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We aim to quantify the spread of a direct contact infectious disease that confers permanent 
immunity after recovery, within a non-isolated finite and homogeneous population. Prior to the 
onset of the infection and to prevent the spread of this disease, a proportion of individuals was 
vaccinated. But the administered vaccine is imperfect and can fail, which implies that some 
vaccinated individuals get the infection when being in contact with infectious individuals. We 
study the evolution of the epidemic process over time in terms of a continuous-time Markov chain, 
which represents a general SIR model with an additional compartment for vaccinated individuals. 
In our stochastic framework, we study two bi-dimensional variables recording infection events, 
produced by a single infectious individual or by the whole infected group, taking into account if 
the newly infected individual was previously vaccinated or not. Theoretical schemes and recursive 
algorithms are derived in order to compute joint probability mass functions and factorial moments 
for these random variables. We illustrate the applicability of our techniques by means of a set of 
numerical experiments.

1. Introduction

Outbreaks of infectious diseases have been almost constant throughout history, killing millions of individuals around the world. 
For example, the Black Death, also known as the Plague, was a bubonic plague pandemic that struck Europe and Asia in the 
mid-1300𝑠. It killed around 200 million people and is considered the deadliest pandemic in human history. In 1520, another devas-

tating pandemic was caused by smallpox. Although the origin of this disease is unknown, there is evidence of its existence at a very 
early time, since remains have been found in Egyptian mummies dating from the third century BC [1]. Even in the modern era, epi-

demic outbreaks are a serious threat to public health. SARS, MERS, avian influenza, Ebola and COVID-19 epidemics, among others, 
have reminded the world of the risk associated with infectious diseases outbreaks and of the importance of improving knowledge of 
the dynamics of disease spread in order to develop control strategies to stop or reduce transmission.

Vaccination is one of the most powerful tools to prevent infectious diseases. Vaccines can provide immunity against a disease, 
by helping the immune system to recognize the pathogen that causes the infection, without the need for the host to be exposed 
to it. Over the last two centuries, vaccination has enabled smallpox to be eradicated, it has reduced global child mortality rates 
preventing countless birth defects and lifelong disabilities [2,3]. However, lifelong protection is not always guaranteed by vaccines, 
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and the duration of protection against a given pathogen depends both on the type of infectious agent and the type of vaccine. 
In some occasions, several doses are necessary to guarantee immunity in the long-term, and even vaccine boosters or constant 
pulse vaccination programs in the population are required for some pathogens [4–6]. In other occasions, as it is assumed in this 
work, vaccines are imperfect and some vaccinated individuals eventually become infected after being exposed to the corresponding 
pathogen [7].

As vaccination is an effective method to prevent the spread of infection, mathematical compartmental epidemic models, with or 
without a specific vaccination compartment, have been developed to study the efficacy of vaccination strategies to control relevant 
diseases. Typically, the interest is in studying the efficacy of different vaccination strategies for certain relevant diseases [8–14]. In 
the literature, some papers deal with compartmental epidemic models assuming 100% perfect vaccines [15–20] but many others 
consider vaccines that are imperfect, and where vaccinated individuals can be infected by the infectious pathogen with a certain 
probability [21–23].

Under the imperfect vaccine hypothesis, SIS and SIR models have been analyzed from a deterministic approach [24,25], but also 
from a stochastic one. In more detail, an SIS model with imperfect vaccine is studied following a stochastic approach in [26,27]. In 
[4,28], authors study a stochastic SIS model with external source of infection and quantify the efficacy of several preventive measures 
surrounding vaccination. For a closed population, authors in [29], study the stationary distribution in a stochastic SVIR-type model. 
In [30], the length of an outbreak is studied for a non-linear incidence rate model and in [31], a latency period is included in the 
model.

In [32], we introduced an SVIR model with an external source of infection and imperfect vaccine, and we studied the time to 
reach a total number 𝑀 of infections, in order to quantify timescales for disease spread. In the present paper, we plan to extend 
the study initiated in [32] to measure the potential transmission of the infectious disease, in terms of alternative quantities to the 
basic reproduction number, 𝑅0, or the control reproduction number, 𝑅𝑐 , that record the expected number of individuals that a single 
infectious one is able to infect either with or without control measures, respectively [34–38].

When we are dealing with small to moderate-sized populations (such as hospitals, schools or prisons), the basic reproduction and 
the control numbers tend to overestimate the real number of infections caused by a single individual while infectious. In stochastic 
Markovian models, we can correct this excess by focusing on exact and population reproduction numbers 𝑅𝑒0 and 𝑅𝑝 [28,33]. These 
random variables provide exact measures to quantify the expansion of an epidemic process and present an interesting property: they 
can be defined at all times and not only at the time of invasion, when the typical infectious individual is introduced into a completely 
susceptible population.

Hence, we reformulate the treatment of 𝑅𝑒0 and 𝑅𝑝 initiated in [28,33], for evaluating infection spread in our stochastic SVIR 
model. This refinement consists of analyzing the above stochastic measures in terms of two different contributions each, by distin-

guishing between infections caused across either susceptible or vaccinated pools of individuals. In this way, one can better understand 
the contribution that susceptible and vaccinated individuals play in the overall transmission through the corresponding reproduction 
numbers.

The rest of the paper is organized as follows. Section 2 contains the description of the stochastic SVIR model with an external 
source of infection and imperfect vaccine. In Sections 3 and 4, we define and analyse the random variables 𝑅𝑒0 and 𝑅𝑝, and split 
them into two different contributions to account for the type of individuals becoming infected (i.e., either if they are vaccinated or 
not). Section 5 contains a set of numerical experiments to illustrate our techniques, while concluding remarks are given in Section 6.

2. Model description

We consider a non-isolated homogeneously mixed finite and constant size population, where an infectious disease is spreading. 
The pathogen is transmitted by direct contact with infected individuals, who acquire natural and long-life immunity once recovered. 
To model the evolution of the epidemic we consider the stochastic Susceptible-Vaccinated-Infected-Recovered (SVIR) type model 
introduced in [32]. Thus, individuals are classified as susceptible (S), vaccinated (V), infected (I) or recovered (R).

As the population is not isolated, infections occur through direct contact with infected individuals either inside or outside the 
population. Within the population and during their infectious period, any infected individual contacts susceptible ones following a 
time-homogeneous Poisson process with rate 𝛽; additional to this, there is another Poisson flow, of infection rate 𝜉, representing 
contacts with external infectious individuals.

As a control measure, we consider that a proportion of the population has received a vaccine against the underlying contagious 
disease. However, the administered vaccine is not perfect and there is a risk that a vaccinated individual develops the disease. So, we 
denote by ℎ the probability that a vaccinated individual can be infected after exposed to the pathogen. We assume that, no matter 
if they were previously vaccinated or not, all infected individuals develop immunity after recovery, which takes an exponentially 
distributed time with rate 𝛾 .

Changes in health state imply movement of individuals among compartments in the model. Fig. 1 is a schematic diagram repre-

senting these changes.

For 𝑡 ≥ 0, let 𝑉 (𝑡), 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) represent the number of vaccinated, susceptible, infected and recovered individuals, 
respectively. Since we consider a constant size population, all these variables are linked as 𝑉 (𝑡) + 𝑆(𝑡) + 𝐼(𝑡) +𝑅(𝑡) =𝑁 , where 𝑁
is the total population size. Hence, the evolution on the number of individuals in each compartment is represented by the following 
three-dimensional CTMC
2

 = {𝑋(𝑡) = (𝑉 (𝑡), 𝑆(𝑡), 𝐼(𝑡)) ∶ 𝑡 ≥ 0}.
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Fig. 1. Transitions between compartments in the SVIR model.

To describe its state space we assume, without loss of generality, that at 𝑡 = 0 there are not recovered individuals. So, the initial 
state is expressed as 𝑋(0) = (𝑉 (0), 𝑆(0), 𝐼(0)) = (𝑣0, 𝑠0, 𝑁 − 𝑣0 − 𝑠0), for integers 𝑣0 and 𝑠0 such that 0 ≤ 𝑣0 + 𝑠0 ≤𝑁 , and the state 
space of  is

𝖲 = {(𝑣, 𝑠, 𝑖) ∶ 0 ≤ 𝑣 ≤ 𝑣0,0 ≤ 𝑠 ≤ 𝑠0,0 ≤ 𝑣+ 𝑠+ 𝑖 ≤𝑁}. (1)

The dynamics of the epidemic over time is directly related to transitions of  across states in 𝖲. In particular, given a state 
(𝑣, 𝑠, 𝑖) ∈ 𝖲, the following three events can occur: (a) An infected individual contacts a susceptible one who becomes infected; which 
occurs with rate

𝜆𝑠,𝑖 =
(
𝛽𝑖

𝑁
+ 𝜉

)
𝑠. (2)

(b) Due to a vaccine failure, the contact between an infectious and a vaccinated individual results in a new case of infection; which 
occurs with rate

𝜂𝑣,𝑖 = ℎ
(
𝛽𝑖

𝑁
+ 𝜉

)
𝑣. (3)

(c) An infected individual recovers; this occurs with rate

𝛾𝑖 = 𝛾𝑖.

Summarizing, the infinitesimal transition rates of  are given by

𝑞(𝑣,𝑠,𝑖),(𝑣∗ ,𝑠∗ ,𝑖∗) =

⎧⎪⎪⎨⎪⎪⎩

𝜂𝑣,𝑖 if (𝑣∗, 𝑠∗, 𝑖∗) = (𝑣− 1, 𝑠, 𝑖+ 1),
𝛾𝑖, if (𝑣∗, 𝑠∗, 𝑖∗) = (𝑣, 𝑠, 𝑖− 1),
−𝑞𝑣,𝑠,𝑖, if (𝑣∗, 𝑠∗, 𝑖∗) = (𝑣, 𝑠, 𝑖),
𝜆𝑠,𝑖, if (𝑣∗, 𝑠∗, 𝑖∗) = (𝑣, 𝑠− 1, 𝑖+ 1),
0, otherwise,

(4)

where 𝑞𝑣,𝑠,𝑖 = 𝜂𝑣,𝑖 + 𝜆𝑠,𝑖 + 𝛾𝑖, with 𝑞−1
𝑣,𝑠,𝑖

representing the average sojourn time spent at each state (𝑣, 𝑠, 𝑖) ∈ 𝖲.

To develop the analysis of variables appearing in the following sections we are going to use the division in levels and sublevels of 
the state space 𝖲 described in [32], which leads us to represent the infinitesimal generator of the Markov chain in a block-tridiagonal 
form associated to a Quasi Birth-and-Death (QBD) process. That is,

𝖲 = ∪𝑣0
𝑣=0𝑙(𝑣),

where 𝑙(𝑣) = ∪𝑠0
𝑠=0𝑙(𝑣, 𝑠), for 0 ≤ 𝑣 ≤ 𝑣0, and 𝑙(𝑣, 𝑠) = {(𝑣, 𝑠, 𝑖) ∈ 𝖲 ∶ 0 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠}, for 0 ≤ 𝑠 ≤ 𝑠0.

As we stated in [32], when 𝜉 > 0 the external flow of infections makes that disease can appear in a population where no infectious 
individuals are present. In that case, we are dealing with a finite state Markov chain that contains a single absorbing state, (0, 0, 0), 
representing a population where all individuals have been recovered from the disease. Therefore, the theory of finite CTMCs ensures 
that, in the long-term, the stochastic process will become absorbed into this state in a finite time with probability one, and the 
expected time to absorption is finite. This asymptotic theoretical result means that the disease will affect the whole population 
during a finite, but not necessarily short, expected time.

But even though the outbreak is expected to end in a finite time, first stages of the epidemic process are crucial to adopt sanitary 
or disease containment measures. Hence, the study of transmission of the infectious disease from a single individual or from a 
controlled group of infectious individuals will be the subject matter of following sections.

3. The bi-dimensional exact transmission number, (𝑹𝑽

𝒆𝟎, 𝑹
𝑺

𝒆𝟎)

In this section we will study the number of infections caused by a single infectious individual, affecting either susceptible or 
vaccinated individuals. We typically consider initial states where the infectious individual is the one starting the outbreak, called 
patient zero or index case in an epidemiological context, although our calculations require computing these stochastic descriptors 
for more general initial states.

Authors in [33,39] present, for stochastic Markovian models, two different approaches to evaluate the probability mass function 
of the number of secondary infections caused directly from the index case. In the present study, we will take the advantage of the 
3

approach described in [33] to derive systems of linear equations, whose solution can be computed using stable recursive procedures 
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suitable to handle large state spaces, as the ones considered in the illustrative examples in Section 5. The novel approach of our 
present work is to distinguish between transmission to susceptible and vaccinated individuals when analysing this measure.

Obviously, infection transmission depends on the initial size of the susceptible and vaccinated groups. Assuming that the outbreak 
starts from a state (𝑣0, 𝑠0, 1), with 𝑣0 + 𝑠0 =𝑁 − 1, to lighten notation, we omit references to initial state and simply write 𝑅𝑉

𝑒0 and 
𝑅𝑆
𝑒0 to describe the number of vaccinated or susceptible individuals, respectively, directly infected by the index case, until he/she 

recovers.

We notice that a measure of the spread of the epidemic process in the entire population can be recorded from these variables as

𝑅𝑒0 =𝑅𝑉𝑒0 +𝑅
𝑆
𝑒0, (5)

whose expected value provides a stochastic analogue of the control reproduction number, 𝑅𝑐 , that considers vaccination as a control 
measure.

To study the bidimensional random vector (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0), we mark the index case and count the number of infections caused by 

him/her during his/her infectious period. The CTMC evolves in the following subset of the state space

�̂� = {(𝑣, 𝑠, 𝑖) ∈ 𝖲 ∶ 1 ≤ 𝑖 ≤𝑁 − 𝑣− 𝑠}.

We can decompose contagion rates in Eq. (2) and Eq. (3) by distinguishing between secondary cases caused by the index case or 
from other infectious individuals, if any. More specifically, we have

𝜆𝑠,𝑖 = 𝜆∗𝑠 + 𝜆𝑠,𝑖,

𝜂𝑣,𝑖 = 𝜂∗𝑣 + 𝜂𝑣,𝑖,

where

𝜂∗𝑣 = ℎ
𝛽

𝑁
𝑣, 𝜂𝑣,𝑖 = ℎ

(
𝛽(𝑖− 1)
𝑁

+ 𝜉
)
𝑣,

𝜆∗𝑠 =
𝛽

𝑁
𝑠, 𝜆𝑠,𝑖 =

(
𝛽(𝑖− 1)
𝑁

+ 𝜉
)
𝑠.

As we are dealing with an infectious disease that confers permanent immunity taking place in a constant finite size population, 
the maximum number of infections produced by the index case can be at most of 𝑣0 vaccinated and 𝑠0 susceptible individuals. Thus, 
𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0 have finite supports.

To study the joint distribution we focus on probability mass and generating functions, and factorial moments of the bi-dimensional 
random vector (𝑅𝑉

𝑒0, 𝑅
𝑆
𝑒0), conditioned to the initial state (𝑣0, 𝑠0, 1). As the CTMC evolves in time, the current state of the process 

changes at each transition. Therefore, we introduce general probability and generating functions, and moments for (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0), con-

ditioned to any state (𝑣, 𝑠, 𝑖) ∈ �̂�, representing the current state of the CTMC at any given time. We point out that these random 
variables record the number of new cases of infection, within the susceptible and vaccinated pools, which take place during the 
infectious period of the marked infectious individual.

We can obtain recursive schemes whose solution will provide the desired descriptor (i.e., mass probability, generating function 
and moments) for the particular initial state 𝑋(0) = (𝑣0, 𝑠0, 1) of interest. In particular, we define

𝑥𝑙,𝑘
𝑣,𝑠,𝑖

= 𝑃
{
𝑅𝑉
𝑒0 = 𝑙,𝑅

𝑆
𝑒0 = 𝑘 |𝑋(0) = (𝑣, 𝑠, 𝑖)

}
, for 0 ≤ 𝑙 ≤ 𝑣,0 ≤ 𝑘 ≤ 𝑠,

𝜑𝑉 ,𝑆
𝑣,𝑠,𝑖

(𝑧,𝑤) =𝐸
[
𝑧
𝑅𝑉
𝑒0𝑤

𝑅𝑆
𝑒0 |𝑋(0) = (𝑣, 𝑠, 𝑖)

]
,

=
𝑣∑
𝑟=0

𝑠∑
𝑗=0
𝑧𝑟𝑤𝑗𝑃

{
𝑅𝑉
𝑒0 = 𝑟,𝑅

𝑆
𝑒0 = 𝑗 |𝑋(0) = (𝑣, 𝑠, 𝑖)

}
,

for |𝑧| ≤ 1, |𝑤| ≤ 1,

𝑚𝑙,𝑘
𝑣,𝑠,𝑖

=𝐸
[
Π𝑙−1
𝑟=0(𝑅

𝑉
𝑒0 − 𝑟)Π

𝑘−1
𝑗=0 (𝑅

𝑆
𝑒0 − 𝑗) |𝑋(0) = (𝑣, 𝑠, 𝑖)

]
, for 𝑙, 𝑘 ≥ 0,

where empty products are considered to be equal to 1 here and in what follows.

To derive the mass probability distribution of (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0), first we consider some basic features of these random variables condi-

tioned to (𝑣, 𝑠, 𝑖) ∈ �̂�. First, we notice that due to the support of this random vector being finite, we have

𝑃 {𝑅𝑉
𝑒0 < +∞,𝑅𝑆

𝑒0 < +∞ |𝑋(0) = (𝑣, 𝑠, 𝑖) } = 1. (6)

Consequently, 
∑𝑣
𝑙=0

∑𝑠
𝑘=0 𝑥

𝑙,𝑘
𝑣,𝑠,𝑖

= 1, for any initial state (𝑣, 𝑠, 𝑖) ∈ �̂�. Moreover, it is clear that

𝑥𝑙,𝑘
𝑣,𝑠,𝑖

= 0, for 𝑙 > 𝑣 and/or 𝑘 > 𝑠. (7)

Finally, when all individuals are either infectious or recovered, new contagions are not possible, so that for 1 ≤ 𝑖 ≤𝑁 we obtain the 
4

following boundary conditions
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𝑥0,00,0,𝑖 = 1. (8)

Next, we need to introduce some notation. For any number of vaccinated and susceptible individuals with 0 ≤ 𝑣 ≤ 𝑣0 and 0 ≤ 𝑠 ≤
𝑠0, and integers 𝑙, 𝑘 ≥ 0, we denote

𝐱𝑙,𝑘𝑣,𝑠 = (𝑥𝑙,𝑘
𝑣,𝑠,1,… , 𝑥𝑙,𝑘

𝑣,𝑠,𝑁−𝑣−𝑠)
𝑇 ,

�̂�𝑙,𝑘𝑣,𝑠 = (𝑥𝑙,𝑘
𝑣,𝑠,2,… , 𝑥𝑙,𝑘

𝑣,𝑠,𝑁−𝑣−𝑠)
𝑇 .

In what follows, 𝟏𝑗 and 𝟎𝑗 will represent j-dimensional all-ones and all-zeroes column vectors, respectively. We also denote 
𝚪𝑗 = 𝛾𝟏𝑗 .

Theorem 1 shows how the organisation by levels and sub-levels of the state space of the Markov chain,  , allows us to obtain 
block-diagonal structured matrices which facilitate the computation of the linear systems of equations that need to be solved in order 
to compute the desired probabilities 𝑥𝑙,𝑘

𝑣,𝑠,𝑖
.

Theorem 1. For any level 𝑙(𝑣), 0 ≤ 𝑣 ≤ 𝑣0, sub-level 𝑙(𝑣, 𝑠), 0 ≤ 𝑠 ≤ 𝑠0 and integers 𝑙, 𝑘 ≥ 0, joint probability mass functions of the 
conditioned random vector (𝑅𝑉

𝑒0, 𝑅
𝑆
𝑒0) can be computed as the solution of the following system of linear equations:

𝐱0,00,0 = 𝟏𝑁, (9)

𝐱𝑙,𝑘𝑣,𝑠 = 𝟎𝑁−𝑣−𝑠, for 𝑙 > 𝑣 and/or 𝑘 > 𝑠, (10)

𝐀𝑣,𝑠𝐱𝑙,𝑘𝑣,𝑠 = 𝛿𝑙,0𝛿𝑘,0𝚪𝑁−𝑣−𝑠 + (1 − 𝛿𝑣,0)
(
(1 − 𝛿𝑙,0)𝜂∗𝑣 �̂�

𝑙−1,𝑘
𝑣−1,𝑠 + �̃�𝑣,𝑠�̂�

𝑙,𝑘
𝑣−1,𝑠

)
+(1 − 𝛿𝑠,0)

(
(1 − 𝛿𝑘,0)𝜆∗𝑠 �̂�

𝑙,𝑘−1
𝑣,𝑠−1 + �̃�𝑣,𝑠�̂�

𝑙,𝑘
𝑣,𝑠−1

)
, (11)

where 𝛿𝑎,𝑏 denotes, here and in what follows, the Kronecker’s delta function which takes the value 1 if 𝑎 = 𝑏, and 0 otherwise. Matrices 
appearing in Equations (9)-(11) are described as follows: 𝐀𝑣,𝑠 is a bi-diagonal square matrix of dimension 𝑁 − 𝑣 − 𝑠 with non-null entries 
given by

𝐀𝑣,𝑠(𝑖, 𝑗) =
{

−(𝑖− 1)𝛾, if 𝑗 = 𝑖− 1 and 2 ≤ 𝑖 ≤𝑁 − 𝑣,
𝑞𝑣,𝑠,𝑖, if 𝑗 = 𝑖 and 1 ≤ 𝑖 ≤𝑁 − 𝑣.

Diagonal matrices �̃�𝑣,𝑠 and �̃�𝑣,𝑠 have dimension (𝑁 − 𝑣 − 𝑠), with non-null diagonal elements given by �̃�𝑣,𝑠(𝑖, 𝑖) = 𝜆𝑠,𝑖, and �̃�𝑣,𝑠(𝑖, 𝑖) = 𝜂𝑣,𝑖, 
for any 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠.

Proof. We note that Equations (9) and (10) are the matrix version of Equations (8) and (7), respectively. For a given initial state, and 
conditioning on the first transition, we get the following relationship among probabilities of the conditioned bi-dimensional random 
vector

𝑥𝑙,𝑘
𝑣,𝑠,𝑖

= 𝛿𝑙,0𝛿𝑘,0
𝛾

𝑞𝑣,𝑠,𝑖
+ (1 − 𝛿𝑣,0)

(
(1 − 𝛿𝑙,0)

𝜂∗𝑣
𝑞𝑣,𝑠,𝑖

𝑥𝑙−1,𝑘
𝑣−1,𝑠,𝑖+1 +

𝜂𝑣,𝑖

𝑞𝑣,𝑠,𝑖
𝑥𝑙,𝑘
𝑣−1,𝑠,𝑖+1

)
+ (1 − 𝛿𝑠,0)

(
(1 − 𝛿𝑘,0)

𝜆∗𝑠
𝑞𝑣,𝑠,𝑖

𝑥𝑙,𝑘−1
𝑣,𝑠−1,𝑖+1 +

𝜆𝑠,𝑖

𝑞𝑣,𝑠,𝑖
𝑥𝑙,𝑘
𝑣,𝑠−1,𝑖+1

)
+ (1 − 𝛿𝑖,1)(𝑖− 1) 𝛾

𝑞𝑣,𝑠,𝑖
𝑥𝑙,𝑘
𝑣,𝑠,𝑖−1. (12)

Equation (12) is equivalent to

− (1 − 𝛿𝑖,1)(𝑖− 1)𝛾𝑥𝑙,𝑘
𝑣,𝑠,𝑖−1 + 𝑞𝑣,𝑠,𝑖𝑥

𝑙,𝑘
𝑣,𝑠,𝑖

=

+ 𝛿𝑙,0𝛿𝑘,0𝛾 + (1 − 𝛿𝑣,0)
(
(1 − 𝛿𝑙,0)𝜂∗𝑣𝑥

𝑙−1,𝑘
𝑣−1,𝑠,𝑖+1 + 𝜂𝑣,𝑖𝑥

𝑙,𝑘

𝑣−1,𝑠,𝑖+1

)
+ (1 − 𝛿𝑠,0)

(
(1 − 𝛿𝑘,0)𝜆∗𝑠𝑥

𝑙,𝑘−1
𝑣,𝑠−1,𝑖+1 + 𝜆𝑠,𝑖𝑥

𝑙,𝑘

𝑣,𝑠−1,𝑖+1

)
. (13)

For 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠, Equation (11) is the matrix form representation of Equation (13), which completes the proof. □

The loop-free structure of the transition events of the continuous Markov chain (see Fig. 1) allows one to compute joint probability 
mass functions by solving the equations in Theorem 1 in an efficient and ordered way, via Algorithm 1. In particular, one starts from 
the boundary conditions (9) and (10), and applies the following expression derived from Equation (11):

𝐱𝑙,𝑘𝑣,𝑠 = (𝐀𝑣,𝑠)−1
(
𝛿𝑙,0𝛿𝑘,0𝚪𝑁−𝑣−𝑠 + (1 − 𝛿𝑣,0)

(
(1 − 𝛿𝑙,0)𝜂∗𝑣 �̂�

𝑙−1,𝑘
𝑣−1,𝑠 + �̃�𝑣,𝑠�̂�

𝑙,𝑘
𝑣−1,𝑠

)
(

∗ 𝑙,𝑘−1 𝑙,𝑘
))
5

+ (1 − 𝛿𝑠,0) (1 − 𝛿𝑘,0)𝜆𝑠 �̂�𝑣,𝑠−1 + �̃�𝑣,𝑠�̂�𝑣,𝑠−1 . (14)
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Algorithm 1 Computation of the joint mass function of the vector (𝑅𝑆
𝑒0, 𝑅

𝑉
𝑒0), for any level 𝑙(𝑣), 0 ≤ 𝑣 ≤ 𝑣0, sub-level 𝑙(𝑣, 𝑠), 0 ≤ 𝑠 ≤ 𝑠0.

Input: 𝑁, 𝑣0, 𝑠0, 𝛽, 𝜉 and 𝛾 .

Step 1: Set 𝑘 = 0, 𝑙 = 0, 𝑣 = 0 and 𝑠 = 0 and 𝐱0,0
𝑣,𝑠

= 𝟏𝑁−𝑣−𝑠 .

Step 1a: Set 𝑠 = 𝑠 + 1, compute 𝐱𝑙,𝑘
𝑣,𝑠

from (14).

Step 1b: If 𝑠 < 𝑠0 , go to Step 1a.

Step 1c: Set 𝑣 = 𝑣 + 1. If 𝑣 ≤ 𝑣0 , set 𝑠 = −1 and go to Step 1b.

Step 2: Set 𝑙 = 𝑙 + 1.

Step 2a: Set 𝐱𝑙,𝑘
𝑣,𝑠

= 𝟎𝑁−𝑣−𝑠 for 0 ≤ 𝑣 ≤ 𝑙 − 1, 0 ≤ 𝑠 ≤ 𝑠0 .

Step 2b: Set 𝑣 = 𝑙 and 𝑠 = 0.

Step 2c: Compute 𝐱𝑙,𝑘
𝑣,𝑠

from (14).

Step 2d: If 𝑠 < 𝑠0 , set 𝑠 = 𝑠 + 1 and go to Step 2c.

Step 2e: If 𝑣 < 𝑣0 , set 𝑣 = 𝑣 + 1, 𝑠 = 0 and go to Step 2c.

Step 2f: If 𝑙 < 𝑣0 , go to Step 2.

Step 3: Set 𝑘 = 𝑘 + 1 and 𝑙 = 0 and 𝑣 = 0.

Step 3a: Set 𝐱𝑙,𝑘
𝑣,𝑠

= 𝟎𝑁−𝑣−𝑠 for 0 ≤ 𝑠 ≤ 𝑘 − 1.

Step 3b: Set 𝑠 = 𝑘.

Step 3c: Compute 𝐱𝑙,𝑘
𝑣,𝑠

from (14).

Step 3d: Set 𝑠 = 𝑠 + 1, if 𝑠 < 𝑠0 go to step 3c.

Step 3e: If 𝑣 < 𝑣0 , set 𝑣 = 𝑣 + 1 and go to Step 3a.

Step 4: Set 𝑙 = 𝑙 + 1.

Step 4a: Set 𝐱𝑙,𝑘
𝑣,𝑠

= 𝟎𝑁−𝑣−𝑠 for 0 ≤ 𝑣 ≤ 𝑙 − 1, 0 ≤ 𝑠 ≤ 𝑠0 .

Step 4b: Set 𝑣 = 𝑙 and 𝑠 = 𝑘.

Step 4c: Compute 𝐱𝑙,𝑘
𝑣,𝑠

from (14).

Step 4d: If 𝑣 < 𝑣0 , set 𝑣 = 𝑣 + 1 and go to step 4c.

Step 4e: If 𝑙 < 𝑣0 , go to step 4.

Step 4f: If 𝑘 < 𝑠0 go to step 3.

Output: 𝐱𝑙,𝑘
𝑣0 ,𝑠0

, for 0 ≤ 𝑘 ≤ 𝑣0 and 0 ≤ 𝑙 ≤ 𝑠0 .

Next, we are interested in computing joint factorial moments of the conditioned random vector (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0). Such moments could 

be obtained from the probability mass functions already computed. However, we propose here to obtain them more directly, through 
Theorem 2, with the help of joint gene-rating functions, 𝜑𝑉 ,𝑆

𝑣,𝑠,𝑖
(𝑧, 𝑤). This approach involves simpler expressions and therefore the 

algorithmic implementation is associated with shorter execution times. In particular, factorial moments can be obtained by applying 
the following property which involves their corresponding generating function, 𝜑𝑉 ,𝑆

𝑣,𝑠,𝑖
(𝑧, 𝑤), for |𝑧| ≤ 1, |𝑤| ≤ 1,

𝑚𝑙,𝑘
𝑣,𝑠,𝑖

=
𝜕𝑙+𝑘𝜑𝑉 ,𝑆

𝑣,𝑠,𝑖
(𝑧,𝑤)

𝜕𝑧𝑙𝜕𝑤𝑘

||||𝑤=1,𝑧=1 for 𝑙, 𝑘 ≥ 0. (15)

We note that, due to the result shown in Equations (6) and (15), the following boundary condition is obtained

𝜑𝑉 ,𝑆
𝑣,𝑠,𝑖

(1,1) =𝑚0,0
𝑣,𝑠,𝑖

= 1. (16)

Directly by definition, we obtain the following marginal moments

𝑚𝑙,00,𝑠,𝑖 = 0, for 𝑙 > 0, (17)

𝑚0,𝑘
𝑣,0,𝑖 = 0, for 𝑘 > 0. (18)

In the absence of vaccinated and susceptible individuals within the population, the marked infectious individual cannot cause any 
infections. Thus, the following boundary condition is derived

𝑚𝑙,𝑘0,0,𝑖 = 0, for 𝑙, 𝑘 > 0. (19)

Subsequently, we introduce the following notation that involves the mentioned factorial moments for any number of vaccinated and 
susceptible individuals, 𝑣 and 𝑠, respectively, with 0 ≤ 𝑣 ≤ 𝑣0, 0 ≤ 𝑠 ≤ 𝑠0, and integers 𝑙, 𝑘 ≥ 0:

𝐦𝑙,𝑘
𝑣,𝑠 = (𝑚𝑙,𝑘

𝑣,𝑠,1,… ,𝑚𝑙,𝑘
𝑣,𝑠,𝑁−𝑣−𝑠)

𝑇 ,

�̂�𝑙,𝑘
𝑣,𝑠 = (𝑚𝑙,𝑘

𝑣,𝑠,2,… ,𝑚𝑙,𝑘
𝑣,𝑠,𝑁−𝑣−𝑠)

𝑇 .

Theorem 2. For any level 𝑙(𝑣), 0 ≤ 𝑣 ≤ 𝑣0, sub-level 𝑙(𝑣, 𝑠), 0 ≤ 𝑠 ≤ 𝑠0, and integers 𝑙, 𝑘 ≥ 0, the joint factorial moments of the conditioned 
random vector (𝑅𝑉

𝑒0, 𝑅
𝑆
𝑒0) can be computed as the solution of the following system of linear equations

𝐦0,0
𝑣,𝑠 = 𝟏𝑁−𝑣−𝑠, (20)

𝐦𝑙,0
0,𝑠 = 𝟎𝑁−𝑣−𝑠, for 𝑙 > 0, (21)

𝐦0,𝑘
𝑣,0 = 𝟎𝑁−𝑣−𝑠, for 𝑘 > 0, (22)
6

𝐦𝑙,𝑘
0,0 = 𝟎𝑁, for 𝑙, 𝑘 > 0, (23)
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𝐀𝑣,𝑠𝐦𝑙,𝑘
𝑣,𝑠 = (1 − 𝛿𝑣,0)

(
𝑙𝜂∗𝑣�̂�

𝑙−1,𝑘
𝑣−1,𝑠 +𝐄𝑣,𝑠�̂�

𝑙,𝑘

𝑣−1,𝑠

)
(24)

+(1 − 𝛿𝑠,0)
(
𝑘𝜆∗𝑠�̂�

𝑙,𝑘−1
𝑣,𝑠−1 +𝐃𝑣,𝑠�̂�

𝑙,𝑘
𝑣,𝑠−1

)
,

where matrices appearing in Equation (24) are described as follows: 𝐀𝑣,𝑠 is defined in Theorem 1. 𝐃𝑣,𝑠 and 𝐄𝑣,𝑠 are diagonal matrices of 
dimension (𝑁 − 𝑣 − 𝑠), with non-null diagonal elements given by 𝐃𝑣,𝑠(𝑖, 𝑖) = 𝜆𝑠,𝑖, and 𝐄𝑣,𝑠(𝑖, 𝑖) = 𝜂𝑣,𝑖, for any 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠.

Proof. For 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠, Equation (20) is the matrix form representation of Equation (16). Equations (21)-(23) are the matrix 
version of Equations (17)-(19), respectively. Appealing to first-step arguments, we have that joint generating functions, 𝜑𝑉 ,𝑆

𝑣,𝑠,𝑖
(𝑧, 𝑤), 

of the conditioned vector (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0) satisfy the following expressions for any (𝑣, 𝑠, 𝑖) ∈ �̂�

𝑞𝑣,𝑠,𝑖𝜑
𝑉 ,𝑆
𝑣,𝑠,𝑖

(𝑧,𝑤) = 𝛾 + (1 − 𝛿𝑣,0)
(
𝜂∗𝑣𝑧𝜑

𝑉 ,𝑆
𝑣−1,𝑠,𝑖+1(𝑧,𝑤) (25)

+ 𝜂𝑣,𝑖𝜑
𝑉 ,𝑆

𝑣−1,𝑠,𝑖+1(𝑧,𝑤)
)
+ (1 − 𝛿𝑠,0)

(
𝜆∗𝑠𝑤𝜑

𝑉 ,𝑆

𝑣,𝑠−1,𝑖+1(𝑧,𝑤)

+𝜆𝑠,𝑖𝜑
𝑉 ,𝑆
𝑣,𝑠−1,𝑖+1(𝑧,𝑤)

)
+ (1 − 𝛿𝑖,1)𝛾(𝑖− 1)𝜑𝑉 ,𝑆

𝑣,𝑠,𝑖−1(𝑧,𝑤).

By differentiating Equation (25) with respect to 𝑧 repeatedly 𝑙 times (𝑙 ≥ 1) and to 𝑤 repeatedly 𝑘 times (𝑘 ≥ 1), and evaluating at 
𝑧 = 1 and 𝑤 = 1, we have the following system of equations for the factorial moments of (𝑅𝑉

𝑒0, 𝑅
𝑆
𝑒0) conditioned to state (𝑣, 𝑠, 𝑖) ∈ �̂�:

𝑞𝑣,𝑠,𝑖𝑚
𝑙,𝑘
𝑣,𝑠,𝑖

= (1 − 𝛿𝑖,1)𝛾(𝑖− 1)𝑚𝑙,𝑘
𝑣,𝑠,𝑖−1 (26)

+(1 − 𝛿𝑣,0)
(
𝑙𝜂∗𝑣𝑚

𝑙−1,𝑘
𝑣−1,𝑠,𝑖+1 + 𝜂𝑣,𝑖𝑚

𝑙,𝑘
𝑣−1,𝑠,𝑖+1

)
+(1 − 𝛿𝑠,0)

(
𝑘𝜆∗𝑠𝑚

𝑙,𝑘−1
𝑣,𝑠−1,𝑖+1 + 𝜆𝑠,𝑖𝑚

𝑙,𝑘

𝑣,𝑠−1,𝑖+1

)
.

Equation (26) is equivalent to

−(1 − 𝛿𝑖,1)𝛾(𝑖− 1)𝑚𝑙,𝑘
𝑣,𝑠,𝑖−1 + 𝑞𝑣,𝑠,𝑖𝑚

𝑙,𝑘
𝑣,𝑠,𝑖

= (1 − 𝛿𝑣,0)
(
𝑙𝜂∗𝑣𝑚

𝑙−1,𝑘
𝑣−1,𝑠,𝑖+1 (27)

+𝜂𝑣,𝑖𝑚
𝑙,𝑘
𝑣−1,𝑠,𝑖+1

)
+ (1 − 𝛿𝑠,0)

(
𝑘𝜆∗𝑠𝑚

𝑙,𝑘−1
𝑣,𝑠−1,𝑖+1 + 𝜆𝑠,𝑖𝑚

𝑙,𝑘
𝑣,𝑠−1,𝑖+1

)
,

for 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠, Equation (24) is its matrix representation, which completes the proof. □

Algorithm 2 allows us to compute the joint factorial moments of the conditioned random vector (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0) in an iterative and 

ordered way. It exploits the following expression which is equivalent to Equation (24):

𝐦𝑙,𝑘
𝑣,𝑠 = (𝐀𝑣,𝑠)−1

(
(1 − 𝛿𝑣,0)

(
𝑙𝜂∗𝑣�̂�

𝑙−1,𝑘
𝑣−1,𝑠 +𝐄𝑣,𝑠�̂�

𝑙,𝑘

𝑣−1,𝑠

)
(28)

+(1 − 𝛿𝑠,0)
(
𝑘𝜆∗𝑠�̂�

𝑙,𝑘−1
𝑣,𝑠−1 +𝐃𝑣,𝑠�̂�

𝑙,𝑘

𝑣,𝑠−1

))
.

Algorithm 2 Computation of the factorial moments of order 𝑙𝑚𝑎𝑥 ≥ 0 and 𝑘𝑚𝑎𝑥 ≥ 0 of the vector (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0), for any level 𝑙(𝑣), 

0 ≤ 𝑣 ≤ 𝑣0, sub-level 𝑙(𝑣, 𝑠), 0 ≤ 𝑠 ≤ 𝑠0.

Input: 𝑁, 𝑣0, 𝑠0, 𝛽, 𝜉, 𝛾 , 𝑙𝑚𝑎𝑥 and 𝑘𝑚𝑎𝑥 .

Step 1: Set 𝑘 = 0, 𝑙 = 0 and 𝐦0,0
𝑣,𝑠

= 𝟏𝑁−𝑣−𝑠 , for 0 ≤ 𝑣 ≤ 𝑣0 , 0 ≤ 𝑠 ≤ 𝑠0 .

Step 2: Set 𝑙 = 𝑙 + 1, 𝑣 = 0 and 𝐦𝑙,0
0,𝑠 = 𝟎𝑁−𝑣−𝑠 for 0 ≤ 𝑠 ≤ 𝑠0 .

Step 3: set 𝑣 = 𝑣 + 1, 𝑠 = 0 and compute 𝐦𝑙,𝑘
𝑣,𝑠

from (28).

Step 3a: If 𝑠 < 𝑠0 , set 𝑠 = 𝑠 + 1 and compute 𝐦𝑙,𝑘
𝑣,𝑠

from (28) and go to Step 3a.

Step 3b: If 𝑣 < 𝑣0 , go to Step 3.

Step 3c: If 𝑙 < 𝑙𝑚𝑎𝑥 , go to Step 2.

Step 4: Set 𝑘 = 𝑘 + 1 and 𝑙 = 0.

Step 4a: Set 𝑣 = 0.

Step 4b: Set 𝑠 = 0, if 𝑙 = 0 or 𝑣 = 0 set 𝐦0,𝑘
𝑣,0 = 𝟎𝑁−𝑣−𝑠 , else compute 𝐦𝑙,𝑘

𝑣,𝑠
from (28).

Step 4c: If 𝑠 < 𝑠0 , set 𝑠 = 𝑠 + 1 and compute 𝐦𝑙,𝑘
𝑣,𝑠

from (28) and go to Step 4c.

Step 4d: If 𝑣 < 𝑣0 , set 𝑣 = 𝑣 + 1 and go to Step 4b.

Step 5: If 𝑙 < 𝑙𝑚𝑎𝑥 , set 𝑙 = 𝑙 + 1 and go to Step 4a.

Step 6: If 𝑘 < 𝑘𝑚𝑎𝑥 go to Step 4.

Output: 𝐦𝑙,𝑘 , for 0 ≤ 𝑘 ≤ 𝑘 and 0 ≤ 𝑙 ≤ 𝑙 .
7

𝑣0 ,𝑠0 𝑚𝑎𝑥 𝑚𝑎𝑥
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4. The bi-dimensional population transmission variable, (𝑹𝑽
𝒑
, 𝑹𝑺

𝒑
)

An additional measure of the transmission capacity of the pathogen is 𝑅𝑝. This random variable counts the number of infections 
caused all infected individuals in the population (not just those directly caused by a marked individual) until the first recovery occurs 
[33].

Here, we also propose to characterize 𝑅𝑝 while distinguishing between infections involving vaccinated and susceptible individu-

als, so that

𝑅𝑝 =𝑅𝑉𝑝 +𝑅𝑆𝑝 . (29)

In particular, our aim is to characterize the joint distribution of the random vector (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ), conditioned to an initial state (𝑣0, 𝑠0, 𝑁−

𝑣0 − 𝑠0).
To study this variable, we define the generating and probability mass functions of (𝑅𝑉𝑝 , 𝑅

𝑆
𝑝 ), and joint factorial moments of 𝑅𝑉𝑝

and 𝑅𝑆𝑝 , for any given initial state (𝑣, 𝑠, 𝑖) ∈ �̂�, as

𝑋𝑙,𝑘
𝑣,𝑠,𝑖

= 𝑃
{
𝑅𝑉𝑝 = 𝑙,𝑅𝑆𝑝 = 𝑘 |𝑋(0) = (𝑣, 𝑠, 𝑖)

}
, for 0 ≤ 𝑙 ≤ 𝑣,0 ≤ 𝑘 ≤ 𝑠,

𝜙𝑉 ,𝑆
𝑣,𝑠,𝑖

(𝑧,𝑤) =𝐸
[
𝑧
𝑅𝑉𝑝 𝑤

𝑅𝑆𝑝 |𝑋(0) = (𝑣, 𝑠, 𝑖)
]

=
𝑣∑
𝑟=0

𝑠∑
𝑗=0
𝑤𝑗𝑧𝑟𝑃

{
𝑅𝑉𝑝 = 𝑟,𝑅𝑆𝑝 = 𝑗 |𝑋(0) = (𝑣, 𝑠, 𝑖)

}
,

for |𝑧| ≤ 1 and |𝑤| ≤ 1,

𝑀𝑙,𝑘
𝑣,𝑠,𝑖

=𝐸[Π𝑙−1
𝑟=0(𝑅

𝑉
𝑝 − 𝑟)Π𝑘−1

𝑗=0 (𝑅
𝑆
𝑝 − 𝑗) |𝑋(0) = (𝑣, 𝑠, 𝑖)] , for 𝑙, 𝑘 ≥ 0.

We point out that both random variables have finite support. In particular, 0 ≤𝑅𝑉𝑝 ≤ 𝑣0 and 0 ≤𝑅𝑆𝑝 ≤ 𝑠0 and we have that

𝑃 {𝑅𝑉𝑝 < +∞,𝑅𝑆𝑝 < +∞ |𝑋(0) = (𝑣, 𝑠, 𝑖) } = 1. (30)

Consequently, 
∑𝑣
𝑙=0

∑𝑠
𝑘=0𝑋

𝑙,𝑘
𝑣,𝑠,𝑖

= 1, for any initial state (𝑣, 𝑠, 𝑖) ∈ �̂�. Moreover, when all individuals in the population are either 
infectious or recovered, new infections can not occur and in consequence

𝑋0,0
0,0,𝑖 = 1. (31)

By definition, we also obtain the following boundary conditions

𝑋𝑙,𝑘
𝑣,𝑠,𝑖

= 0, for 𝑙 > 𝑣 and/or 𝑘 > 𝑠. (32)

We introduce the following notation for any number of vaccinated, 𝑣, and susceptible, 𝑠, individuals with 0 ≤ 𝑣 ≤ 𝑣0, 0 ≤ 𝑠 ≤ 𝑠0 and 
integers 𝑙, 𝑘 ≥ 0:

𝐗𝑙,𝑘𝑣,𝑠 = (𝑋𝑙,𝑘

𝑣,𝑠,1, ...,𝑋
𝑙,𝑘
𝑣,𝑠,𝑁−𝑣−𝑠)

𝑇 ,

�̂�𝑙,𝑘𝑣,𝑠 = (𝑋𝑙,𝑘

𝑣,𝑠,2, ...,𝑋
𝑙,𝑘
𝑣,𝑠,𝑁−𝑣−𝑠)

𝑇 .

Joint mass functions of the conditioned random variable (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ) can be obtained applying Theorem 3.

Theorem 3. For any level 𝑙(𝑣), 0 ≤ 𝑣 ≤ 𝑣0, sub-level 𝑙(𝑣, 𝑠), 0 ≤ 𝑠 ≤ 𝑠0 and integers 𝑙, 𝑘 ≥ 0, the joint probability mass functions of the 
conditioned random vector (𝑅𝑉𝑝 , 𝑅

𝑆
𝑝 ) can be computed as the solution of the following system of linear equations:

𝐗0,0
0,0 = 𝟏𝑁, (33)

𝐗𝑙,𝑘𝑣,𝑠 = 𝟎𝑁−𝑣−𝑠, for 𝑙 > 𝑣 and/or 𝑘 > 𝑠 (34)

�̃�𝑣,𝑠𝐗𝑙,𝑘𝑣,𝑠 = 𝛿𝑙,0𝛿𝑘,0𝚪𝑁−𝑣−𝑠 + (1 − 𝛿𝑣,0)(1 − 𝛿𝑙,0)𝐄𝑣,𝑠�̂�
𝑙−1,𝑘
𝑣−1,𝑠 (35)

+ (1 − 𝛿𝑠,0)(1 − 𝛿𝑘,0)𝐃𝑣,𝑠�̂�
𝑙,𝑘−1
𝑣,𝑠−1,

where �̃�𝑣,𝑠 is a diagonal matrix of dimension (𝑁 −𝑣 −𝑠), with non-null diagonal elements given by �̃�𝑣,𝑠(𝑖, 𝑖) = 𝑞𝑣,𝑠,𝑖 for any 1 ≤ 𝑖 ≤𝑁 −𝑣 −𝑠. 
Matrices 𝐃𝑣,𝑠 and 𝐄𝑣,𝑠 were defined in Theorem 2. 𝚪𝑁−𝑣−𝑠 was defined in Theorem 1.

Proof. We point out that Equations (33) and (34) are the matrix version of Equations (31) and (32), respectively. For a given initial 
state, and conditioning on the first transition, the joint probability mass functions of the conditioned random vector (𝑅𝑉𝑝 , 𝑅

𝑆
𝑝 ) satisfy 
8

the following relationship
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𝑞𝑣,𝑠,𝑖𝑋
𝑙,𝑘
𝑣,𝑠,𝑖

= 𝛿𝑙,0𝛿𝑘,0𝛾𝑖+ (1 − 𝛿𝑙,0)(1 − 𝛿𝑣,0)𝜂𝑣,𝑖𝑋
𝑙−1,𝑘
𝑣−1,𝑠,𝑖+1

+(1 − 𝛿𝑘,0)(1 − 𝛿𝑠,0)𝜆𝑠,𝑖𝑋
𝑙,𝑘−1
𝑣,𝑠−1,𝑖+1. (36)

For 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠, Equation (35) is the matrix form representation of Equation (36), which concludes the proof. □

Remark 1. Mass functions of the bidimensional vector (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ) can be computed from recursive schemes based on Theorem 3, and 

are the basis to obtain some of the numerical results in Section 5. The algorithmic computation is analogous to Algorithm 1, with the 
natural changes in notation and replacing Equation (14) by

𝐗𝑙,𝑘𝑣,𝑠 = (�̃�𝑣,𝑠)−1
(
𝛿𝑙,0𝛿𝑘,0𝚪𝑁−𝑣−𝑠 + (1 − 𝛿𝑣,0)(1 − 𝛿𝑙,0)𝐄𝑣,𝑠�̂�

𝑙−1,𝑘
𝑣−1,𝑠

+(1 − 𝛿𝑠,0)(1 − 𝛿𝑘,0)𝐃𝑣,𝑠�̂�
𝑙,𝑘−1
𝑣,𝑠−1

)
.

Similarly to the methodology employed in the preceding section, we derive factorial moments of the bidimensional random vector 
(𝑅𝑉𝑝 , 𝑅

𝑆
𝑝 ) conditioned to any state (𝑣, 𝑠, 𝑖) ∈ �̂� by using the generating function 𝜙𝑉 ,𝑆

𝑣,𝑠,𝑖
(𝑧, 𝑤). From Equation (30), and by applying 

Equation (15), with the appropriate changes in notation, we obtain the following boundary condition

𝜙𝑉 ,𝑆
𝑣,𝑠,𝑖

(1,1) =𝑀0,0
𝑣,𝑠,𝑖

= 1. (37)

By definition, marginal factorial moments 𝑀𝑙,0
0,𝑠,𝑖 and 𝑀0,𝑘

𝑣,0,𝑖 satisfy the following expressions

𝑀𝑙,0
0,𝑠,𝑖 = 0, for 𝑙 > 0, (38)

𝑀0,𝑘
𝑣,0,𝑖 = 0, for 𝑘 > 0. (39)

Moreover, when there are no vaccinated and susceptible individuals in the population, no infections can occur, and therefore we 
obtain the following boundary conditions

𝑀𝑙,𝑘

0,0,𝑖 = 0, for 𝑙, 𝑘 > 0. (40)

Next we introduce some notation to derive the theoretical results involving factorial moments of the random variables of interest.

𝐌𝑙,𝑘
𝑣,𝑠 = (𝑀𝑙,𝑘

𝑣,𝑠,1,… ,𝑚𝑙,𝑘
𝑣,𝑠,𝑁−𝑣−𝑠)

𝑇 ,

�̂�𝑙,𝑘
𝑣,𝑠 = (𝑚𝑙,𝑘

𝑣,𝑠,2,… ,𝑚𝑙,𝑘
𝑣,𝑠,𝑁−𝑣−𝑠)

𝑇 .

Theorem 4. For any level 𝑙(𝑣), 0 ≤ 𝑣 ≤ 𝑣0 and sub-level 𝑙(𝑣, 𝑠), 0 ≤ 𝑠 ≤ 𝑠0, factorial moments of the conditioned random variable (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 )

can be computed as the solution of the following system of linear equations

𝐌0,0
𝑣,𝑠 = 𝟏𝑁−𝑣−𝑠, for 0 ≤ 𝑣 ≤ 𝑣0, (41)

𝐌𝑙,0
0,𝑠 = 𝟎𝑁−𝑣−𝑠, for 𝑙 > 0, (42)

𝐌0,𝑘
𝑣,0 = 𝟎𝑁−𝑣−𝑠, for 𝑘 > 0, (43)

�̃�𝑣,𝑠𝐌𝑙,𝑘
𝑣,𝑠 = (1 − 𝛿𝑠,0)𝐃𝑣,𝑠

(
𝑘�̂�𝑙,𝑘−1

𝑣,𝑠−1 + �̂�𝑙,𝑘

𝑣,𝑠−1

)
(44)

+ (1 − 𝛿𝑣,0)𝐄𝑣,𝑠
(
𝑙�̂�𝑙−1,𝑘

𝑣−1,𝑠 + �̂�𝑙,𝑘

𝑣−1,𝑠

)
,

where matrix �̃�𝑣,𝑠 was introduced in Theorem 3 and matrices 𝐃𝑣,𝑠 and 𝐄𝑣,𝑠 were described in Theorem 2.

Proof. For 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠, Equation (41) is the matrix form representation of Equation (37). Equations (42)-(43) are the matrix 
version of Equations (38)-(39), respectively.

A first-step argument, conditioning on the possible transitions out of a state (𝑣, 𝑠, 𝑖) ∈ �̂�, shows that the joint generating functions, 
𝜙𝑉 ,𝑆
𝑣,𝑠,𝑖

(𝑧, 𝑤), of (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ) satisfy the following set of linear equations:

𝑞𝑣,𝑠,𝑖𝜙
𝑉 ,𝑆
𝑣,𝑠,𝑖

(𝑧,𝑤) = 𝛾𝑖+ (1 − 𝛿𝑣,0)𝜂𝑣,𝑖𝑧𝜙
𝑉 ,𝑆
𝑣−1,𝑠,𝑖+1(𝑧,𝑤)

+(1 − 𝛿𝑠,0)𝜆𝑠,𝑖𝑤𝜙
𝑉 ,𝑆
𝑣,𝑠−1,𝑖+1(𝑧,𝑤). (45)

Given 𝑙 and 𝑘, positive integers, the factorial moments of order (𝑙+𝑘) are determined from Equation (45) by differentiating repeatedly 
𝑙 times with respect to 𝑧 and 𝑘 times with respect to 𝑤. Finally, evaluating the resulting expression at 𝑧 =𝑤 = 1, we get the equations 
9

involving factorial moments of (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ) conditioned to state (𝑣, 𝑠, 𝑖) ∈ �̂� as follows
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Fig. 2. 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0 marginal probability mass functions for 𝛽 ∈ {1.2,5,9} and ℎ ∈ {0.05,0.3}, when 𝑁 = 101, 𝜉 = 0.01, 𝛾 = 1 and for initial state (50,50,1).

𝑞𝑣,𝑠,𝑖𝑀
𝑙,𝑘
𝑣,𝑠,𝑖

= (1 − 𝛿𝑣,0)𝜂𝑣,𝑖
(
𝑙𝑀𝑙−1,𝑘

𝑣−1,𝑠,𝑖+1 +𝑀
𝑙,𝑘
𝑣−1,𝑠,𝑖+1

)
(46)

+(1 − 𝛿𝑠,0)𝜆𝑠,𝑖
(
𝑘𝑀𝑙,𝑘−1

𝑣,𝑠−1,𝑖+1 +𝑀
𝑙,𝑘

𝑣,𝑠−1,𝑖+1

)
.

For 1 ≤ 𝑖 ≤𝑁 − 𝑣 − 𝑠, Equation (46) can be expressed in the matrix form as Equation (44), which concludes the proof. □

Remark 2. Factorial moments of the bi-dimensional vector (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ) can be computed from recursive schemes based on Theorem 4

by applying an analogous procedure to Algorithm 2, with the natural changes in notation and replacing Equation (28) by

𝐌𝑙,𝑘
𝑣,𝑠 = (�̃�𝑣,𝑠)−1

(
(1 − 𝛿𝑠,0)𝐃𝑣,𝑠

(
𝑘�̂�𝑙,𝑘−1

𝑣,𝑠−1 + �̂�𝑙,𝑘

𝑣,𝑠−1

)
+(1 − 𝛿𝑣,0)𝐄𝑣,𝑠

(
𝑙�̂�𝑙−1,𝑘

𝑣−1,𝑠 + �̂�𝑙,𝑘

𝑣−1,𝑠

))
.

5. Numerical results

In this Section, we obtain some numerical results to illustrate the theoretical and algorithmic results described in Sections 3 and 
4. For all scenarios considered in this section, we have assumed that the population size is 𝑁 = 101, and we have set the time unit 
as the average infectious period (i.e., 𝛾−1 = 1).

First we focus on the one-dimensional probability distributions of 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0. In Fig. 2, we plot histograms for each marginal 
distribution as we vary the contact rate 𝛽 ∈ {1.2, 5, 9} and the vaccine failure probability ℎ ∈ {0.05, 0.3}, assuming that initial vaccine 
coverage is 50% (𝑣0 = 50) and the external contact rate is 𝜉 = 0.01. The height bars correspond to the probability that the index case 
causes 𝑘 infections within the vaccinated (blue bars) or within susceptible (red bars) pool. Note that the support of 𝑅𝑉

𝑒0 and also of 
𝑅𝑆
𝑒0 consists of {0, 1, 2, … , 50}, but we plot the probability mass functions up to the maximum value of 𝑘 which accumulates 95% of 
10

the probability.
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Fig. 3. Joint mass probability distribution function of (𝑅𝑉
𝑒0 , 𝑅𝑆𝑒0) for ℎ ∈ {0.05, 0.3}, 𝑣0 ∈ {25, 50, 75} and initial state (𝑣0 , 𝑁 − 𝑣0 − 1, 1), when 𝑁 = 101, 𝛽 = 1.2, 

𝜉 = 0.01 and 𝛾 = 1.

Both distributions are right-skewed and present a decreasing shape for increasing values of 𝑘, where larger numbers of infections 
become more likely as we increase the contact rate 𝛽. Regarding vaccine efficacy, we observe a different behaviour for the two pools. 
For 𝑅𝑉

𝑒0, when the vaccine is 70% effective (ℎ = 0.3), the probability of the index case recovering before infecting any vaccinated 
person is higher than 0.4 for all values of 𝛽 considered. However, for a more effective vaccine (ℎ = 0.05), the chance is always greater 
than 0.8, even for a large contact rate such as 𝛽 = 9. On the other hand, we observe that changes in vaccine efficacy have small effects 
on the probability distribution of 𝑅𝑆

𝑒0.

In Figs. 3 and 4, we represent the joint probability mass function of (𝑅𝑉
𝑒0, 𝑅

𝑆
𝑒0), given by probabilities 𝑥𝑙,𝑘

𝑣0,𝑁−𝑣0−1,1
. We consider 

support values (𝑙, 𝑘) varying in the grid of integer points {0, … , 𝑎} × {0, … , 𝑎} which accumulates the 95% of the probability. We 
compare mass functions for vaccine efficacy ℎ ∈ {0.05, 0.3} and initial vaccine coverage 𝑣0 ∈ {25, 50, 75}, when 𝑁 = 101, 𝜉 = 0.01
and 𝛾 = 1. Additionally, the contact rate is 𝛽 = 1.2 in Fig. 3 and 𝛽 = 9 in Fig. 4. Colour plots in both figures show that the most 
likely event is that the index case does not infect any other individual, with the associate probability increasing as either the vaccine 
initial coverage 𝑣0 or the vaccine efficacy 1 − ℎ is increased. We note that increasing the contact rate 𝛽 increases the chance that the 
index case will spread the infection within the population, causing more infections in the susceptible pool than among vaccinated 
individuals.

Next, we focus on the average number of infections directly caused by the index case within both pools. Our aim is to analyse 
the influence of the model parameters on these averages. In Fig. 5, we present colour plots for 𝐸[𝑅𝑉

𝑒0] (six bottom plots) and 𝐸[𝑅𝑆
𝑒0]

(top plots), as functions of 𝛽 and ℎ, for different values of the external contact rate 𝜉 and initial vaccine coverage 𝑣0.

Both expected values increase with increasing values of the internal contact rate 𝛽, as one would expect. Under low vaccine 
coverage (i.e., 𝑣0 ≤ 50), the probability of vaccine failure has little effect on these averages. We note that when the external rate 
takes large values (e.g., 𝜉 = 1) expected values 𝐸[𝑅𝑉

𝑒0] and 𝐸[𝑅𝑆
𝑒0] are lower compared to situations where 𝜉 = 0.01. This reflects 

that the index case has fewer opportunities to transmit the disease within each of the pools, due to external infections occurring 
more often. For increasing values of the vaccine coverage, and decreasing values of external contact rate, the average number of 
infections caused by the index case in the vaccinated pool, 𝐸[𝑅𝑉

𝑒0], increases. On the other hand, due to the constant population size, 
increasing vaccine coverage leads to a decrease in 𝐸[𝑅𝑆

𝑒0]. It can be observed that, with the exception of scenarios characterized by 
high vaccine coverage (e.g., 𝑣0 = 75) and substantial vaccine failure probability (e.g., ℎ = 0.3), the expected number of infections 
among susceptible individuals is consistently greater than that among vaccinated individuals.

In Table 1, we display summary statistics: expected values, standard deviations and coefficients of variation of 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0, 
for 𝛽 ∈ {1.2, 5, 9} and ℎ ∈ {0.05, 0.3}, when 𝜉 = 0.01, 𝑣0 = 𝑠0 = 50 and a single initial infected individual in the population. For all 
scenarios, expected values and standard deviations for 𝑅𝑆

𝑒0 are greater than their counterpart measures for 𝑅𝑉
𝑒0, due to the protection 

conferred by the vaccine. On the contrary, the coefficient of variation is greater for the variable 𝑅𝑉
𝑒0 in every case. Hence, 𝑅𝑆

𝑒0 is more 
11

concentrated around its expected value 𝐸[𝑅𝑆
𝑒0] than 𝑅𝑉

𝑒0 around its respective mean value. The expected transmission and standard 
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Fig. 4. Joint mass probability distribution function of (𝑅𝑉
𝑒0 , 𝑅𝑆𝑒0) for ℎ ∈ {0.05, 0.3}, 𝑣0 ∈ {25, 50, 75} and initial state (𝑣0 , 𝑁 − 𝑣0 − 1, 1), when 𝑁 = 101, 𝛽 = 9, 𝜉 = 0.01

and 𝛾 = 1.

Table 1

Summary statistics for 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0 .

𝛽 ℎ 𝐸[𝑅𝑉
𝑒0] 𝜎[𝑅𝑉

𝑒0] 𝐶𝑉 [𝑅𝑉
𝑒0] 𝐸[𝑅𝑆

𝑒0] 𝜎[𝑅𝑆
𝑒0] 𝐶𝑉 [𝑅𝑆

𝑒0]

1.2 0.05 0.0297 0.1746 5.8788 0.5764 0.9323 1.6175

5 0.05 0.1219 0.3680 3.0189 2.0071 2.0218 1.0073

9 0.05 0.2120 0.4992 2.3547 2.7623 2.2155 0.8020

1.2 0.30 0.1764 0.4532 2.5692 0.5746 0.9285 1.6159

5 0.30 0.6592 0.9701 1.4716 1.8783 1.8461 0.9829

9 0.30 0.9624 1.1531 1.1982 2.4644 1.9495 0.7911

deviation, on both vaccinated and susceptible individuals, increase when the internal contact rate increases. When fixing the internal 
contact rate, more effective vaccines decrease both 𝐸[𝑅𝑉

𝑒0] and 𝜎[𝑅𝑉
𝑒0].

Next, we derive analogous numerical analysis for the joint random variable (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ). In particular, Fig. 6 and 7 represent the 

joint probability mass distributions of (𝑅𝑉𝑝 , 𝑅
𝑆
𝑝 ) for 𝛽 = 1.2 and 𝛽 = 9, respectively, for 𝑣0 ∈ {25, 50, 75} and for ℎ ∈ {0.05, 0.3}. The 

behaviour of these distributions is similar to that observed in Fig. 3 and 4, but we notice that a larger region of the support is required 
to accumulate 95% of the probability distribution of (𝑅𝑉𝑝 , 𝑅

𝑆
𝑝 ) compared to that of (𝑅𝑉

𝑒0, 𝑅
𝑆
𝑒0). This observation aligns with intuition, 

as the distribution of interest accounts for infections caused not only by the index case, but also subsequent transmissions events.

In Fig. 8, we represent the expected value 𝐸[𝑅𝑆𝑝 ] (top of the figure) and 𝐸[𝑅𝑉𝑝 ] (bottom of the figure) as a function of the 
internal transmission rate 𝛽, and the vaccine failure probability ℎ, for vaccine coverages 𝑣0 ∈ {25, 50, 75} and external contact rates 
𝜉 ∈ {0.01, 1}. The expected number of infections among susceptible individuals caused by all the infective individuals prior to the 
first recovery is greater than among vaccinated individuals, especially for lower vaccine failure probabilities, showing the importance 
of the vaccine. On the other hand, when considering large vaccine coverage (e.g.; 𝑣0 ≥ 75) and external contact rates (e.g.; 𝜉 = 1), 
we observe 𝐸[𝑅𝑆𝑝 ] < 𝐸[𝑅

𝑉
𝑝 ] for internal contact rates greater than 7.8, in combination with significant vaccine failure probability 

ℎ = 0.3. Overall, the effect of the internal contact rate 𝛽 and the vaccine failure probability ℎ on 𝐸[𝑅𝑆𝑝 ] and 𝐸[𝑅𝑉𝑝 ] is similar to 
Fig. 5.

In contrast to Fig. 5, large external contact rates 𝜉 (e.g.; 𝜉 = 1) lead to greater values of 𝐸[𝑅𝑉𝑝 ] and 𝐸[𝑅𝑆𝑝 ]. This behaviour is 
intuitive because when external transmission rates are high, there is a greater number of infections among susceptible and vaccinated 
individuals, resulting in a larger average number of infections produced by the infected individuals in the population. Increasing vac-

cine coverage leads to higher values of 𝐸[𝑅𝑉𝑝 ] since there are more vaccinated individuals in the population. Conversely, increasing 
vaccine coverage results in smaller values of 𝐸[𝑅𝑆𝑝 ] for the similar reasons. The effect of the vaccine efficacy for large/small vaccines 
12

coverages is as the stated in Fig. 5.
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Fig. 5. 𝐸[𝑅𝑉
𝑒0] and 𝐸[𝑅𝑆

𝑒0] as a function of 𝛽 and ℎ, for different values of 𝜉 and 𝑣0 .

Table 2

Summary statistics for 𝑅𝑉
𝑝

and 𝑅𝑆
𝑝

.

𝛽 ℎ 𝐸[𝑅𝑉
𝑝
] 𝜎[𝑅𝑉

𝑝
] 𝐶𝑉 [𝑅𝑉

𝑝
] 𝐸[𝑅𝑆

𝑝
] 𝜎[𝑅𝑆

𝑝
] 𝐶𝑉 [𝑅𝑆

𝑝
]

1.2 0.05 0.0466 0.2189 4.6974 0.9196 1.1860 1.2897
5 0.05 0.1350 0.3882 2.8756 2.5751 2.7818 1.0803
9 0.05 0.2307 0.5281 2.2891 4.2509 4.2596 1.0020
1.2 0.30 0.2727 0.5632 2.0653 0.8995 1.1725 1.3035
5 0.30 0.7935 1.1504 1.4498 2.5547 2.7710 1.0847
9 0.30 1.3482 1.7108 1.2690 4.2333 4.2520 1.0044

In Table 2, we record some summary statistics of interest of the variables 𝑅𝑉𝑝 and 𝑅𝑆𝑝 . In particular we show the mean, standard 
deviation and coefficient of variation of these variables for 𝛽 ∈ {1.2, 5, 9} and ℎ ∈ {0.05, 0.3}, when 𝜉 = 0.01, 𝑣0 = 𝑠0 = 50 and there 
is a single initial infected individual in the population. As expected, average values and standard deviations are greater for 𝑅𝑆𝑝 than 
for 𝑅𝑉𝑝 due to the protection that the vaccine confers. In contrast, we obtain greater coefficient of variations for 𝑅𝑉𝑝 than for 𝑅𝑆𝑝 for 
the same reasons explained in Table 1. The impact on these summary statistics of the internal contact rate and the vaccine failure 
probability is similar to that observed in Table 1.

5.1. Case study: influenza in a boarding school

We focus here on a particular case study, related to the spread of influenza in a school, in order to illustrate our methodology. In 
this context, we will examine the variables 𝑅𝑒0 and 𝑅𝑝, to gain further insights into the epidemic dynamics.

Influenza, commonly known as the flu, is a highly contagious respiratory illness caused by influenza viruses. The symptoms can 
range from mild, such as fever, cough, sore throat, body aches, and fatigue, to severe complications like pneumonia and respiratory 
failure. Particularly vulnerable populations, such as young children, the elderly and individuals with underlying health conditions, 
13

face an increased risk of hospitalisation and, tragically, even death. The virus spreads easily through respiratory droplets when an 
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Fig. 6. Joint probability mass distribution function of (𝑅𝑉
𝑝
, 𝑅𝑆

𝑝
) for several values of ℎ and vaccination levels (𝑣0) in a population of 𝑁 = 101 individuals, with an 

initial infective individual, 𝛽 = 1.2, 𝛾 = 1 and 𝜉 = 0.01.

Fig. 7. Joint probability mass distribution function of (𝑅𝑉
𝑝
, 𝑅𝑆

𝑝
) for several values of ℎ and vaccination levels (𝑣0) in a population of 𝑁 = 101 individuals, with an 

initial infective individual and 𝛽 = 9, 𝛾 = 1 and 𝜉 = 0.01.

infected person coughs, sneezes, or talks, making person-to-person transmission common. Although vaccines exist for this pathogen, 
which need to be annually updated depending on the circulating strains, they are imperfect. Nevertheless, vaccination remains a 
crucial tool in mitigating the spread of this infectious disease every year, and reducing its impact on public health.

In January 1978, an influenza outbreak occurred in a boarding school located in the north of England, which was documented in 
14

a report published in the British Medical Journal [40]. Data from this outbreak were analyzed in [41] and [42]. For our analysis, we 
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Fig. 8. 𝐸[𝑅𝑆
𝑝
] and 𝐸[𝑅𝑉

𝑝
] as a function of 𝛽 and ℎ. Different scenarios arise in a population of 𝑁 = 101 individuals, with an initial infectious individual and 𝛾 = 1

when 𝑣0 ∈ {25, 50, 75} and 𝜉 ∈ {0.01, 1}.

Table 3

Influenza in a boarding school. Summary statistics for 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0 .

𝑣0 𝐸[𝑅𝑉
𝑒0] 𝜎[𝑅𝑉

𝑒0] 𝐶𝑉 [𝑅𝑉
𝑒0] 𝐸[𝑅𝑆

𝑒0] 𝜎[𝑅𝑆
𝑒0] 𝐶𝑉 [𝑅𝑆

𝑒0]

30 0.3721 0.6793 1.8255 2.0346 2.0326 0.9990
60 0.7686 1.0986 1.4293 1.2300 1.4467 1.1761
90 1.1836 1.5281 1.2910 0.3230 0.6154 1.9052

draw upon the parameters derived from these studies where the average infectious period was found to be 1∕𝛾 = 2.2 days and the 
transmission rate 𝛽 = 1.66. Consequently, the calculated basic reproduction number, defined as 𝑅0 = 𝛽∕𝛾 , was 3.652 for this influenza 
strain during this outbreak. In evaluating vaccine effectiveness, we refer to [43], where influenza vaccination was shown to provide 
increased protection in fully vaccinated children, with an effectiveness rate of 61.79% (95%𝐶𝐼 ∶ 54.45 − 69.13). Consequently, we 
adopt a vaccine failure probability of ℎ = 0.3821 here. Additionally, an external infection rate of 𝜉 = 0.01 is considered for illustrative 
purposes.

In Table 3, we provide a comprehensive overview of the statistics, including expected values, standard deviations, and coefficients 
of variation for the marginal random variables 𝑅𝑉

𝑒0 and 𝑅𝑆
𝑒0. The analysis relates to the scenario described in the previous paragraph. 

It considers different levels of vaccine coverage, namely 𝑣0 ∈ {30, 60, 90}. These values represent low, medium and high vaccination 
coverage within the boarding school.

As we increase vaccination coverage, we observe a corresponding increase in the number of vaccinated individuals who become 
infected. This is because there are more vaccinated individuals than susceptible ones in the population. However, the crucial role of 
vaccination becomes clear when, for instance, we reach a 60% vaccination coverage. At this level, the average number of infections in 
susceptible individuals is significantly higher than in vaccinated individuals. Even at 90% coverage, susceptible individuals continue 
to get infected. As vaccination coverage increases, the coefficient of variation for the average number of infections inside the vacci-

nated group decreases. In contrast, this behaviour is reversed for susceptible individuals, where the coefficient of variation increases 
with increasing vaccination coverage. This observation highlights the importance of vaccination in shaping infection dynamics and 
15

demonstrates its efficacy even in high vaccine failure scenarios.
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Fig. 9. Influenza in a boarding school. 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0 marginal probability mass functions for 𝑅0 = 3.652, 𝜉 = 0.01 and ℎ = 0.3821, when 𝑁 = 101 and for 𝑣0 ∈
{30, 60, 90}.

Table 4

Influenza in a boarding school. Summary statistics for 𝑅𝑉
𝑝

and 𝑅𝑆
𝑝

.

𝑣0 𝐸[𝑅𝑉
𝑝
] 𝜎[𝑅𝑉

𝑝
] 𝐶𝑉 [𝑅𝑉

𝑝
] 𝐸[𝑅𝑆

𝑝
] 𝜎[𝑅𝑆

𝑝
] 𝐶𝑉 [𝑅𝑆

𝑝
]

30 0.4570 0.7885 1.7253 2.7277 2.9297 1.0740
60 0.9258 1.2726 1.3745 1.5786 1.8619 1.1794
90 1.4132 1.7387 1.2303 0.4015 0.7071 1.7611

Fig. 10. Influenza in a boarding school. 𝑅𝑉
𝑝

and 𝑅𝑆
𝑝

marginal probability mass functions for 𝑅0 = 3.652, 𝜉 = 0.01 and ℎ = 0.3821, when 𝑁 = 101 and for 𝑣0 ∈
{30, 60, 90}.

In Fig. 9, 𝑅𝑉
𝑒0 and 𝑅𝑆

𝑒0 mass functions are plotted when vaccine coverage 𝑣0 varies in the set {30, 60, 90}. The objective is to 
compare the epidemic patterns as we increase the vaccination coverage. The height of the bars corresponds to the probability that 
the index case causes 𝑘 infections within vaccinated pool (blue bars) or susceptible pool (red bars). Probability mass functions are 
plotted up to the maximum value 𝑘 that accumulates 95% of the probability.

Both probability distributions exhibit a right-skewed pattern, indicating a decreasing trend as the number of cases, 𝑘, increases. 
Regarding the distribution for the number of secondary cases generated by the index case in vaccinated individuals, we observe that 
most of the probability is concentrated in the initial mass points and, as vaccination coverage increases, the slope of the distribution 
becomes less steep. It is important to note that the behaviour of the variable 𝑅𝑆

𝑒0 is opposite to this pattern, showing a trend that is 
inverse as vaccination coverage increases.

Finally, in Table 4 and Fig. 10, 𝑅𝑆𝑝 and 𝑅𝑉𝑝 show a similar behaviour to that observed for 𝑅𝑆
𝑒0 and 𝑅𝑉

𝑒0 when focusing on the 
corresponding summary statistics and probability distributions, but with larger averages, as expected.

6. Conclusions

This paper deals with a stochastic SIR-type model. An external source of infection is considered and vaccination as a health 
control measure is considered. A three-dimensional continuous-time Markov chain is used to model the evolution of an infectious 
16

disease within a small-to-moderate size population.
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Our interest is in quantifying the spread of this epidemic process by analysing the number of infections produced either by a 
selected infectious individual or by the whole infectious group during a time interval that depends on individual recovery times. Our 
main contribution is to adapt exact reproduction numbers, 𝑅𝑒0 and 𝑅𝑝, to quantify the potential transmission of the epidemic by 
distinguishing whether new infections occur among individuals in the susceptible or vaccinates pools.

This bi-dimensional study can be used to better understand the effect of vaccination on the spread of a pathogen. In addition, 
recursive schemes derived from Algorithms 1 and 2, and Remarks 1 and 2 allow us to compute some joint characteristics of the 
involved bi-dimensional vectors. Through a detailed analysis, we have determined the exact orders of complexity of both algorithms 
[44]. They can be described in terms of Θ((𝑣0𝑠0)2) and Θ(𝑣0𝑠0) for Algorithm 1 and 2, respectively. These results are presented under 
the assumption that the Thomas Algorithm (TA) has been employed for the inversion of matrices. The TA is particularly suitable and 
efficient for tri-diagonal systems of equations. Complexity results highlight the fundamental relationship between the algorithm’s 
execution time and the size of the population; and more specifically the initial number of susceptible and vaccinated individuals. 
We have illustrated our methodology with numerical examples, implemented in Matlab software, by analyzing the dependencies 
between each marginal random variable of (𝑅𝑉

𝑒0, 𝑅
𝑆
𝑒0) and (𝑅𝑉𝑝 , 𝑅

𝑆
𝑝 ).

The results highlight the critical role of vaccination strategies in controlling the spread of the infection. The interactions between 
parameters reveal the complexity of disease dynamics and emphasise the need for tailored vaccination policies in real-world scenar-

ios. Furthermore, internal and external contact rates, 𝛽 and 𝜉, play a key role in influencing the probability of infection and need 
to be considered in epidemiological modelling. The analysis emphasises the importance of vaccine efficacy and coverage, providing 
valuable insights for public health interventions.

For future work, this investigation can be continued in other directions by considering additional assumptions about infectious 
disease dynamics, such as a latency period and waning vaccines, which more realistically reflect the characteristics of a vaccine-

preventable disease.
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