ec

(
1− pM2

d

)]
+ pM2,s2s1|Bc(k− 3)

}
+ pE2|Ec

[
nM2,s2s1(k− 1|1)+ pAs1 |EcpAs2 |E2p

M2
d

]
,

nM2,s2s1(k|2) = nM2,s2s1(k− 1)+ pAs1 |E2pAs2 |Ecp
M2
d ,

(B15)

and

nM1,s2s1(2|0) = pAs1 |E0

[
pE0|EcpAs2 |E0 + pE1|EcpAs2 |E1p

M1
d + pE2|EcpAs2 |E2p

M1
d

]
,

nM1,s2s1(2|1) = pAs1 |E1

[
pE0|EcpAs2 |E0 + pE1|EcpAs2 |E1 + pE2|EcpAs2 |E2p

M1
d

]
,

nM2,s2s1(2|0) = pAs1 |E0

[
pE0|EcpAs2 |E0 + pE1|EcpAs2 |E1p

M2
d + pE2|EcpAs2 |E2p

M2
d

]
,

nM2,s2s1(2|1) = pAs1 |E1

[
pE0|EcpAs2 |E0p

M2
d + pE1|EcpAs2 |E1 + pE2|EcpAs2 |E2p

M2
d

]
,

nM1,s2s1(0) = nM2,s2s1(0) = 0.

(B16)

Appendix C. Alternative USDmeasurement

In this appendix we introduce an alternative USD setup for Eve that, unlike the USD1, allows her to identify
the decoy signals |φ2⟩, but provides a lower overall success probability than USD1. We call this scheme USD2
and, as we did for the USD1, below we account for the most common imperfections in its model, and
calculate its corresponding measurement statistics.

The idealized optical scheme is shown in figure 10(a). First, an optical displacement D̂(−α/2) is applied
to the pulses generated by Alice, transforming each pulse |χ⟩ into |χ− α

2 ⟩. Subsequently, each displaced
pulse enters a 50:50 beamsplitter, where it interferes with a coherent state |α/2⟩. The resulting state |χ/

√
2⟩

(|(χ−α)/
√
2⟩) at the output port of the beamsplitter associated with constructive (destructive) interference

is then detected by DE+ (DE−). Importantly, this means that, in the absence of imperfections, a click in DE+

(DE−) can only occur when Alice prepares a coherent (vacuum) pulse.
Since Alice’s signals have two optical pulses, Eve has to implement this measurement twice, each time for

a different pulse. The correspondence between each measurement result Ei and the pattern of detections
needed to prompt it is shown in table 2.

The experimental setup for USD2 is shown in figure 10(b). As with USD1, in practice one can
approximate the optical displacement D̂(−α/2) with a beamsplitter of transmittance T≈ 1 together with an
interfering offset coherent pulse |β⟩ satisfying

β =−
√

T

1−T

α

2
. (C1)

With this choice of β, Eve’s approximated displacement operation performs the transformation
|0⟩ → |−

√
Tα/2⟩ and |α⟩ → |

√
Tα/2⟩. Since this introduces some loss, we adjust the amplitude of the

interfering signal |θ⟩ at the second beamsplitter to

θ =
√
T
α

2
. (C2)
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Figure 10. Alternative USD measurement setup for Eve, which we refer to as USD2. (a) Ideal optical model. (b) Proposed
experimental realization. The values of θ and β are given in the text.

Table 2. Assignments between click patterns and measurement outcomes for USD2. DE1± (DE2±) refers to the detector DE± acting in
the first (second) optical pulse of a signal. Symbols ‘✓’, ‘X’ and ‘–’ mean that, for each measurement result, the indicated detector clicks,
does not click, or is irrelevant, respectively.

DE1+ DE1− DE2+ DE2−

E0 — X X ✓
E1 X ✓ — X
E2 ✓ X ✓ X

E3 Otherwise

Figure 11.Model of the alternative USD measurement, USD2, including the main experimental imperfections. The beamsplitters
depicted in orange (blue) are those related to the behavior of the first (second) beamsplitter of the experimental setup. Each
output mode of the scheme marked with a black (white) circle is received by the detector DE+ (DE−). That is, the total intensity
received by each detector is the sum of the intensities in each of its corresponding input modes.

To fairly compare the performance of USD2 with that of USD1 in realistic scenarios, we consider the
same imperfections in both setups. This includes the possibility of a small phase shift ϕ of the incoming
pulses |χ⟩, the use of imperfect detectors with detection efficiency ηE and dark-count probability pEd,
intensity fluctuations in the coherent pulses |β⟩ and |θ⟩, and, lastly, a potentially imperfect mode overlap at
each of the beamsplitters. To characterize this latter effect we use again the simple model from [52].
Moreover, for simplicity, we assume that the percentage of deviation in intensity is equal for |β⟩ and |θ⟩, and
modifies their values, respectively, by

σ =
√
1+ δβ, ς =

√
1+ δθ, (C3)

where δ∈ [−1,∞).
The complete model with imperfections is depicted in figure 11. Similar to the analysis of USD1, the

parameter t1 (t2) denotes here the fraction of |χ⟩ (|σ⟩) that correctly interferes at the first beamsplitter.
Similarly, for the 50:50 beamsplitter, t3 (t4) represents the fraction of light in the first (second) input port of
this beamsplitter that correctly interferes. For simplicity, we disregard any interference effect in the second
beamsplitter between those optical modes that did not correctly interfere in the first one.

The total intensity received by DE+ (DE−) given that Alice sends |χ⟩, namely µE+|χ (µE−|χ), is the sum of
the intensities at each independent optical mode within the constructive (destructive) output port of the
second beamsplitter. That is, µE±|χ =

∑
x |κx±|2, where |κx±⟩ denotes the equivalent coherent state in the
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output mode x±, with x ∈ {p,q,mp,mm,mq} (see figure 11). Therefore, we have that

µE±|χ =
T

4

[
2|χ|2 +(1+ δ) |α|2

(
1∓

√
t2t3t4

)
− 2

√
t1 (1+ δ)

(√
t2 ∓

√
t3t4

)
Re

{
χα∗eiϕ

}]
. (C4)

Let pE±|χ=0 (pE±|χ=α) be the probability that DE± does not click given that Alice prepares |0⟩ (|α⟩). This
probabilities can be straightforwardly computed from pE±|χ = (1− pEd)exp{−ηEµE±|χ}. Then, by
particularizing equation (C4) to each possible input state, we obtain

µE±|χ=0 =
T

4
|α|2 (1+ δ)

(
1∓

√
t2t3t4

)
,

µE±|χ=α =
T

4
|α|2

[
2+(1+ δ)

(
1∓

√
t2t3t4

)
− 2

√
t1 (1+ δ)

(√
t2 ∓

√
t3t4

)
cosϕ

]
.

(C5)

Finally, given the assignments presented in table 2, it is immediate to calculate the probabilities pEi|Aj
for

the setup USD2 as

pE0|A0
= pE1|A1

= pE−|χ=αpE+|χ=0

(
1− pE−|χ=0

)
,

pE0|A1
= pE1|A0

= pE−|χ=0pE+|χ=α

(
1− pE−|χ=α

)
,

pE0|A2
= pE1|A2

= pE−|χ=αpE+|χ=α

(
1− pE−|χ=α

)
,

pE2|A0
= pE2|A1

= pE−|χ=αpE−|χ=0

(
1− pE+|χ=α

)(
1− pE+|χ=0

)
,

pE2|A2
= p2

E−|χ=α

(
1− pE+|χ=α

)2
,

pE3|Ai
= 1−

2∑
j=0

pEj|Ai
for i ∈ {0,1,2} .

(C6)

Appendix D. Effect of other imperfections besides modemismatch

As mentioned in the main text, the crucial imperfection that determines the success of Eve’s attack is the
mode mismatch at her beamsplitters. To show this, we examine here how the remaining protocol and
experimental parameters affect the expected value of the metrics in the presence of the attack. In particular,
we fix all these parameters to the values used in the main text (see table 1) with the exception of the
parameter we want to study in each particular case. Besides, as done in the main text, the parameters that
quantify the quality of the mode overlap at Eve’s beamsplitters are set to t1 = t2 = t3 = t4 = 1− ε, where here
we pick ε= 2 · 10−3. This value of ε sufficiently low to ensure that both USD1 and USD2 succeed if all the
other parameters are fixed to the values shown in table 1. Once again, for simplicity, we consider the same
dark-count probability pd for all detectors, i.e. p

E
d = pDd = pMX

d = pd, with X∈{1,2}.

D.1. Effect of the intensity of Alice’s pulses
First, we investigate the influence of the intensity µ= |α|2 of Alice’s pulses on Eve’s attack performance. This
is shown in figure 12, where the expected values of the metrics as a function of the intensity µ are displayed.
Not surprisingly, the gain rises in alignment with µ, as the probability of a conclusive measurement rises as
well. The QBER and visibilities also improve as µ increases, as a higher gain reduces the impact of dark
counts on Bob’s detectors on these metrics. Notably, the QBER stays well below the critical threshold for all
evaluated intensities.

Concerning the visibilities, we note that those computed for USD2 show a continuous growth with µ
across the entire considered range. This is because this scheme can identify the three signals emitted by Alice,
and the probability of a conclusive measurement increases with µ. However, for USD1, the visibility of
sequences containing decoy signals only improves at low µ, stabilizing once the impact of the dark counts at
Bob’s detector becomes negligible. In particular, we note that the visibilities V02 and V21 reach this regime
quicker than V22, as the sequence ‘22’ is more frequently resent as a vacuum signal.

D.2. Effect of the maximum length of the conclusive block,Mmax

Next we focus on the maximum length of a conclusive block,Mmax, which serves Eve to cap the memory
resources required to record all the measurement results, as well as the time delay she has to introduce in the
channel to apply her block processing strategy.
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Figure 12. Gain, QBER and visibilities vs the intensity of Alice’s pulses µ= |α|2.

Figure 13. Relative difference of the gain (dG), QBER (dQBER) and visibilities (dVs ), in percentage, for different values ofMmax

when compared to the same metrics withMmax →∞, computed as in equation (D1), The intensity has been set to µ= 1 and the
caseMmax →∞ is approximated byMmax = 106.

Previous analysis in [37, 43] asserted that the variation of the metrics withMmax is negligible for values of
Mmax > 10 when considering practical values of α. To confirm this, we plot in figure 13 the relative difference
dm(Mmax) with respect to each metricm ∈ {G,QBER,Vs} for several values ofMmax, where

dm (Mmax) :=
m(Mmax)−m(∞)

m(∞)
, (D1)

andm(Mmax) is defined as the value of the metricm if Eve’s blocks are limited toMmax pulses, whilem(∞)
represents the value of that metric when there is no limit to the length of Eve’s blocks (we approximate this by
settingMmax = 106).

The results shown in figure 13 are obtained considering µ= 1 (that is, |α|= 1), since this is close to the
upper end of the practical values used in realistic COW implementations. It can be seen that the gain loses
around a 35% of its value for USD1 when settingMmax = 2, and around 25% for USD2. Nevertheless, the
relative difference for values ofMmax > 8 is near zero, showing thatMmax = 10 indeed attains a similar
performance as the asymptotic case, in terms of the gain.

On the other hand, the value of the QBER only varies up to≈1% of its value whenMmax = 2, rapidly
approaching zero difference whenMmax increases, which proves that this metric does not degrade a lot when
using short blocks. This is to be expected, as the actual probability of Eve introducing errors does not change
for longer blocks, so the variation comes only from a lower significance of the effect of dark counts in Bob.

Lastly, we see that the change in the visibilities overMmax is quite small for USD1, and indeed the scale of
this variation is similar to the one observed for the QBER. This is because this variation stems, once again,
from an increase of dark counts in Bob when Eve sends only short blocks. However, the visibilities in USD2
do degrade significantly when the length of the blocks is more limited. In particular, the visibilities that deal
with the decoy signal are the most affected, with V2 degrading up to 100% whenMmax = 2. The reason is
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Figure 14. Gain, QBER and visibilities vs the transmittance of Eve’s asymmetric beamsplitter, T.

that shorter blocks impose an artificial bias against the retransmission of decoy signals by Eve, even when
properly identified, due to her processing strategy. In the limit ofMmax = 2, in fact, Eve never resends |φ2⟩, as
this signal is translated into |φvac⟩ when it is placed at the edge of a block. Thus, the decreased probability of
resending a decoy signal makes the behavior of the USD2 similar to that observed in previous sections, where
the blocks were short due to the small intensity, and therefore most of the signals sent to Bob when Alice
sends |φ2⟩ correspond to Eve’s misidentification of |φ2⟩ by one of the data signals, which naturally leads to
poor visibility results.

In any case, it can be highlighted from figure 13 that all metrics are very close to their asymptotic value
when settingMmax = 10, even when Alice sends pulses with a relatively high intensity, and therefore it is
sufficient for Eve to use this configuration in practical scenarios.

D.3. Effect of the transmittance of the asymmetric beamsplitter, T
Now we investigate the performance of Eve’s attack as a function of the transmittance T of her asymmetric
beamsplitter, which she uses to approximates an optical displacement in both USD measurement schemes.
While this approximation is only accurate when T≈ 1, the simulations indicate that the value of T has a
minimal impact on the attack’s feasibility.

This is illustrated in figures 14(a) and (b), where the metrics are plotted against 1−T, within the range
(1−T) ∈ [10−3,0.5]. The simulations indicate that, as T decreases, so does the expected gain in both
schemes, which is attributed to the small loss introduced by the approximate displacement. Importantly,
however, the QBER and visibilities are largely unaffected by changes in T within a reasonable range, and both
the QBER and Vave remain acceptable even at T= 0.5. This stability is due to our specific choice of β.

Indeed, one could alternatively set β =− α√
1−T

(β =− α
2
√
1−T

) for USD1 (USD2), and the resulting

scheme would still approximate the desired displacement for T≈ 1. For instance, for USD1, this leads to the
transformation |0⟩ → |−α⟩ and |α⟩ → |(

√
T− 1)α⟩. This choice avoids incurring into additional losses

(thus resulting in a higher gain). However, this comes at the cost of increasing the probability of erroneous
clicks in Eve’s detector, making it a less convenient option for her. This is illustrated in figure 15, where we
consider these alternative values of β, and call the resulting schemes as USD1∗ and USD2∗.

D.4. Effect of the phase shift,ϕ
Figure 16 shows the dependency of the expected values of the metrics on the phase shift ϕ. Since the phase
shift ϕ only has an impact when Alice transmits a coherent pulse, the decoy signal will be clearly influenced
the most. In fact, the probability of misidentifying |φ2⟩ as a data signal increases with ϕ. As a consequence,
signals that are never (in USD1) or rarely (in USD2) identified for low ϕ, result in conclusive measurements
when this parameter increases, which in turn increases the gain. Of course, the probability of misidentifying
a data signal also grows, which leads to an increment of the QBER, as shown in figure 16. Nevertheless, we
note that the QBER remains relatively low even for phase shifts of several degrees.

Similarly, the visibilities generally decrease with ϕ, and in this case Vave does fall below the acceptance
threshold when ϕ ⪆ 2.5◦. Interestingly, V22 grows with ϕ until it reaches a certain point at which it stabilizes.
This is again due to the increasing probability of misidentifying |φ2⟩ as one of the data signals. Note that,
since the sequence ‘01’ is favored by Eve’s processing, the visibility of any two-signal sequence is expected to
be nonzero even if the outcome of the USD measurements are totally random. In particular, in that extreme
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Figure 15. Gain, QBER and visibilities vs the transmittance of Eve’s asymmetric beamsplitter, T, for the alternative schemes
USD1∗ and USD2∗. In particular, we consider that β =− α√

1−T
(β =− α

2
√

1−T
) for USD1∗ (USD2∗).

Figure 16. Gain, QBER and visibilities vs the phase shift of pulses received by Eve, ϕ (in degrees).

scenario, the sequence ‘22’ could be identified as any other possible sequence by Eve, but the only two-signal
block that she resends to Bob is ‘01’, which always triggers the correct detector in the monitoring line, and
hence increases V22.

D.5. Effect of the intensity deviation, δ
Figure 17 illustrates the impact of small deviations in the intensities of Eve’s pulses, quantified with the
parameter δ, on the protocol metrics. Since δ can take both negative and positive values, as expressed in
equations (4) and (C3), we plot it here in the range [−0.3,0.3], which corresponds to a deviation of±30%
over the intensity of the pulses.

Interestingly, the effects of positive or negative deviations are relatively distinct. In particular, the gain
increases with δ through the entire depicted range. This is because higher intensities of |σ⟩ and |ς⟩ result in
larger click probabilities, especially in the case where Alice sends vacuum, since then Eve’s signals are the only
source of energy in the circuit. Notably, the QBER remains below its corresponding threshold even for
significantly high deviations, although the results are worse for negative values of δ. This is because the
probability of Eve observing a click when she is not supposed to (i.e. when a precise interference is intended
to cancel the signal out) increases roughly as much for both positive and negative deviations. On the other
hand, the same probability given that Eve is indeed supposed to observe a click grows with larger intensities,
so the effect is relatively worse for negative deviations. Finally, figure 17 shows that the visibilities are more
sensitive to δ. They exhibit a behavior similar to that shown in figures 6 and 16, with a sharper decrease in
the value of the average visibility Vave obtained for negative deviations, for similar reasons as for the QBER.
In particular, Vave is above the proposed acceptance threshold for deviations in the approximate range
δ ∈ (−0.08,0.1), which is still a relatively large margin.
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Figure 17. Gain, QBER and visibilities vs the intensity deviation of |β⟩ (and |θ⟩ in USD2), δ.

Figure 18. Gain, QBER and visibilities vs the efficiency of Eve’s detectors, ηE.

D.6. Effect of the parameters of Eve’s detectors
As expected, when ηE approaches zero, all metrics exhibit a degradation. This is because, in this scenario, Eve
is sending a reduced number of signals to Bob, leading to a predominance of dark counts in Bob’s system.
This is illustrated in figure 18. The remaining conclusions drawn from this figure align with those inferred
from figure 12. This is because the loss introduced by the nonideal detection efficiency of Eve’s detector can
be practically translated into an effective change in the intensity of Alice’s signals to ηEµ.

The dependence of the metrics on the dark-count rate pEd of Eve’s detectors is shown in figure 19. The
gain slightly increases for high values of pEd, as more erroneous clicks in the detectors lead to more conclusive
measurements. Naturally, this comes with a degradation of the QBER and visibilities, although this
degradation is quite gentle. In fact, the average visibility exhibits notable resilience to practical values of pEd,
only falling below Vth=0.95 in the approximate range pEd ⪆ 5 · 10−5. As for the remaining visibilities, their
behavior is relatively similar to the variation with ε, explained more in depth in appendix E, albeit much
more mild in magnitude.

D.7. Effect of the parameters of Bob’s detectors
Regarding Bob’s detectors, we disregard the effect of their detection efficiency, as Eve can always make them
click by resending him pulses with sufficiently high intensity. Thus, we focus on the impact of the dark
counts.

Figure 20(a) shows the variation of the gain and QBER with the dark-count probability pDd at DD.
Naturally, the gain rises with pDd , as it directly increases the number of clicks at Bob’s data line. Moreover, the
QBER also grows, as more random clicks lead to more errors. Unsurprisingly, this dependence is stronger
than that observed with pEd, as the dark counts at Bob’s detectors more directly cause errors than those at
Eve’s detectors. Indeed, for our particular choice of experimental and protocol parameters, an attack with
USD2 remains viable only for pDd ⪅ 4 · 10−5, while USD1 can sustain an attack for any plotted value of pDd .
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Figure 19. Gain, QBER and visibilities vs the dark-count probability of Eve’s detectors, pEd . For simplicity, here we assume the
same dark-count probability for all of them.

Figure 20. Gain, QBER and visibilities vs the probability of dark counts in Bob’s corresponding detectors (pDd = pBd for the gain
and QBER, pM1

d = pM2
d = pBd for the visibilities).

Regarding the visibilities, we consider for simplicity that both detectors at the monitoring line are equal, and
so pM1

d = pM2
d = pMX

d . As expected, just like the QBER, all of them get worse as pMX
d increases. Still, for the

parameters we consider here, the average visibility remains sufficiently high given that pMX
d ⪅ 3 · 10−6.

D.8. Effect of the probability of preparing the decoy signal, f
Finally, we investigate the effect of the decoy probability f on the metrics. As shown in figure 21, the gain
decreases to nearly zero for large values of f. This is not only because Eve finds it more challenging to
conclusively measure the decoy signal, but also and more importantly, because Eve’s processing needs data
signals to be located at the edges of the blocks. Thus, a small number of data signals sent by Alice means that
most conclusive measurements come from decoy signals, which cannot be resent on their own. On the other
hand, a smaller pEc also leads to a greater effect of clicks due to dark counts in Bob over the metrics, and
indeed the QBER slightly grows for large values of f.

Regarding the visibilities, figure 21 showcases how the average visibility falls towards 0 for increasing
values of f. This is because the probability of sending sequences that involve a decoy increases, which makes
visibilities observing these sequences to have more weight over the final result of Vave. On the other hand, the
values of the individual visibilities do not decrease as significantly, and in fact, they remain essentially
constant for the case of USD1. For USD2, however, those visibilities that depend on Alice sending a decoy
signal slightly decrease with f. The reason for this is somewhat counter-intuitive. As more decoy signals are
sent, blocks processed by Eve become smaller, so relatively more of the decoy signals that are not turned to
vacuum come from erroneously measuring them as data signals, thus leading to a decreased visibility.

In any case, selecting a high value of f also severely decreases the secret-key rate of the protocol, as less
data signals are emitted. Indeed, typical experiments of COW-QKD use a value of f quite low, around 0.15.
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Figure 21. Gain, QBER and visibilities vs the transmission frequency of decoy signals, f.

Appendix E. Behavior of the visibilities V22, V21, and V02

When ε is very small, most instances of |φ2⟩ (all of them if we consider the strategy USD1) are resent to Bob
as vacuum signals, so the dark counts of Bob’s detectors bring the visibilities down to zero.

As ε increases, so does the probability of conclusively (albeit erroneously) identifying a decoy signal |φ2⟩
as |φ0⟩ or |φ1⟩. In this scenario, Eve sends Bob more non-vacuum pulses, and relatively less clicks in the
monitoring line are attributed to the dark counts. In the regime where dark counts are, comparatively to
signal clicks, very low, the vacuum pulses sent by Eve—outside and at the edges of conclusive-blocks—can be
ignored. Since USD1 never returns E2, and USD2 has a significantly higher probability of misidentifying |φ2⟩
as a data signal than correctly identifying |φ2⟩ for sufficiently high ε, we can analyze the visibilities, in this
regime, by focusing on the four possible sequences of data signals that Eve can erroneously identify: ‘00’, ‘01’,
‘10’ and ‘11’. In particular, when Bob receives ‘01’, only DM1 can click due to the interference of two coherent
pulses. The sequence ‘10’ contains two vacuum pulses in the intermediate time slots, so no clicks can be
observed at Bob (aside from those from dark counts). Finally, both ‘00’ and ‘11’ interfere |0⟩ and |γ⟩,
resulting in a click in both DM1 and DM2 with very high probability.

Let us focus now in V22. We notice that, whenever Alice sends ‘22’, Eve misidentifies this sequence as one
of the four previous sequences with equal probability, due again to the symmetry of the setup. This means
that DM1 clicks with probability 3/4, while DM2 clicks with probability 2/4 (including possible double clicks in
both detectors). Therefore, by using the definition of the visibility, we find that V22 ≈ 0.2 for large values of ε.

Similar arguments apply to V02. When Alice sends the sequence ‘02’, we can distinguish between two
different scenarios. If ε is high enough such that the dark counts are not the main source of clicks in the
monitoring line, but the probability of mistaking one data signal for another is still sufficiently low, then Eve
mostly misidentifies the original sequence as ‘00’ or ‘01’ with equal probability, and therefore V02 ≈ 1/3.
When ε increases, misidentifications of the data signal |φ0⟩ of the sequence ‘02’ happen more often, and thus
also the sequences ‘10’ and ‘11’, which implies that the visibility decreases. Analogous reasoning applies to
V21.

In addition, from figure 6 we observe that the range of values of ε where dark counts are relevant is larger
for USD2 than for USD1, due to the fact that USD1 offers a larger pEc , and therefore more non-vacuum
pulses are resent. Moreover, this range is also considerably larger for V22 than for V02, since two consecutive
decoy signals are less likely to yield a conclusive measurement outcome than a single one. We also notice that
USD2 performs better than USD1 for large values of ε. The reason for this behavior is that the probability of
erroneously identifying |φ0⟩ as |φ1⟩ (or viceversa), given that the measurement is conclusive, is slightly
smaller in USD2.

Appendix F. Partial attack

As shown in section 6, the average visibility Vave in the presence of Eve’s attack is above the acceptance
threshold only for rather low values of the parameter ε. Nevertheless, it is still possible for Eve to remain
undetected while obtaining partial information about the secret key. To this end, she can perform her attack
on only a fraction of the rounds, so that the statistics from the unattacked rounds enhance the expected
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values of the protocol metrics, compensating for the errors introduced by her attack. Here we explain how we
evaluate the expected value of the metrics when Eve executes the attack on a fraction τ a of the rounds.

We assume that the rounds under attack are consistently clustered in large groups of consecutive rounds,
allowing us to disregard any possible border effects between the unattacked and attacked signals. Then we
have that the gain is simply given by G= τaGa +(1− τa)Gā, where the superscript ‘a’ indicates that it is
calculated for the system that is being attacked all the protocol rounds, as described in section 5, while ‘ā’
indicates that the metric is calculated in the absence of Eve. The result of Gā can be computed from
equation (35). To calculate the QBER, on the other hand, we have to find the values of Nkey and Nerr.
Precisely, we can express these asNkey = τaNa

key +(1− τa)Nsigpākey andNerr = τaNa
err +(1− τa)Nsigpāerr, where

pākey = (1− f)
[
1−

(
1− pDd

)2
e−ηBηchtB|α|2

]
,

pāerr = (1− f)
[
1+

(
1− pDd

)
e−ηBηchtB|α|2

] pDd
2
,

(F1)

are the probabilities of these events in the absence of Eve. Similarly, we can modify the values of the
visibilities by making NMX,s = τaNa

MX,s +(1− τa)NsigpāMX,s, where

pāM1,2

f
=

pāM1,s2s1

pAs1
pAs2

= 1−
(
1− pM1

d

)
e−2ηBηch(1−tB)|α|2 ,

pāM2,2

f
=

pāM2,s2s1

pAs1
pAs2

= pM2
d ,

(F2)

are the probabilities corresponding to the relevant clicks when Eve does not act on the channel.
In order to compute the ratio of sifted key, EXTK, that Eve can extract by enabling her attack during a

fraction τ a of all the communication rounds, one can observe that

EXTK =
τaNa

key

τaNa
key +(1− τa)Nsigpākey

. (F3)
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