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Abstract

Facing the system uncertainties caused by unmodeled dynamics and unpredictable

external disturbances, the robot position control for meeting the high-performance

control requirements on higher accuracy and faster beat is vital for many industrial

applications, such as welding and laser cutting tasks. This work aims to cope with the

problem of precise and fast position tracking for robot manipulators with an effective

and safe control scheme. Specifically, a discrete-time super-twisting observer (STO)

is integrated into the scheme to estimate the uncertain dynamics (e.g., unmodeled

dynamics and external disturbances) in the feedforward compensation part of

the dynamics. Subsequently, a discrete-time fast terminal sliding mode controller

(FTSMC) dominates the robot control to guarantee fast convergence of the position

tracking error. The significant improvement of the proposed method with respect

to other discrete-time sliding mode control approaches lies in that it is capable of

alleviating the chattering-like problem, achieving a fast convergence and improving

the robustness of sliding mode control against uncertain dynamics. To illustrate the

effectiveness of the presented control scheme, several experiments on a six-degree-

of-freedom (6-DoF) robot manipulator are provided.

Keywords

Industrial robots, Tracking control, Super-twisting observer, Discrete-time sliding

mode control
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1 Introduction

In many manufacturing processes, industrial robots have a wide range of applications

(e.g., welding Shen et al. (2020), polishing Xiao et al. (2021) and milling Peng et al.

(2020) tasks). In order to improve production efficiency and quality and complete

these tasks successfully, robots often need to be equipped with control algorithms

with fast running beat and high tracking accuracy. However, the robotic system

always encounters various uncertainties (e.g., the coupling among the links, unmodeled

dynamics, parameter uncertainties), which may negatively affect the realization of high-

speed and high-precision position tracking control. Hence, in order to achieve the

requirements of robots in high-performance application scenarios, it is very important

to restrain the effect of uncertainties from the perspective of controller design.

In practice, the suffered disturbances of robotic systems are very complex, which can

be deemed as the main factor that affects the high-performance control of robots. The

sources of such disturbances can be divided into internal disturbances (e.g., unmodeled

dynamics and parameter uncertainties) and external disturbances (e.g., unknown load

disturbances). It is commonly accepted that the accuracy of conventional approaches

(such as the PD plus gravity compensation approach and the computational torque

method) is significantly affected by dynamic uncertainties in high-speed operations. In

light of the reliable robustness against disturbances and uncertainties Utkin (2013), the

well-known sliding mode control (SMC) has achieved much attention in a wide range

of applied research Wang et al. (2018), Tang et al. (2021). Meanwhile, a multitude

of state-of-the-art achievements can be explored in the community of SMC, ranging

from asymptotic Utkin (1977) to finite-time Mao et al. (2020), low-order Yu and

Kaynak (2009) to high-order Ozer et al. (2018), and continuous-time Norsahperi and

Danapalasingam (2020) to discrete-time Paul et al. (2019) approaches. In addition, due

to the improvement of modern computer technology, the modern nonlinear controller is

actually realized by the digital microprogrammed control units in practice. Therefore,

this work attempts to solve these problems by developing a control scheme based on the

discrete-time SMC works.

In general, the discrete-time SMC mainly falls into two major categories. The first

one primarily concentrates on the reaching-law theory Zhang et al. (2018), which is

similar to the continuous-time SMC and inherits the nature of its switching terms, making
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the chattering problem inevitable. In a real robotic system, such chattering causes the

wear between the actuator and the transmission mechanism, and will further induce the

unmodeled high-frequency dynamics. Another category to design the discrete-time SMC

is the equivalent-control-based approaches proposed in Abidi et al. (2008), Du et al.

(2016), Li et al. (2013), whereas the chattering problem can be obviously alleviated.

Recently, the digital FTSMC, inheriting the key benefits of the linear sliding mode

controller (LSMC) and the terminal sliding mode controller (TSMC) Wang et al. (2017),

Liu et al. (2020), has been redesigned in Du et al. (2018) and widely used in the field of

motion control Wang et al. (2020). In these works, however, the disturbances are treated

by using the delayed estimation method (DEM), which mainly use the past value of the

disturbance to approximate the disturbance at the current moment Su et al. (2000). In fact,

this method, which is equivalent to the finite-difference method, relies on the acceleration

signal, thereby amplifies the noises easily in practice Zhang et al. (2019). In view of

this, the method based on the discrete-time observer techniques can be employed as an

effective manner to smooth the measurements and estimate the unknown disturbances.

Until now, several discrete-time observer techniques have been developed in various

scenarios, such as discrete-time disturbance observer Yan et al. (2023) and discrete-time

STO Salgado et al. (2014).

Inspired by the aforementioned background, the purpose of this paper is to develop a

discretized STO-based FTSMC scheme for facilitating robotic manipulators to fast and

accurately track desired trajectories. Then, experiments are conducted with a real 6-DoF

industrial robot, validating that the developed scheme can achieve reliable performance

under various disturbances. In particular, the main contributions of this article are listed

below:

(i) A discrete-time STO is proposed to estimate dynamic uncertainties, and the bound

of the estimation error is built through rigorous theoretical analysis, differing from

the previous DEM works which are limited to measurement noises. Moreover, the

observation information is integrated for the feedforward compensation, thus not

only improving the robustness of the system, but also reducing chattering to some

extent.

(ii) An improved composite controller is proposed for industrial robots by

incorporating the estimations of the STO into a discrete-time FTSMC for realizing

high-speed and high-precision position tracking, which is an essential advantage

of using this composite controller in improving the robot beat and control

precision. To the best of our knowledge, most of the existing robot dynamics control

methods are still in the simulation stage.

Notations: For an n-dimensional vector x =
[
x1, x2, . . . , xn

]T
, the vectors |x| =

[
|x1|, |x2|, . . . , |xn|

]T
, sign(x) =

[
sign(x1), sign(x2), . . . , sign(xn)

]T
, diag(xα) =

diag(xα
1 , x

α
2 , . . . , x

α
n). ∥ · ∥ denotes Euclidean norm of vectors. λmax(·) and λmin(·)

correspond to the maximum and minimum eigenvalues of a matrix, respectively.

sigα(x) =
[
|x1|αsign(x1), |x2|αsign(x2), . . . , |xn|αsign(xn)

]T
are defined associated

with the positive constant α > 0. O represents that f(h) is said to be of order g(h) and
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can be described as f(h) = O(g(h)), if exists δ > 0 and A > 0 so that |f(h)| < A|g(h)|
for |h| < δ.

2 Problem formulation

Formally, the typical dynamic equation of n-link robot manipulators is illustrated as

M(q)q̈+C(q, q̇) + g(q) = τ + τd (1)

where q, q̇, q̈ respectively correspond to n-dimensional vectors of joint position, velocity

and acceleration, while n is the number of motion freedom degrees of robot manipulators.

M(q) is a n× n symmetric, positive-definite matrix, C(q, q̇) is the n× 1 vector of

Coriolis and centrifugal terms, g(q) is the n× 1 gravity force, τ denotes the n× 1 vector

of control input and τd represents unknown external disturbances.

Defining x1 = q, x2 = q̇ and based on (1), we can obtain

ẋ1 = x2

ẋ2 = M−1(x1)τ + f + d
(2)

with the d ∈ R
n defined as follows

d = M−1(x1)τd (3)

and

f = −M−1(x1) (C(x1,x2) + g(x1)) . (4)

Since the modern nonlinear controller is realized by the digital microprogrammed

control units, we here exploit the Euler-Discrete method to discretize the dynamic model

(2) in order to promote the design of a discrete-time control law. Note that the control

objective of this paper is to track the reference trajectory accurately by the proposed

digital controller, which is executed via a zero-order-holder (ZOH) so as to control

laws τ(t) equal to τ(kh) over the time interval [kh, (k + 1)h) with k ∈ {0, 1, 2, . . . , } =
Z+ ∪ {0}. From the perspective of information transmission, there is an error between

the approximated discrete-time model and the continuous-time model, but considering

the high real-time performance of industrial robots, the error here can be ignored.

Formally, the corresponding discretization model of system (2) is

x1(k + 1) = x1(k) + hx2(k)

x2(k + 1) = x2(k) + h
(
M−1(x1)τ(k) + f(k) + d(k)

) (5)

where h denotes the sampling period. Meanwhile, for sake of simplicity, xi(k) denotes

the state xi(kh) with i = 1, 2.

Define position tracking errors as e1 = xr − x1, e2 = ẋr − x2, where xr and ẋr

represent the reference position and velocity, respectively. Then, considering (2), the
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error dynamics can be governed by

ė1 = e2

ė2 = ẍr −M−1(x1)τ − f − d.
(6)

Using the Euler-Discrete method again, the error system (6) can be discretized as

e1(k + 1) = e1(k) + he2(k)

e2(k + 1) = e2(k) + hẍr(k)− hM−1(x1)τ(k)− hf(k)− hd(k).
(7)

Furthermore, the following technical lemmas and the assumption on the disturbances

are central to derive the main results, as shown below.

Lemma 1: Du et al. (2015) For the following system

ξ(k + 1) = ξ(k)− ι1sig
αξ(k)− ι2ξ(k) + χ(k) (8)

with 0 < α < 1, ι1 > 0, 0 < ι2 < 1, if |χ(k)| ≤ ν, ν > 0, then the system state ξ(k) is

always bounded and there exist a finite number N∗ > 0 such that

|ξ(k)| ≤ Φ(α) ·max

{(
ν
ι1

)1/α

,
(

ι1
1−ι2

) 1

1−α

}

, ∀k ≥ N∗ (9)

with Φ(α) is determined as

Φ(α) = 1 + α
α

1−α − α
1

1−α . (10)

Lemma 2: Li et al. (2013) Consider the following scalar system

ξ(k + 1) = ξ(k)− ι · ξ(k) + χ(k). (11)

If |ι| < 1 and |χ(k)| < ν, ν > 0, then the system state ξ(k) is always bounded and

there exist a finite number N∗ > 0 such as |ξ(k)| ≤ ν
|ι| , ∀k > N∗.

Assumption 1: The disturbance d and its derivative ḋ satisfy these conditions, i.e.,

∥d∥ ≤ d∗0 and ∥ḋ∥ ≤ d∗1, where d∗0 and d∗1 are two positive constants.

Remark 1: Consider that ∥M−1(x1)∥ is bounded with a1 ≤ ∥M−1(x1)∥ ≤ a2,

where a1 and a2 are two known positive constants Spong and Vidyasagar (1989). In

addition, external disturbance signals τd can be reasonably assumed to be bounded.

Hence, from the aforementioned analysis, it is reasonable to assume that ∥d∥ is bounded

with a positive constant. According to assumption 1, due to δ(k)
△
= d(k)− d(k − 1) =

O(h), we can conclude that ∥δ(k)∥ ≤ β = O(h) holds for any possible k, with β = hd∗1.

3 Main results

Here, we propose to show the design process of the proposed control method, where a

discrete-time super-twisting observer is first designed, and, subsequently, the estimated

information is incorporated to derive the discrete-time FTSMC.

Prepared using sagej.cls



6 Journal Title XX(X)

3.1 Discrete-time super-twisting observer

The discrete-time STO is proposed for estimating the disturbances in (5) (i.e., d(k)),
designed by

z2(k + 1) = z2(k) + h
(
f(k) +M−1(x1)τ(k) + z3(k)

)

+ hL1sig
1

2 (x2(k)− z2(k)) + L3(x2(k)− z2(k))

z3(k + 1) = z3(k) + hL2sign(x2(k)− z2(k)) + L4(x2(k)− z2(k))

(12)

where z2(k) and z3(k) respectively correspond to the estimation of x2(k) and d(k).
Li = LT

i > 0 for i = 1, 2, 3, 4 are the designed parameter matrices.

Define estimation errors as x̃2(k) = x2(k)− z2(k), x̃3(k) = d(k)− z3(k) and

x̃(k) =
[
x̃T
2 (k) x̃T

3 (k)
]T

. Next, based on (5) and (12), one can obtain

x̃(k + 1) = Ax̃(k) +Bsign(x̃2(k)) +∆ (13)

where

A =

[
In − L3 hIn
−L4 In

]

,B =

[
−hL1b(k)
−hL2

]

∆ =

[
0

δ(k + 1)

]

,b(k) = diag(|x̃2(k)|
1

2 ).

Theorem 1: According to Assumption 1, consider the robotic system (5) with gains

chosen as Li = LT
i > 0, i = 1, 2, 3, 4. If the parameters Li, i = 1, 2, 3, 4 and ρ are

designed such that |λmax(A)|/√1− ρ < 1, the following inequality

AT
(
P+P(Λ1 +Λ2)P

)
A− (1− ρ)P+Q ≤ 0 (14)

always has a positive definite solution P = PT > 0 for a given Q = QT > 0, Λ1 =
ΛT

1 > 0 and Λ2 = ΛT
2 > 0. Then, the estimation error of discrete-time STO is ulti-

mately bounded by Ω = {x̃(k) | ∥x̃(k)∥ ≤ η1} with η1 =
√

β5

λmin(P)ρ , 0 < ρ < 1, β5 =

β2

1

4β4

+ β2 + β3β
2, β1 = 2n

3

2h2λmax(H1)λmax(L
2
1), β2 = 2n2h2λmax(H1)λmax(L

2
2),

β3 = λmax(H2), β4 = λmin(Q), H1 = P+Λ−1
1 +Λ3, H2 = P+Λ−1

2 +PΛ−1
3 P,

Λ3 = ΛT
3 > 0.

Proof : Select the following function similar to a Lyapunov one V (k) = x̃T(k)Px̃(k).
Subsequently, we have

∆V (k) = x̃T(k + 1)Px̃(k + 1)− x̃T(k)Px̃(k)

= x̃T(k)(ATPA−P)x̃(k) + 2x̃T(k)ATPBsign(x̃2(k))

+ sign(x̃2(k))
TBTPBsign(x̃2(k)) + 2x̃T(k)ATP∆

+ 2∆TPBsign(x̃2(k)) +∆TP∆.

(15)
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Due to the inequality XTY +YTX ≤ XTΛ−1X+YTΛY Poznyak (2010), the

following relationships can be obtained

2x̃T(k)ATPBsign(x̃2(k)) ≤ x̃T(k)ATPΛ1PAx̃(k)

+ sign(x̃2(k))
TBTΛ−1

1 Bsign(x̃2(k)), (16a)

2x̃T(k)ATP∆ ≤ x̃T(k)ATPΛ2PAx̃(k) +∆TΛ−1
2 ∆, (16b)

2∆TPBsign(x̃2(k)) ≤ ∆TPΛ−1
3 P∆+ sign(x̃2(k))

TBTΛ3Bsign(x̃2(k)). (16c)

If |λmax(A)|/√1− ρ < 1, the inequality described in (14) always has positive definite

solution PT = P > 0. For the detailed proof, please refer to Salgado et al. (2014).

Hence, we have AT
(
P+P(Λ1 +Λ2)P

)
A− (1− ρ)P ≤ −Q. Then substituting

(16a)-(16c) into (15), △V (k) becomes

∆V (k) ≤ x̃T(k)
(
AT

(
P+P(Λ1 +Λ2)P

)
A− (1− ρ)P

)
x̃(k)

− ρV (k) + sign(x̃2(k))
TBTH1Bsign(x̃2(k)) +∆TH2∆

≤ x̃T(k)
(
AT

(
P+P(Λ1 +Λ2)P

)
A− (1− ρ)P

)
x̃(k)

− ρV (k) + β1∥x̃(k)∥+ β2 + β3β
2

≤ −x̃T(k)Qx̃(k)− ρV (k) + β1∥x̃(k)∥+ β2 + β3β
2

≤ −β4∥x̃(k)∥2 − ρV (k) + β1∥x̃(k)∥+ β2 + β3β
2

= −β4(∥x̃(k)∥ −
β1

2β4
)2 +

β2
1

4β4
+ β2 + β3β

2 − ρV (k)

≤ −ρV (k) + β5.

(17)

Then, one has

V (k + 1) ≤ (1− ρ)V (k) + β5 (18)

whose solution corresponds to

V (k) ≤ (1− ρ)kV (0) +

k−1∑

i=0

(1− ρ)k−i−1β5

≤ (1− ρ)kV (0) +
1− (1− ρ)k

ρ
β5.

(19)

When k goes to infinity, (19) becomes

V (k) ≤ β5

ρ
(20)

and we can conclude that the estimation error of the discrete-time STO is ultimately

bounded by Ω. This result completes the proof. ■
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3.2 Discrete-time FTSMC

In this subsection, we aim to develop a digital control scheme that provides a fast

response and has the anti-disturbance ability.

In accordance with the discrete-time robotic model (7), a nonlinear sliding mode

surface can be constructed as

s(k) = e2(k) +C1e1(k) +C2sig
α (e1(k)) (21)

where c1i is the ith element of diagonal matrix C1 = diag (c11, c12, . . . , c1n), requiring

to be designed and satisfying 0 < hc1i < 1. C2 = diag (c21, c22, . . . , c2n) corresponds

to a diagonal positive definite matrix to be designed and 0 < α < 1.

Subsequently, the equivalent control can be determined from the condition Su et al.

(2000)

s(k + 1) = 0. (22)

Substituting (7) into (22) yields

e2(k) + hẍr(k)− hM−1(x1)τ(k)− hf(k)− hd(k) +C1e1(k)

+ hC1e2(k) +C2sig
α (e1(k + 1)) = 0.

(23)

By substituting the estimated disturbance value (12) into (23), the discrete-time FTSMC

is formulated as

τ(k) =
M(x1)

h
[(hC1 + I) e2(k) +C1e1(k)] +

M(x1)

h
[C2sig

α (e1(k) + he2(k))]
︸ ︷︷ ︸

τfb(k)

+
M(x1)

h
[hẍr(k)− hf(k)− hz3(k)]

︸ ︷︷ ︸

τff (k)

.

(24)

The proposed control law (24) consists of a feedforward part τff (k) and a feedback

part τfb(k). The disturbance estimation information z3(k) in the feedforward not only

compensates the disturbances but also mitigates chattering without sacrificing robustness.

The non-smooth term sigα(·) in the feedback improves the dynamic response of the

system state near the equilibrium points.

3.3 Stability analysis

In this subsection, the stability analysis for the case of (24) is presented. The detailed

proof is shown as follows.

Theorem 2: Consider the discrete-time error dynamics (7) with the proposed discrete-

time FTSMC consisting of the discrete-time STO (12), the sliding mode surface (21) and

the control law (24). If Assumption 1 holds, then the position tracking error e1(k) is

ultimately bounded and has an accuracy with O(h3) when α = 2
3 .
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Proof: We can apply (7), (21) and (24) to describe the dynamical behavior of s(k) as

s(k + 1) = e2(k + 1) +C1e1(k + 1) +C2sig
α (e1(k + 1))

= −h (d(k)− z3(k))

= −hx̃3(k)

(25)

which is bounded by

|si(k)| ≤ ∥s(k)∥ ≤ hη1 = O(h2)

∀k ∈ Z+, ∀i ∈ {1, 2, . . . , n}.
(26)

Thus, we can explain that si(k) has an O(h2) boundary layer.

Recall that we have defined the discrete-time error dynamics in (7) and e2(k) in (21),

and thus the dynamical behavior of e1(k) becomes

e1(k + 1) = h (s(k)−C1e1(k)−C2sig
α (e1(k))) + e1(k)

= (I− hC1) e1(k) + hs(k)− hC2sig
α (e1(k)) .

(27)

In accordance with Lemma 1, one can conclude that e1(k) is always bounded. From (21),

we have

e2(k) = s(k)−C1e1(k)−C2sig
α (e1(k)) . (28)

It is noted that e2(k) depends on both terms e1(k) and s(k) which are bounded based on

the previous conclusions. Hence, one can conclude that the e2(k) is also bounded, which

further indicates that the stability of the closed-loop system can be ensured.

Then, by following Lemma 1, we have

|e1i(∞)| ≤ ρ1 = Φ(α) ·max

{(
h2η1
hc2i

) 1

α

,

(
hc2i

1− hc1i

) 1

1−α
}

= Φ(α) ·max

{(
hη1
c2i

) 1

α

,

(
hc2i

1− hc1i

) 1

1−α
}

= Φ(α) ·max

{

(O(h))
2

α , (O(h))
1

1−α

}

,

∀k ≥ N∗, ∀i ∈ {1, 2, . . . , n}.

(29)

To obtain the optimal accuracy for e1(k), select α = 2
3 such that

2/α =
1

1− α
(30)

holds. Hence,

|e1i(∞)| ≤ ρ1 = O(h3). (31)

This completes the proof. ■

Up to now, we have explained the stability of the proposed control method, which is

related to both the structure of sliding mode surface and the steady state of sliding mode
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state. We take advantage of this observation to derive our proposed method by formulate

a novel sliding mode surface so as to achieve better control performance. Note that if

α = 1, the sliding surface described in (21) is transformed into a typical linear sliding

surface, which fails to offer the fast transient convergence near the equilibrium point

compared with the nonlinear sliding mode surface (21).
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Figure 1. Experiment platform. (a) Overall design of the robot system. (b) Robotic arm

system hardware diagram.

4 Experimental studies

This section presents several experimental evaluations to validate the performance of the

proposed control method. The experimental platform is described in Figure 1. Please

refer to Han et al. (2022) for details on this setup.

To show the control performance of our method, the discrete-time STO-based

FTSMC (STO-FTSMC), comparisons with the discrete-time DEM-based FTSMC
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Table 1. Control gains used on the robot

Controllers Parameters

STO-FTSMC

L1 = 102 × diag{3, 3, 3, 3, 3, 3} L2 = 104 × diag{4.4, 4.4, 4.4, 4.4, 4.4, 4.4}
L3 = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3} L4 = diag{30, 30, 30, 30, 30, 30}

C1 = 102 × diag{4, 4, 4, 4, 4, 4} C2 = diag{30, 30, 30, 30, 30, 30} α = 2
3

STO-LSMC

L1 = 102 × diag{3, 3, 3, 3, 3, 3} L2 = 104 × diag{4.4, 4.4, 4.4, 4.4, 4.4, 4.4}
L3 = diag{0.3, 0.3, 0.3, 0.3, 0.3, 0.3} L4 = diag{30, 30, 30, 30, 30, 30}

C1 = diag{430, 430, 320, 220, 220, 220}
DEM-FTSMC C1 = 102 × diag{4, 4, 4, 4, 4, 4} C2 = diag{30, 30, 30, 30, 30, 30} α = 2

3

(DEM-FTSMC) and STO-based LSMC (STO-LSMC) are provided. The DEM-FTSMC

can be achieved by incorporating the output of DEM into the FTSMC, where the DEM

is employed to estimate the disturbances that is designed as

z3(k) = d(k − 1)

= − 1

h
(e2(k)− e2(k − 1)) + ẍr(k − 1)− f(k − 1)−M−1(x1)τ(k − 1).

(32)

The discrete-time STO-LSMC is provided here. More details about its control design are

as follows. The traditional linear discrete-time sliding surface is described as

s(k) = e2(k) +C1e1(k) (33)

where c1i is the ith element of diagonal matrix C1 = diag (c11, c12, . . . , c1n), requiring

to be designed and satisfying 0 < hc1i < 1. Similar to the treatment in (22), we employ

the equivalent control method to directly calculate the linear discrete-time SMC law.

In addition, since the disturbance information is not yet available, we here exploit the

same disturbance estimation treatment in (12) to obtain it. Subsequently, the final linear

discrete-time SMC law associated with disturbances compensated can be derived as

τ(k) =
M(x1)

h
[(hC1 + I) e2(k) +C1e1(k)]

+
M(x1)

h
[hẍr(k)− hf(k)− hz3(k)] .

(34)

On the basis of Lemma 2, we can derive that e1(k) is bounded and its steady state will

be bounded by

|e1i(∞)| ≤ h|si(∞)|
hc1i

=
hη1
c1i

= O(h2), ∀i ∈ {1, 2, . . . , n}. (35)

Therefore, one can derive that e1(k) has an accuracy with O(h2).
The selection of control parameters is significant for control performance of robotic

systems. The parameters Li, i = 1, 2, 3, 4 of the discrete-time STO need to be first
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Figure 2. Comparison of the response curves for tracking the commanded position trajectory

among the STO-FTSMC, STO-LSMC and DEM-FTSMC. (a)−(f) respectively correspond to

the first to sixth joints.

determined since the observer provides information for the controller design. Then, for

parameter α, the condition (30) should be satisfied to obtain the optimal accuracy of

e1(k), and therefore α is set as 2
3 in the experiment. Last, use the trial-and-error approach

to set the parameters C1 and C2. The comparison with DEM-FTSMC and STO-LSMC

are performed. For fair comparison purposes, we reuse the trial-and-error approach to

adjust the control parameters until satisfactory tracking performance is achieved. The

relevant parameters of the implemented controllers are listed in Table 1. Moreover, the

sampling period h is set to 0.001 seconds.

Case I-Tracking performance under the commanded position trajectory.

In this test, we study a tracking task, where the robot is required to track commanded

joint trajectories determined by the Jacobin-based inverse kinematics, which is aimed at

evaluating the tracking performance of the above methods. We can observe that STO-

FTSMC indeed has higher tracking accuracy, comparing with the DEM-FTSMC and

STO-LSMC, as shown in Figure 2. Figure 3 shows the different disturbance estimation

results through the discrete-time STO and DEM, where τ̂d = M(x1)d̂. It can be seen that

the discrete-time STO performs better on disturbance estimation, unlike the DEM that

brings some problems such as noise amplification and peaking phenomenon. Figure 4

depicts the response curves for control inputs via three methods.

Case II-Robustness against the unknown load disturbances.

The anti-disturbance performance of the control system is further studied in this

experiment. In many robotic tasks, such as transportation and grasping tasks, robots are

required to manipulate an unknown object to achieve a goal state. During this process,
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Figure 3. Disturbance estimation results through STO and DEM under tracking commanded

position trajectories. (a)−(f) correspond to the first to sixth joints.

Figure 4. Control inputs of three approaches on tracking commanded position trajectories.

(a)−(f) correspond to the first to sixth joints.

the anti-disturbance ability plays a critical role in coping with the abrupt unknown load

disturbances at the quasi-static state.
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Figure 5. The response curves for position tracking via discrete-time STO-FTSMC and

STO-LSMC as well as DEM-FTSMC under the unknown load disturbances. (a)−(f)
respectively correspond to the first to sixth joints.
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correspond to the first to sixth joints.
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Figure 7. Control inputs of three approaches under unknown load disturbances. (a)−(f)
correspond to the first to sixth joints.
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Figure 8. The response curves for position tracking via discrete-time STO-FTSMC,

STO-LSMC and DEM-FTSMC under abrupt changes in disturbance. (a)−(f) respectively
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Figure 9. The estimated abrupt external disturbance via discrete-time STO and DEM.

(a)−(f) correspond to the first to sixth joints.
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Figure 10. Control inputs of three approaches under abrupt changes in disturbance.

(a)−(f) correspond to the first to sixth joints.

An unknown load disturbance is imposed at the end-effector of the robot. As shown

in Figure 5, we can observe that the proposed control method still exhibits better anti-

disturbance capabilities. As shown in Figure 6, the discrete-time STO can effectively
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Table 2. Performance Indexes Under Three Control Approaches In Case I.

Joint 1 (deg) Joint 2 (deg)

MAXE MAE STDE MAXE MAE STDE

STO-FTSMC 0.2338 0.0606 0.0862 0.4076 0.1313 0.1640
STO-LSMC 0.3072 0.1150 0.1234 0.5874 0.3228 0.3619
DEM-FTSMC 0.5327 0.1479 0.1873 0.5660 0.3131 0.3366

Joint 3 (deg) Joint 4 (deg)

MAXE MAE STDE MAXE MAE STDE

STO-FTSMC 0.3588 0.1258 0.1550 0.0001 0.00001 0.00002
STO-LSMC 0.5963 0.2970 0.3268 0.0029 0.0013 0.0014
DEM-FTSMC 0.6419 0.2149 0.2554 0.0083 0.0070 0.0070

Joint 5 (deg) Joint 6 (deg)

MAXE MAE STDE MAXE MAE STDE

STO-FTSMC 0.1745 0.0557 0.0677 0.7136 0.1329 0.1954
STO-LSMC 0.6316 0.1318 0.1512 0.8735 0.4099 0.4576
DEM-FTSMC 0.4709 0.0979 0.1179 0.7525 0.3290 0.3772

estimate the unknown load disturbance. Figure 7 depicts the response curves for the

control inputs under the unknown load disturbance.

Case III-Robustness against abrupt changes of the load.

In this test, we consider to abruptly impose an external force at the end-effector of the

robot to verify the effectiveness of the proposed algorithm. In Figure 8, we can observe

that the proposed method indeed is able to achieve better robustness against the abrupt

changes in disturbance. The response curves of disturbance estimation and control inputs

in joint space are shown in Figures 9 and 10, respectively.

In order to further quantitatively evaluate the proposed method, we consider the

performance indexes such as MAXE, MAE and STDE (see Du et al. (2018) for details).

For clear comparison results, the corresponding values with prescribed performance

indexes are displayed closely in Table 2, which explicitly shows that the proposed control

method is capable of providing better control performances than the other two methods.

5 Conclusions

In this paper, a robust discrete-time STO-FTSMC has been developed to achieve

high-performance control requirements for industrial robots, where the disturbance

compensation is considered. On the basis of the performed experimental tests on a

real 6-DoF industrial robot, it shows that the proposed method can achieve the design

requirements in the face of the uncertain dynamics and the unknown load disturbances

as well as the abrupt changes in disturbance. Compared with the discrete-time STO-

LSMC and DEM-FTSMC, the developed scheme improves the control performance on

the position tracking accuracy and robustness. Besides, a strict theoretical analysis also

validates the stability of this scheme by proving that the tracking error is ultimately

bounded, which is also confirmed by the provided experimental results.
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