
Geophysical Journal International Royal

Society
Astronomical

Geophys. J. Int. (2024) 238, 631–645 https://doi.org/10.1093/gji/ggae175 
Advance Access publication 2024 May 17 
GJI General Geophysical Methods 

A generalized curvilinear solver for spherical shell Rayleigh –B énard 
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S U M M A R Y 

A 3-D finite-difference solver has been developed and implemented for Boussinesq convection 

in a spherical shell. The solver transforms any complex curvilinear domain into an equi v alent 
Cartesian domain using Jacobi transformation and solves the governing equations in the 
latter. This feature enables the solver to account for the effects of the non-spherical shape 
of the conv ectiv e re gions of planets and stars. Apart from parallelization using MPI, implicit 
treatment of the viscous terms using a pipeline alternating direction implicit scheme and 

HYPRE multigrid accelerator for pressure correction makes the solver efficient for high- 
fidelity direct numerical simulations. We have performed simulations of Rayleigh–B énard 

convection at two Rayleigh numbers Ra = 10 

5 and 10 

7 while keeping the Prandtl number fixed 

at unity ( Pr = 1). The average radial temperature profile and the Nusselt number match very 

well, both qualitati vel y and quantitati vel y, with the existing literature. Closure of the turbulent 
kinetic energy budget, apart from the relative magnitude of the grid spacing compared to the 
local Kolmogorov scales, ensures sufficient spatial resolution. 
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 I N T RO D U C T I O N  

urbulent thermal convection is ubiquitous in nature as a primary
riving mechanism for atmospheric and oceanic circulations (Hart-
ann et al. 2001 ). Such conv ectiv e motions in Earth’s outer core

r in the solar conv ectiv e zone, for example provide energy to sus-
ain global-scale magnetic fields in planets and stars (R üdiger &
ollerbach 2006 ; Roberts & King 2013 ). Such flow phenomena are

urther enriched due to the presence of global rotation, external or
elf-generated magnetic fields, chemical reactions, phase change,
he porosity of the medium and particle suspension (Chill à & Schu-
acher 2012 ). Fur ther more, the design of heat exchangers, cooling

ystems for electronics and indoor air circulation systems requires a
undamental understanding of thermal convection (Incropera 1988 ;
ncropera et al. 1996 ). Rayleigh–B énard convection (RBC) is a
imple model of thermal convection, where a fluid layer between
wo parallel plates is heated from below and cooled from above.
uch a plane layer geometry can be considered, for example, as a

ocal approximation of the tangent cylinder region of Earth’s outer
ore, which is situated between the top and bottom surfaces of the
olid inner core and extending towards the north and south poles,
especti vel y, up to the core-mantle boundary. Simulations in the
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
lane layer geometry can reproduce the basic force balance and
eat transfer behaviour that can be validated from well-designed
aboratory experiments. Therefore, this flow configuration has been
 xtensiv ely studied, with the individual or combined effect of global
otation and magnetic fields (Naskar & Pal 2022a , b ) to model var-
ous geophysical and astrophysical turbulent flows (Ahlers et al.
009 ). 

In the geophysical and astrophysical conte xt, howev er, a spheri-
al shell geometry is more pertinent to modelling planetary cores
r stellar conv ectiv e zones. The most e xtensiv e body of literature in
his geometry focuses on ‘geodynamo’ simulations that attempt to
odel Earth’s outer core convection and the associated geomagnetic
eld originating from it (Jones 2011 ). Mantle convection (Wolsten-
roft et al. 2009 ), rapidly rotating convection (Aurnou et al. 2015 ;
astine et al. 2016 ; Mound & Davies 2017 ; Long et al. 2020 ), RBC
ithout rotation and magnetic field (Gastine et al. 2015 ), deep con-
ection in gas giants (Yadav & Bloxham 2020 ; Yadav et al. 2020 )
nd solar convection (Korre & Featherstone 2021 ) are among the
ther prolific areas of research where spherical shell models are im-
lemented. The superiority of these models lies in their capability to
odel many essential dynamic features of planetary atmospheres,

uch as thermal winds, strong shear layers, magnetic buoyancy,
oyal Astronomical Society. This is an Open Access 
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meridional circulations and large-scale flows. They can also incor- 
porate important geometric constraints, such as tangent cylinders 
and curvature effects near the boundaries, whose combined or indi- 
vidual influence can not be accounted for in a local Cartesian plane 
layer configuration (Rincon 2019 ). 

The local plane layer and the global spherical shell simulations 
dif fer primaril y in the direction of gravity, which is generally kept 
verticall y downw ards in the local Cartesian models. In contrast, the 
direction is radially inwards in global spherical shell models. Ad- 
ditionally, rotating convection in spherical shells exhibits distinct 
scales in the radial, axial and azimuthal directions (Dormy et al. 
2004 ), whereas, for the local Cartesian model, we need to con- 
sider only two spatial scales: the horizontal scale of convection and 
the vertical scale over which convection occurs. For both geome- 
tries, the governing non-dimensional parameters are the Rayleigh 
numbers ( Ra ), which is a non-dimensional measure of the thermal 
forcing and the Prandtl number ( Pr ), representing the viscous to 
thermal dif fusi vity ratio. Apar t from this, the flow proper ties may 
also depend on the aspect ratio � = W / H (where W and H are the 
horizontal and vertical extents of the domain) and the radius ratio � 

= r i / r o in-plane layer and spherical shell geometries, respecti vel y. 
The important global diagnostic quantities are the Nusselt number 
Nu and the Reynolds number Re , representing the non-dimensional 
heat transfer and flow speed. 

An intriguing question in this research direction is the scaling 
relation between such a diagnostic quantity with a governing input 
parameter, such as Nu , as a function of Ra . The thermal convection 
in planets and stars occurs at parameter values that are several or- 
ders of magnitude away from the reach of state-of-the-art numerical 
simulations and experiments. Therefore, these scaling relations are 
valuable tools to extrapolate the results of these experiments and 
simulations to planetary and stellar conv ectiv e re gimes. For plane 
layer geometry, a Nusselt number scaling of Nu ∼ Ra 2/7 is found for 
moderate thermal forcing ( Ra ≤ 10 10 ), whereas, for higher thermal 
forcing, a scaling relation of Nu ∼ Ra 1/3 has been widely reported 
(Iyer et al. 2020 ). A systematic investigation has been reported by 
(Gastine et al. 2015 ), who found the same scaling laws for the Nus- 
selt number in the spherical geometry. It should be noted here that 
though the global diagnostic quantities exhibit similar behaviour, 
the local properties, such as the thickness of the viscous and thermal 
boundary layers, are markedly different in the two geometries. For 
example, the effect of curvature and a radially varying gravitational 
acceleration (as appropriate in Earth’s core) results in asymmet- 
ric boundary layers in the spherical geometry, in contrast to the 
symmetric boundary layers in a plane layer geometry. 

Experimental difficulties related to the radial direction of grav- 
ity make the advances in spherical shell convection almost entirely 
dependent on massi vel y parallel numerical simulations. A compar- 
ative study among the existing solvers to address these issues has 
been reported by Matsui et al. ( 2016 ). Existing solvers primarily 
use spherical harmonic decomposition of the flow variables in the 
azimuthal and latitudinal directions, while the Cheb yshe v collo- 
cation method (Glatzmaier 1984 ; Wicht 2002 ; Simitev & Busse 
2005 ; Sasaki et al. 2011 ; Featherstone & Hindman 2016 ) or finite- 
difference schemes(Dormy et al. 1998 ; Hollerbach 2000 ; Willis 
et al. 2007 ; Jiang & Kuang 2008 ; Takahashi 2012 ; Marti 2012 ; 
Matsui et al. 2014 ; Schaeffer et al. 2017 ), are used in the radial 
direction. Compared to these pseudo-spectral methods, locally dis- 
cretized methods that use finite element (Matsui & Okuda 2004 ; 
Ribeiro et al. 2015 ), finite volume (Vantieghem et al. 2016 ), or 
finite difference (Santelli et al. 2021 ) are less popular as they re- 
quire more resolution to achieve similar accuracy (Matsui et al. 
2016 ). Ho wever , these local methods are much more suitable for 
massi vel y parallel computations. Also, some of these local meth- 
ods can handle non-spherical boundar y topog raphy (Four nier et al. 
2004 ; Vantieghem et al. 2016 ), unlike pseudo-spectral methods that 
use spherical harmonic decomposition. Therefore, the effect of the 
ellipticity of the core–mantle boundary (Forte et al. 1995 ) on the az- 
imuthal and latitudinal variation of radial heat flux can be accounted 
for by the local methods. Fur ther more, magnetic field generation in 
some exoplanets and the moon has been found to be significantly de- 
pendent on the boundary topology (Dwyer et al. 2011 ; Le Bars et al. 
2011 ; C ébron et al. 2012 ), making the use of such local methods 
indispensable. Among the local methods for modelling planetary 
convection, the spectral element model of Fournier et al. ( 2004 ) can 
model non-spherical shapes, which are symmetric about the axis of 
rotation. This flexibility allows it to model axisymmetric containers 
of any shape that can be used in laboratory experiments. Recently, 
a finite volume formulation with unstr uctured g rids has been used 
by Vantieghem et al. ( 2016 ) that can be used to model convection 
in any complicated topology. 

In this paper, we report on the development, implementation and 
validation of a new finite-difference solver for studying spherical 
shell convection. The capability to account for any effect of the non- 
spherical boundaries is the primary moti v ation for de veloping the 
present code. The solver can map any 3-D curvilinear geometry to 
a computational Cartesian domain using the Jacobi transformation. 
This enables us to solve the conservation equations in Cartesian co- 
ordinates, which are much simpler than their spherical coordinate 
counterpart, even after their modification by the Jacobi, elongation 
and stiffness matrix coefficients. The solver uses second-order cen- 
tral spatial discretization, while temporal discretization is achieved 
with the fractional step method (Chongsiripinyo 2019 ). In order to 
avoid the stiffness induced by the fine resolution near the bound- 
ary layers, the viscous terms have been treated implicitly, while the 
other terms are marched explicitly. The fractional step marches the 
velocity field into an intermediate field by a combination of the 
alternating direction implicit (ADI) method, the Crank–Nicolson 
(CN) method and the third-order low-storage Runge–Kutta (RKW3) 
method (Chongsiripinyo 2019 ). The remaining procedure in the 
fractional step method is to remove the divergence residual from 

the velocity field after the end of each RKW3 step, which in turn 
is achieved by pressure correction. We use the multigrid HYPRE 

module to accelerate the pressure correction. The rest of the article 
is structured as follows. Section 2 discusses the governing equa- 
tion used. The numerical scheme is described in Section 3 . Results 
are presented in Section 5 and summarized in Section 6 . 

2  G OV E R N I N G  E Q U  A  T I O N S  

We aim to investigate Rayleigh–B énard convection of an incom- 
pressible, Newtonian, Boussinesq fluid in a spherical shell geome- 
try as illustrated in Fig. 1 . The spherical shell has an inner radius 
r i and an outer radius r o kept at constant temperatures T i and T o , 
respecti vel y. The shell gap d = r o − r i , the temperature difference 
� T = T i − T o and the free-fall velocity u f = { g 0 α( T i − T o ) d } 1/2 

have been used as the characteristics scale for length, tempera- 
ture and v elocity, respectiv ely, to non-dimensionalize the governing 
equations. Here, g 0 is the gravitational acceleration at the outer ra- 
dius. The rele v ant fluid properties are the kinematic viscosity ( ν), 
thermal dif fusi vity ( κ) and thermal expansion coef ficient ( α). The 
non-dimensional governing equations are expressed below using a 
Cartesian coordinate system. 
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Figure 1. Spherical shell geometry. 
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∂u j 

∂x j 
= 0 , (1) 

∂u i 

∂t 
+ 

∂u i u j 

∂x j 
= − ∂p 

∂x i 
+ gT δin + 

√ 

P r 

Ra 

∂ 2 u i 

∂ x j ∂ x j 
, (2) 

∂T 

∂t 
+ u j 

∂T 

∂x j 
= 

1 √ 

Ra P r 

∂ 2 T 

∂ x j ∂ x j 
, (3) 

here g = ( r o / r ) 2 is the radial variation of gravitational acceleration
nd δin = cos θ δi 1 + sin θ cos φ δi 2 + sin θ sin φ δi 3 . Here θ and φ are
he colatitude and longitude as shown in Fig. 1 . The non-dimensional
emperature difference is defined as T = ( T f − T o )/( T i − T o ), where
 f is the temperature of the fluid. The non-dimensional parameters

n these equations are the Rayleigh number and the Prandtl number
efined below. 

R a = 

g 0 α�T d 3 

κν
, P r = 

ν

κ
. (4) 

n the subsequent section, we will use a coordinate transformation
o convert the spherical domain to a Cartesian domain. 

 N U M E R I C A L  A L G O R I T H M S  

.1 Coordinate transformation 

o solve the governing eqs ( 1 )–( 3 ) in a generalized curvilinear
oordinate system we perform coordinate transformation. The basic
dea behind a coordinate transformation is to transform a set of
hysical laws written in Cartesian coordinates x 1 , x 2 , x 3 into an
lter native for m based on generalized cur vilinear coordinates ζ , η,
(Chongsiripinyo 2019 ). 
Physical law written in the Cartesian system 

Physical curvilinear grid ⏐ ⏐ ⏐ ⏐ � Grid transformation 

Physical law written in the generalized system 

Computational Cartesian grid, Jacobi terms 
Such a transformation (as depicted in Fig. 2 ) will result in the

nclusion of additional coefficients in the space deri v ati ves in the
overning equations, and the relation of this transformation between
he Cartesian and the generalized curvilinear coordinate system is
tored in a Jacobi matrix ( J ). The continuity, momentum and energy
quations after the transformation are expressed below. 

∂ 
[
C nj u j 

]
∂ζn 

= 0 (5) 

∂ 
∣∣J −1 

∣∣ u i 

∂t 
+ 

∂ 
[
C nj u j 

]
u i 

∂ζn 
= −∂C ni P 

∂ζn 
+ 

∣∣J −1 
∣∣ gT δin 

+ 

√ 

P r 

Ra 

∂ 

∂ζn 

(
G nj 

∂u i 

∂ζ j 

)
(6) 

∂T 

∂t 
+ 

∂ 
[
C nj u j 

]
T 

∂ζn 
= 

1 √ 

Ra P r 

∂ 

∂ζn 

(
G nj 

∂T 

∂ζ j 

)
. (7) 

Here, x i denotes the coordinate i of the Cartesian system and

i denotes the coordinate i of the generalized system. The nota-
ions x i = ( x 1 , x 2 , x 3 ) = ( x , y , z ) and ζ i = ( ζ , η, ξ ) = ( ζ 1 , ζ 2 , ζ 3 )
ave been used interchangeably. After the transformation, the trans-
or med gover ning equations are solved as if in a Cartesian system.
n this context, grid transformation is often synon ymousl y used with
oordinate transformation as the curvilinear domain (i.e. a spherical
hell domain in our case) is transformed into a new computational
artesian domain. Here J −1 , C ij and G ij are 

J −1 = 

⎡ 

⎣ 

∂ x 1 /∂ ζ ∂ x 2 /∂ ζ ∂ x 3 /∂ ζ
∂ x 1 /∂ η ∂ x 2 /∂ η ∂ x 3 /∂ η
∂ x 1 /∂ ξ ∂ x 2 /∂ ξ ∂ x 3 /∂ ξ

⎤ 

⎦ = : 
[
∂ x i /∂ ζ j 

]
(8) 

 i j = 

∣∣J −1 
∣∣ ∂ζi 

∂x j 
G i j = 

∣∣J −1 
∣∣ ∂ζi 

∂x k 

∂ζ j 

∂x k 
(9) 

The determinant | J −1 | is the volume ratio of the original cell to the
ransformed cell, whereas C ij and G ij are grid elongation and skew-
ess coef ficients, respecti vel y. The side length, and consequentl y the
ide area and the total volume, of a transformed cell, is chosen to be
nity (Rosenfeld et al. 1991 ). Note that a recent and similar finite
if ference implementation b y Santelli et al. ( 2021 ) uses a special
ransformation of variables that is equivalent to the contravariant
elocity components (multiplied by cell volume) as done in eq. ( 6 )
Rosenfeld et al. 1991 ). Such special treatments are required for a
ocal discretization scheme near the pole to avoid singularities (see
ournier et al. ( 2004 ) for an example). In the present solver, the
ingularities near the poles can be easily circumnavigated by setting
he transformation matrix coefficients to zero at the pole ( x 1 -axis in
ig. 1 ). 

.2 Jacobi terms 

ig. 3 demonstrates a cell ( i , j , k ) in a transformed computational
omain. The Jacobi terms, J −1 , C pq and G pq , as expressed in eqs ( 8 )
nd ( 9 ) are stored at the cell’s faces. The calculation of J −1 , C pq and
 pq is given below. 

(i) J −1 is computed at every cell face, denoted by J −1, fc ; where
c indicates cell face (1–3), by calculating all the nine components
n J −1 . For instance, we can compute the components of J −1, 2 of a
ell ( i , j , k ) as follows: 

 ∂ 
−→ x /∂ζ ) | i, j,k = 0 . 125 ∗ ( + 

−→ x | i+ 1 , j+ 1 ,k + 

−→ x | i+ 1 , j,k + 

−→ x | i+ 1 , j+ 1 ,k+ 1 + 

−→ x | i+ 1 , j,k+ 1 
−−→ x | i−1 , j+ 1 ,k − −→ x | i−1 , j,k − −→ x | i−1 , j+ 1 ,k+ 1 − −→ x | i−1 , j,k+ 1 ) 

( ∂ −→ x /∂η) | i, j,k = 0 . 5 ∗ ( + 

−→ x | i, j+ 1 ,k + 

−→ x | i, j+ 1 ,k+ 1 − −→ x | i, j,k − −→ x | i, j,k+ 1 ) 

( ∂ −→ x /∂ξ ) | i, j,k = 0 . 5 ∗ ( + 

−→ x | i, j+ 1 ,k+ 1 + 

−→ x | i, j,k+ 1 − −→ x | i, j,k − −→ x | i, j+ 1 ,k ) . 

(ii) Calculate det ( J −1, fc ), denoted by | J −1, fc | . 

art/ggae175_f1.eps
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Figur e 2. (a) Ph ysical curvilinear domain depicting the left half of the x 3 = 0 plane in the spherical geometry with the corresponding (b) transfor med Car tesian 
computational domain. 

Figure 3. A transformed computational cell associated with the gridpoint ( i , j , k ); where i , j , k are the integer indices used to identify discrete space in the ζ , η
and ξ directions, respecti vel y. 
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(iii) The variable | J −1 | in eq. ( 6 ) is an averaged value at the cell 
centre calculated from the six surrounding faces: 

| J −1 | i, j,k = 

1 

6 

⎛ 
⎝ 3 ∑ 

f c= 1 
| J −1 , f c | i, j,k + | J −1 , 1 | i, j+ 1 ,k + | J −1 , 2 | i+ 1 , j,k + | J −1 , 3 | i, j,k+ 1 

⎞ 
⎠ . 

(iv) Compute J fc = [ ∂ ζ i / ∂ x j ] simply by the straight-forward 
inversion, J −1, fc : 
{ J −1, fc } −1 = det ( J −1, fc ) −1 { cof ( J −1 ) } T 

(v) Calculate C pq and G pq at face fc , denoted by C 

f c 
pq and G 

f c 
pq 

fc 
from J using eq. ( 9 ). 
3.3 Spatial discretization 

The spatial deri v ati ves in eqs (6 ) and ( 7 ) are discretized using a 
second-order central finite difference scheme. Fig. 4 illustrates the 
stencils used to discretize the term eq. (10) using this scheme. 

∂ 

∂ζp 

[
G pq 

∂φ

∂ζq 

]
(10) 

Eq. ( 10 ) consists of 9 terms. We present the discretization of term 

1 ( p = 1 and q = 1), term 2 ( p = 1 and q = 2) and term 3 ( p = 1 and q =
3) as examples. 

art/ggae175_f2.eps
art/ggae175_f3.eps
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Figure 4. Stencils used for computing eqs (11) , ( 12 ) and ( 13 ). 
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Table 1. RKW3 parameters. 

Substep h β � 
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2 2 � t /15 25/8 −17/8 
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(
δ

δζ1 

[
G 11 

δφ

δζ1 

])
i, j,k 

= 

[ 
G 11 

δφ

δζ1 

] 
i+ 1 / 2 , j,k 

−
[ 
G 11 

δφ

δζ1 

] 
i−1 / 2 , j,k 

= + G 

2 
11 | i+ 1 , j,k [ φ| i+ 1 , j,k − φ| i, j,k ] 

−G 

2 
11 | i, j,k [ φ| i, j,k − φ| i−1 , j,k ] (11) (

δ

δζ1 

[
G 12 

δφ

δζ2 

])
i, j,k 

= 

[ 
G 12 

δφ

δζ2 

] 
i+ 1 / 2 , j,k 

−
[ 
G 12 

δφ

δζ2 

] 
i−1 / 2 , j,k 

= + 

G 

2 
12 | i+ 1 , j,k 

2 

[ 
+ 

φ| i, j+ 1 ,k + φ| i + 1 , j+ 1 ,k 
2 

− φ| i, j−1 ,k + φ| i + 1 , j−1 ,k 

2 

] 
− G 

2 
12 | i, j,k 

2 

[ 
+ 

φ| i, j+ 1 ,k + φ| i −1 , j+ 1 ,k 
2 

− φ| i, j−1 ,k + φ| i −1 , j−1 ,k 

2 

] 
(12) (

δ

δζ1 

[
G 13 

δφ

δζ3 

])
i, j,k 

= 

[ 
G 13 

δφ

δζ3 

] 
i+ 1 / 2 , j,k 

−
[ 
G 13 

δφ

δζ3 

] 
i−1 / 2 , j,k 

= + 

G 

2 
13 | i+ 1 , j,k 

2 

[ 
+ 

φ| i, j,k+ 1 + φ| i + 1 , j,k+ 1 
2 

− φ| i, j,k−1 + φ| i + 1 , j,k−1 

2 

] 
− G 

2 
13 | i, j,k 

2 

[ 
+ 

φ| i, j,k+ 1 + φ| i −1 , j,k+ 1 
2 

− φ| i, j,k−1 + φ| i −1 , j,k−1 

2 

] 
(13) 

.4 Temporal discretization 

or temporal discretization, a fractional step method is used where a
elocity field is sequentiall y adv anced in multiple substeps. We use
 combination of the Alternating Direction Implicit method (ADI),
he Crank-Nicolson method (CN) and the third-order low-storage
unge-Kutta method (RKW3) to march to an intermediate field as
escribed below (Chongsiripinyo 2019 ). 

.4.1 ADI method 

he ADI method has been used to treat the viscous term implicitly
hile marching in one direction at a time. We demonstrate the
ethod with a 2-D diffusion equation as shown in eq. ( 14 ). To solve

q. ( 14 ) using the Euler method, the procedure is to perform implicit
uler in the x- direction with explicit Euler in the y- direction for the
rst half ( � t /2) and vice versa for the second half ( � t /2) as shown

n eqs ( 15 ) and (16) . 

∂φ

∂t 
= α

[
∂ 2 φ

∂x 2 
+ 

∂ 2 φ

∂y 2 

]
(14) 
φn + 1 2 − φn 

�t/ 2 
= α

[ 
∂ 2 φn + 1 2 

∂x 2 
+ 

∂ 2 φn 

∂y 2 

] 
(15) 

φn + 1 − φn + 1 2 

�t/ 2 
= α

[ 
∂ 2 φn + 1 2 

∂x 2 
+ 

∂ 2 φn + 1 

∂y 2 

] 
. (16) 

.4.2 CN method 

he CN method splits the right-hand side into two equal parts, the
mplicit and the explicit, as demonstrated in eqs ( 17 ) and (18 ). 

∂φ

∂t 
= α

∂ 2 φ

∂x 2 
(17) 

φn + 1 − φn 

�t 
= 

α

2 

[
∂ 2 φn + 1 

∂x 2 
+ 

∂ 2 φn 

∂x 2 

]
(18) 

.4.3 RKW3 method 

he RKW3 method uses only two storage variables. Marching is
ccomplished in three substeps, briefly summarized here. Given an
quation for φ, 

∂φ

∂t 
= R ( φ) . (19) 

KW3 is implemented in the following manner, 

φrk − φrk−1 

h 

rk 
= βrk R ( φrk−1 ) + � 

rk R ( φrk−2 ) . (20) 

ere, rk goes from substep 1 to substep 3, and the values of h , β
nd � are given in Table 1 . 

.4.4 The ADI-CN-RKW3 combined marching scheme 

he above-mentioned algorithms (ADI, CN and RKW3) are com-
ined to march the governing equations to an intermediate state
emporally (Fig. 5 ). The right-hand side of eq. ( 6 ) is split into ex-
licit and implicit terms as indicated by the subscripts ex and im
n eq. ( 21 ). Depending on the grid skewness G ij , the diagonal com-
onents of the viscous terms are susceptible to the stiffness of the
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Figure 5. ADI-CN-RKW3 combined marching scheme. PC denotes the pressure correction. 
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discretized systems and are, therefore, marched implicitly. The ADI 
scheme is used since there are three viscous terms containing G 11 , 
G 22 and G 33 . At a given time, they are split into two parts using CN. 
These steps are shown in eqs (22 ), (23 ) and (24 ) as an example for 
substep 1 of the RKW3 marching scheme. 

∂ J −1 u i 
∂t 

= 

[ 
− ∂C ni P 

∂ζn 
− ∂ 

[
C nj u j 

]
u i 

∂ζn 
+ 

√ 

P r 

Ra 

(
∂ 

∂ζn 
G nj 

∂u i 
∂ζ j 

)
n �= j 

+ gT δin 

] 
e

+ 

[ √ 

P r 

Ra 

(
∂ 

∂ζn 
G nj 

∂u i 
∂ζ j 

)
n = j 

] 
im 

(21

J −1 u � i = J −1 u n i + β(1) h (1) � + 

√ 

P r 

Ra 

h (1) 

2 

(
∂ 

∂ζ

[
G 11 

∂u n i 

∂ζ

]
+ 

∂ 

∂ζ

[
G 11 

∂u � i 

∂ζ

])

+ 

√ 

P r 

Ra 
h (1) ∂ 

∂η

[
G 22 

∂u n i 

∂η

]
+ 

√ 

P r 

Ra 
h (1) ∂ 

∂ξ

[
G 33 

∂u n i 

∂ξ

]
, (22

Here, � represents all the terms to be marched explicitly. 

J −1 u �� i = J −1 u � i −
√ 

P r 

Ra 

h (1) 

2 

∂ 

∂η

[
G 22 

∂u n i 

∂η

]
+ 

√ 

P r 

Ra 

h (1) 

2 

∂ 

∂η

[
G 22 

∂u �� i 

∂η

]
(23) 

J −1 u ��� i = J −1 u �� i −
√ 

P r 

Ra 

h (1) 

2 

∂ 

∂ξ

[
G 33 

∂u n i 

∂ξ

]
+ 

√ 

P r 

Ra 

h (1) 

2 

∂ 

∂ξ

[
G 33 

∂u ��� i 

∂ξ

]
(24) 

The intermediate velocity fields u 

� 
i , u 

�� 
i , u 

��� 
i are obtained by 

solving a set of tridiagonal matrices that result from the spatial dis- 
cretization of the eqs ( 22 ), ( 23 ) and ( 24 ) in the ζ , η and ξ directions
respecti vel y. The intermediate velocity u 

��� 
i is the first step in the 

fractional-step scheme. We use the Thomas algorithm with pipelin- 
ing, as described in the next section, to solve the tridiagonal system 

eqs ( 22 )–(24) to obtain u � , u �� and u ��� . 

3.5 Thomas algorithm 

Let us consider solving A ψ = g for ψ , which is the outcome of the 
spatial discretization of, for instance, eq. ( 22 ). Here A is a tridiagonal 
matrix given as ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b 0 c 0 
a 1 b 1 c 1 

a 2 b 2 c 2 
· · ·

· · ·
a n −1 b n −1 c n −1 

a n b n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ψ 0 

ψ 1 

ψ 2 

·
·

ψ n −1 

ψ n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

g 0 
g 1 
g 2 
·
·

g n −1 

g n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (25) 

The first two relations in eq. ( 25 ) are, 

b 0 ψ 0 + c 0 ψ 1 = g 0 (26) 

a 1 ψ 0 + b 1 ψ 1 + c 1 ψ 2 = g 1 . (27) 

Substituting ψ 0 from eq. ( 26 ) into ψ 0 in eq. (27) gives 

b 
′ 
1 ψ 1 + c 1 ψ 2 = g 

′ 
1 (28) 

where b 
′ 
1 = 

[
b 1 − a 1 b 

−1 
0 c 0 

]
and g 

′ 
1 = 

[
g 1 − a 1 b 

−1 
0 g 0 

]
. The algo- 

rithm involves two stages, forward sweeping and backward sub- 
stitution. The subdiagonal elements a 1 − a n are removed using 
Gaussian elimination during the forward sweeping step. Therefore, 
eq. ( 25 ) takes the form: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b 0 c 0 
0 b 

′ 
1 c 1 
0 b 

′ 
2 c 2 
· · ·

· · ·
0 b 

′ 
n −1 c n −1 

0 b 
′ 
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ψ 0 

ψ 1 

ψ 2 

·
·

ψ n −1 

ψ n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

g 0 
g 

′ 
1 

g 
′ 
2 

·
·

g 
′ 
n −1 

g 
′ 
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (29) 

At the end of the forward sw eep, w e can solve for ψ n = g 
′ 
n /b 

′ 
n in

eq. ( 29 ). Subsequently, we solve for ψ n −1 ψ 0 (equations n − 1 until 
0) as in ψ i = ( g 

′ 
i − c i ψ i+ 1 ) /b 

′ 
i . For the grid in Section 4 , periodic

boundary conditions are enforced in the ξ direction. Therefore, the 
above-mentioned Thomas algorithm is modified as follows. Con- 
sider the discretized system A ψ = g with periodicity as in eq. ( 30 ) 
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here ψ 1 = ψ n − 1 and ψ 2 = ψ n . ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b 1 c 1 a 1 
a 2 b 2 c 2 

· · ·
· · ·

· · ·
a n −1 b n −1 c n −1 

c n a n b n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ψ 1 

ψ 2 

·
·
·

ψ n −1 

ψ n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

g 1 
g 2 
·
·
·

g n −1 

g n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(30) 

he first step includes separating eq. ( 30 ) into a tridiagonal system
1 with an additional eq. ( 32 ). ⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

b 1 c 1 
a 2 b 2 c 2 

· · ·
· · ·

· · ·
a n −1 b n −1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ψ 1 

ψ 2 

·
·
·

ψ n −1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

g 1 
g 2 
·
·
·

g n −1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−a 1 
0 
0 
·
·

−c n −1 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

ψ n 

(31) 

 n ψ 1 + a n ψ n −1 + b n ψ n = g n . (32) 

he tridiagonal matrix on the left-hand side is defined as [ A c ] and
 g ] as the g-column matrix on the right-hand side. Let 

 ψ] = [ ψ1] + [ ψ2] ψ n (33) 

e the solution of the system eq. ( 31 ) where 

 ψ1] = [ A c ] −1 [ g] (34) 

 ψ2] = [ A c ] −1 [ −a 1 0 · · · −c n −1 ] T . (35) 

ubstituting ψ in eq. ( 33 ) into ψ 1 and ψ n − 1 in eq. ( 32 ) gives 

 n ( ψ 1 1 + ψ 2 1 ψ n ) + a n ( ψ1 n −1 + ψ2 n −1 ψ n ) + b n ψ n = g n . (36) 

earrange eq. (36) for ψ n 

 n = 

g n − c n ψ1 1 − a n ψ1 n −1 

b n + c n ψ2 1 + a n ψ2 n −1 
. (37) 

In summary, to solve the system eq. ( 30 ), we use the following
teps: 

(i) Construct eqs (34) and ( 35 ). 
(ii) Solve eqs ( 34 ) and ( 35 ) for [ ψ1] and [ ψ2] from index 1 to

ndex n − 1. 
(iii) Substitute [ ψ1] and [ ψ2] into eq. (37) and solve for ψ n . 
(iv) Calculate [ ψ] from eq. ( 33 ) using [ ψ1], [ ψ2] and ψ n . 

.5.1 Parallel algorithm 

C
P

U
 i 

C
P

U
 i+

 1 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b 
′ i−1 
s c i−1 

s ·
0 b 

′ i 
s c i s g 

′ i 
s 

0 b 
′ i 
s+ 1 c 

i 
s+ 1 g 

′ i 
s+ 1 

· · · ·
0 b 

′ i 
e c i e g 

′ i 
e 

a i+ 1 s b i+ 1 s c i+ 1 s g i+ 1 s 

a i+ 1 s+ 1 b 
i+ 1 
s+ 1 c i+ 1 s+ 1 g i+ 1 s+ 1 
· · · ·

a i+ 1 e b i+ 1 e c i+ 1 e g i+ 1 e 

a i+ 1 s · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(38) 
C
P

U
 i 

C
P

U
 i+

 1 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b 
′ i−1 
s c i−1 

s ·
b 

′ i 
s c i s g 

′ i 
s 

b 
′ i 
s+ 1 c 

i 
s+ 1 g 

′ i 
s+ 1 

· · ·
b 

′ i 
e c i e g 

′ i 
e 

b 
′ i+ 1 
s c i+ 1 s ψ 

i+ 1 
s 

b 
′ i+ 1 
s+ 1 c i+ 1 s+ 1 ψ 

i+ 1 
s+ 1 

· · ·
b 

′ i+ 1 
e c i+ 1 e ψ 

i+ 1 
e 

· ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(39

Fig. 6 demonstrates an example 4 × 4 × 4 central processing
nit (CPU) topology in a single computational domain. The spatial
iscretization of eqs ( 22 ), (23 ) or ( 24 ) over several CPUs results
n tridiagonal matrices and vectors. The tridiagonal matrices con-
tructed from the discretization of eq. ( 24 ) span over the entire ξ
pace index, for example over CPU 

0 − 3 illustrated by the solid red
ine in Fig. 6 . Similarly, the tridiagonal matrices constructed from
he discretization of eq. ( 23 ) span over the entire η space index (e.g.
ver CPU 

19 − 31 ), as indicated by a solid blue line. Considering eq.
 38 ), forward sweeping starts at CPU 

0 . Once the sweeping reaches
he interface between CPU 

i and CPU 

i + 1 , CPU 

i sends b 
′ i 
e , c 

i 
e and

g 
′ i 
e to CPU 

i + 1 . Then, CPU 

i + 1 continues to carry out the sweeping
y sending data b 

′ i+ 1 
e , c i+ 1 e and g 

′ i+ 1 
e to CPU 

i + 2 and so on. After
he forward sweeping is finalized, backward substitution starts and
everse sweeping is performed, as shown in eq. ( 39 ). However, the
nly information being sent from CPU 

i + 1 to CPU 

i is ψ 

i+ 1 
s . 

For a periodic system, we use the following steps: 

(i) Construct eqs ( 34 ) and ( 35 ). 
(ii) Use the parallel Thomas subroutine to solve eqs (34) and (35)

or [ ψ1] and [ ψ2]. 
(iii) CPU 

0 owning the first block (contains node 1), sends ψ1 1 
nd ψ2 1 to CPU 

N that owns the last block (contains node n ). 
(iv) CPU 

N calculates ψ n and broadcasts ψ n to every CPU that
wns a subsystem of eq. (30). 

(v) Every CPU calculates [ ψ] from eq. ( 33 ). 
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Figure 7. Illustration of pipelining with the parallel Thomas algorithm following Fig. VI.16 of Taylor ( 2008 ). Forward sweep is achieved in steps (a–d), while 
steps (e-g) depict back-substitution. 
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Note that by splitting eq. ( 30 ) into eqs ( 31 ) and (32 ), CPU 

N solves 
the tridiagonal system eq. ( 33 ) which has size one element less than 
the others. 

3.5.2 Pipelining 

In the previous subsection, we summarize how to solve a tridi- 
agonal system in parallel. It is done simply by completing the 
forw ard/backw ard sweep and sending data to the proper neigh- 
bour in order to continue marching. CPU 

i that finishes the for- 
ward sweep sends data to CPU 

i + 1 until the last block is reached. 
Generally, each CPU can be responsible for thousands of tridiag- 
onal subsystems contained in a single subdomain (or a ‘block’). 
This subsection summarizes how to solve such a big system 

ef ficientl y. 
Consider a computational domain containing ( n ζ , n η, n ξ ) grid- 

points. For the sake of simplicity, the domain is equally decomposed 
only in the η direction into NJ blocks so that CPU 

0 occupies block 
0, CPU 

1 occupies block 1 and so on. Thus, each CPU owns a block 
of size ( n ζ , n η/ N η, n ξ ); given that n η/ N η is, by design, an integer.
Supposing that we choose to perform an implicit marching in the 
η direction, the resulting tridiagonal matrix is subdivided into N η

sections. The easiest, though the least ef ficient, w ay to solve these 
systems is to let CPU 

0 solve all of its subsystems across the ( n ζ , 
n η/ N η, n ξ ) grid before sending data to CPU 

1 . That is, CPU 

0 per- 
forms a forward sweep at cell (1, 1 → n η/ N η, 1), at cell (1, 1 → 

n η/ N η, 2) and so on until cell ( n ζ , 1 → n η/ N η, n ξ ). Next, CPU 

0 

packs the plane data with n ζ ∗n ξ∗3 elements (recall b 
′ i 
e , c 

i 
e and g 

′ i 
e 

in the previous subsection) at (1: n ζ , n η/ N η, 1: n ξ ) and sends it to
CPU 

1 . Following the same process for the subsequent CPUs un- 
til CPU 

N η−1 is reached, the backward substitution is carried out in 
the same way from CPU 

N η−1 to CPU 

0 . The obvious drawback is 
that only one CPU operates at a given time, and the whole process 
will be even slower than the serial version since there is additional 
communication overhead. 

Pipelining is used in an attempt to minimize the number of idle 
CPUs while optimizing communication overhead. In essence, rather 
than sweeping across the ( n ζ , n η/ N η, n ξ ) grid all at once, each CPU
performs the sweeps only for a portion of the grid and shares data 
with its neighbouring CPU in the sweep direction downstream in a 
forward sweep and upstream for a backward sweep. A portion of 
the grid can be chosen for the first CPU, with the others obeying 
the same portion. We give an example of pencil-type pipelining. 
Consider Fig. 7 and the following steps: 

(i) CPU 

0 , process rank 0 in the figure, performs the forward 
sweep in the η direction at cell ( i , k ) = (1, 1) from ( i , j , k ) = (1,
1, 1) to ( i , j , k ) = (1, n η/ N η, 1); here i and k are dummy indices
pointing to a grid location in ζ and ξ directions, respecti vel y. CPU 

0 

then repeats the forward sweep until ( i , k ) = (1, n ξ ). Notice that the 
forward sweep is in the η direction, but the ‘pencil’ aligns in the ξ
direction. At this point, CPU 

0 packs and passes data to CPU 

1 . The 
data is of size n ξ∗3 elements containing b 

′ 0 
n η/N η

, c 0 n η/N η
and g 

′ 0 
n η/N η

for each k ∈ [1, n ξ ] (with 1-element width in the ζ direction, hence 
the word ‘pencil’). 

(ii) CPU 

1 continues the forward sweep while CPU 

0 starts solving 
the new tridiagonal system by shifting 1 step from the first block 
in the ζ , which is the ‘slide’ direction. The ‘slide’ and ‘pencil’ 
directions can be swapped. 

(iii) CPU 

1 passes data to CPU 

2 for the sliding index i = 1, re- 
ceives data from CPU 

0 at the sliding index i = 2 and continues the 
forward sweep. 

(iv) The same process is carried out until CPU 

N η−1 reaches the 
slide index i = n ζ . 

(v) CPU 

N η−1 starts the backward sweep at the sliding index i = 

n ζ , shares data of size n ξ∗1-element containing ζ
N η−1 

1 for each k ∈ 

[1, n ξ ] with CPU 

N η−2 , and starts the backward sweep at the sliding 
index i = n ζ − 1. 

(vi) The backward sweeping process is carried out in the same 
way as the forward sweep. 

(vii) Solving the system of tridiagonal matrices is finalized after 
CPU 

0 finishes the backward sweep at the sliding index i = 1. 

3.5.3 Handling shell cut 

Using the parallel Thomas algorithm with pipelining, w e ha ve been 
able to solve eqs ( 22 ), (23 ) and ( 24 ) in parallel for u � , u �� and u ��� .
The grid used for the solver before it is rotated about the x 1 -axis 
is shown in Fig. 2 (a). The directions parallel and perpendicular to 
the body surface are denoted by ζ and η, respecti vel y. Fig. 2 (b) 
represents the transformed coordinate that is obtained using Jacobi 
transformation. The top and bottom edges of the domain, parallel to 
x 1 -axis in Fig. 2 (a), are indicated by the phrase ‘Branch cut’ (AB and 
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Figure 8. Solving a tridiagonal system across a shell cut. Here (A, A’) and 
(B, B’) are the two pairs of surfaces across the left‘ and right shell cuts, 
respecti vel y, as per the arrangement of processors shown in Fig. 6 . 
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D). They correspond to the left and right sides of the transformed
omain, which are parallel to the η direction, indicated by the word
shell cut’. The body surface seen in the curvilinear domain in
ig. 2 (a) is transformed to the top and bottom body surface of the

ransformed domain Fig. 2 (b). The words ‘shell cut’ or ‘Branch
ut’ represent a shared interface among CPUs that cuts through
he centreline. A tridiagonal system in the ζ direction created by
iscretizing eq. ( 22 ) is interrupted by the shell cut on both the left-
nd right-hand sides. To handle the shell cut, the tridiagonal system
rom one side of the cut is merged with the system on the opposite
ide. Therefore, the resulting system is twice as large as the system
ithout the cut. 
For example, consider solving a system in the ζ direction in

ig. 8 . In the forward sweeping, CPU 

1 with point A starts solving
rom this point A and then passes the information to CPU 

17 until the
orward sweeping reaches CPU 

49 . Then, CPU 

49 , with point B passes
he information to CPU 

51 that has point B 

′ 
on the other side of the

ut. CPU 

51 keeps performing the forward sweep by sending data to
PU 

35 and so on until the sweep reaches A 

′ 
owned by CPU 

3 . The
ackward substitution follows the same procedure by starting from
oint A 

′ 
and marching until the substitution reaches back to point

. Forward and backward sweeping are done using the pencil-type
ipeline Thomas algorithm explained pre viousl y. 

.6 Pr essur e corr ection 

he generalized curvilinear solver uses a combination of the ADI-
N-RKW3 methods to obtain u ��� , the intermediate velocity. The

emaining procedure in the fractional step method is to remove
he divergence residual from the projected velocity u ��� at the end
f each sub-RKW3 step (denoted as PC in Fig. 5 ). This step re-
uires correcting the pressure to account for the divergenceless
eld. Rewriting eq. ( 6 ) as eq. ( 40 ); where � represents the advec-

ion, the diffusion and the baroclinic terms. Eq. ( 40 ) is temporally
iscretized into eqs ( 41 ) and (42 ). Here, u 

��� 
i denotes velocity at the

hird step of the ADI, and h is a subtime step of RKW3. 

∂ J −1 u i 

∂t 
= � − ∂C j i P 

∂ζ j 
(40) 

J −1 u 

��� 
i − J −1 u 

n 
i 

h 

= � 

n − ∂C j i P 

n 

∂ζ j 
(41) 

J −1 u 

n + h 
i − J −1 u 

n 
i 

h 

= � 

n − ∂C j i P 

n + h 

∂ζ j 
(42) 
qs (42) –(41) gives: 

J −1 u 

n + h 
i − J −1 u 

��� 
i 

h 

= −∂C j i δP 

h 

∂ζ j 
(43) 

Taking divergence of eq. ( 43 ) gives eq. ( 44 ). Note that ∂ i u 

n + h 
i =

 . 

1 

h 

∂ 

∂ζ j 

[
∂ζ j 

∂x i 
J −1 u 

��� 
i 

]
= 

∂ 

∂ζk 

∂ζk 

∂x i 

[
∂ 

∂ζ j 
J −1 ∂ζ j 

∂x i 
δP 

h 

]
(44) 

his yields the Poisson eq. ( 45 ) for pressure correction δP 

h 

∂ 

∂ζi 

∂ 

∂ζ j 

[
G i j hδP 

h 
] = 

∂ 

∂ζ j 

[
C j i u 

��� 
i 

]
(45) 

Removing divergence from the u ��� field is done by solving eq.
 45 ) for δP 

h̄ and computing u 

n + ̄h 
i using eq. ( 46 ). 

 

n + ̄h 
i = u 

��� 
i − 1 

J −1 

∂ 

∂ζ j 

[ 
C j i ̄h P 

h̄ 
] 

(46) 

The divergence-free field u 

n + ¯h (1) 
marks the end of RKW3 first sub

tep. We follow the same procedure until u 

n + ¯h (1) + ¯h (2) + ¯h (3) = u n + 1 is
btained. Fig. 5 illustrates the entire process. HYPRE is a library of
calable linear solvers and multigrid methods as detailed in Falgout
 Jones ( 2000 ) and Falgout et al. ( 2002 ). Generalized curvilinear

olver utilizes two solvers provided by HYPRE: (1) SMG, a parallel
emi-coarsening multigrid (SCM) solver for linear systems (Brown
t al. 2000 ) and (2) BoomerAMG, a parallel implementation of the
lgebraic multigrid method (Ruge & St üben 1987 ). 

 S I M U L AT I O N  D E TA I L S  

e have performed simulations for two Rayleigh numbers, Ra =
0 5 and 10 7 , keeping the Prandtl number constant at Pr = 1. The
adius ratio is also kept constant at � = 0.6, and an inverse square-
aw profile of gravity with the radius g = ( r o / r ) 2 is assumed. These
arameter choices aim to facilitate comparison with Gastine et al.
 2015 ). The number of gridpoints used in each direction, along
ith the output diagnostic quantities for the two Ra is given in
able 2 . The physical curvilinear grid is clustered in the radial
irection near the boundaries to resolve the boundary layers near
he solid surfaces before performing the Jacobi transformation. The
lustering function is given below. 

 ( j) = 

tanh 
[ 
r x 2 
(

j−1 
nx 2 

− 1 
2 

)] 
2 tanh 

( r x 2 
2 

) , (47) 

ere, rx 2 is the stretching factor, and nx 2 is the number of grid
ivisions in the radial direction. 

After the transformation, all the grid spacings are unity, and the
nformation about grid stretching is provided ef fecti vel y through the
longation matrix. At the bottom and top surfaces, a no-slip bound-
ry condition is used ( u 1 = u 2 = u 3 = 0), while the temperatures are
xed at the bottom ( T = 1) and top ( T = 0) surfaces to impose an
nstable gradient for maintaining thermal convection. The periodic
oundary condition is used for all the variables in the ξ directions.
he ‘shell-cut’ boundary conditions are used in the ζ direction,
s explained before in Section 3.5.3 . All simulations are started
ith u i = 0 and small random perturbations in the temperature
eld. 
We use the following notations for the surface, volume and time-

veraged quantities. 

〈 f 〉 s = 

1 

4 π

∫ 2 π ∫ π

f sin θ dθ dφ, (48) 

0 0 
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Tab le 2. Summary tab le for different Ra along with the grid used for each case. Here, Prandtl number Pr = 1, gravity profile, g = ( r o / r ) 2 

and radius ratio � = 0.6 has been used for all the cases. 

Ra Grid Nu Nu Re Re δT 
i /δ

T 
o δu 

i /δ
u 
o 

( n ζ × n η × n ξ ) (present (Gastine et al. 2015 ) (present (Gastine et al. 2015 ) 
DNS) DNS) 

10 5 64 × 64 × 64 4.70 4.71 83.5 82.3 0.105/0.115 0.045/0.052 
10 7 512 × 256 × 512 17.96 17.07 816.9 790.4 0.02/0.032 0.013/0.024 

Figure 9. Comparison of surface and time-averaged (a) non-dimensional radial temperature and (b) Re h profile for the case Ra = 10 7 . 
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〈 f 〉 = 

1 

V 

∫ r o 

r i 

∫ 2 π

0 

∫ π

0 
f r 2 sin θ dθ dφ dr, (49) 

f = 

1 

τ

∫ t 0 + τ

t 0 

f dτ, (50) 

where V = 

4 
3 π ( r 3 o − r 3 i ) . All the statistical quantities are averaged 

in time for at least 100 free fall time ( t f = d / u f ) units after the
simulation reaches a steady state. 

The average diagnostic quantities such as r.m.s. temperature, hor- 
izontal v elocity, Re ynolds number and horizontal Reynolds number 
are defined below. 

T rms ( r ) = 

√ 

〈 ( T − 〈 T 〉 s ) 2 〉 (51) 

u h ( r ) = 

√ 〈
u 

2 
θ + u 

2 
φ

〉
s 

(52) 

Re = 

u rms d 

ν
(53) 

Re h ( r ) = 

u h d 

ν
(54) 

Here u rms = 

√ 

〈 u 

2 
r + u 

2 
θ + u 

2 
φ〉 is the r.m.s. velocity. Further, the 

heat transport in the spherical shell is quantified by the Nusselt 
number Nu , which is defined as 

Nu = 

〈 u r T 〉 s − 1 √ 

Ra Pr 
d� 

dr 

− 1 √ 

Ra Pr 
dT c 
dr 

= −� 

d� 

dr 
( r = r i ) = − 1 

� 

d� 

dr 
( r = r o ) , 

(55)
where � ( r ) = 〈 T 〉 s , 〈〉 s represents the av erage ov er the spherical 
surface (eq. 48 ) and the overbar represents the time average (eq. 50 ). 
Here, Tc eq. (57) . The thermal conduction equation for a spherical 
shell with isothermal boundary condition is given by 

d 

dr 

(
r 2 

dT c 
d r 

)
= 0 , T c ( r = r i ) = 1 , T c ( r = r o ) = 0 , (56) 

which yields 

T c ( r ) = 

� 

(1 − �) 2 
1 

r 
− � 

1 − � 

. (57) 

5  R E S U LT S  

This section summarizes the results of the simulations at two 
Rayleigh numbers Ra = 10 5 and 10 7 , as listed in Table 2 . We 
validate our results with those of Gastine et al. ( 2015 ) and further 
demonstrate the closure of the turbulent kinetic energy budget. 

5.1 Validation 

We compare the non-dimensionalized radial temperature profile 
for Ra = 10 7 in Fig. 9 (a) against the profile reported by Gas- 
tine et al. ( 2015 ). We also compare the horizontal velocity pro- 
file (non-dimensionalized as Reynolds number, Re h as defined in 
eq. ( 54 )) in Fig. 9 (b). Additionally, we compare the Nu as de- 
fined in eq. ( 55 ) with the values reported by Gastine et al. ( 2015 ) 
at the same Ra in Table 2 . The Nu in the present simulation 
also matches very well with the values reported in Gastine et al. 
( 2015 ). 
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Figure 10. Instantaneous snapshots of (a, b) the thermal field and (c, d) radial velocity field observed at Rayleigh numbers (a, c) Ra = 10 5 and (b, d) Ra = 10 7 . 

Table 3. Nu obtained for Ra = 10 7 with increasing grid resolution. 

Ra Grid ( n ζ × n η × n ξ ) Nu 

10 7 128 × 64 × 128 19.88 
256 × 128 × 256 19.10 
512 × 256 × 512 17.96 
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A convergence test has been performed at Ra = 10 7 to e v aluate the
ensitivity of the Nusselt number estimate to spatial resolution. The
u values obtained (using eq. 55 ), with increasing grid resolution
re listed in Table 3 . We can observe that the Nu values from our
imulations approaches that of Gastine et al. ( 2015 ) ( Nu = 17.07),
ith increasing resolution. 

.2 Flow visualization 

 comparison of the qualitative features of the instantaneous flow
nd the thermal field with an increase of Ra from 10 5 to 10 7 is pre-
ented in Fig. 10 . For lower thermal forcing at Ra = 10 5 , the plumes
enerated from the boundaries span the radial extent of the domain,
s seen from Fig. 10 (a). Ho wever , Ra = 10 7 , as shown in Fig. 10 (b),
he plumes are much smaller with a well-mixed interior. With the
ncrease in Ra , turbulence increases, accompanied by higher mixing
nd generation of smaller scales. The higher Ra case will have a
egligible temperature gradient in bulk due to enhanced mixing. In
ig. 10 (c), the alternating regions with positive and negative radial
elocities indicate the presence of structures similar to conv ectiv e
olls, w hile F ig. 10 (d) exhibit the presence of small-scale plumes
ear the boundary at higher Ra . 

.3 Boundary layer asymmetry 

he thermal boundary layer thicknesses ( δT 
i , inner δT 

o , outer) are
efined as the distance of the local maximums in the T rms (eq.
1 ) profile from the inner and the outer w alls, respecti vel y. The
elocity boundary layers thicknesses ( δu 

i , inner δu 
o , outer) are e v al-

ated by the slope method, which defines them as the distance
rom the respective boundaries where the linear fit to Re h (eq.
4 ) at the boundary intersects the horizontal line passing through
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Figure 11. Radial temperature profiles for the two Ra . An enlarged view in 
the inset demonstrates the increase in gradient with the increase in Ra . 

Table 4. The turbulent kinetic energy budget terms and the viscous dis- 
sipation ratio, χεν with increasing grid resolution demonstrating grid 
convergence. 

Ra Grid 〈 B 〉 〈 εν〉 χεν

10 5 64 × 64 × 64 1.87 × 10 −2 1.57 × 10 −2 0.84 
10 5 128 × 128 × 128 1.96 × 10 −2 1.83 × 10 −2 0.93 
10 5 256 × 256 × 256 2.04 × 10 −2 1.98 × 10 −2 0.97 
10 5 512 × 256 × 512 2.27 × 10 −2 2.22 × 10 −2 0.98 
10 5 512 × 512 × 512 2.36 × 10 −2 2.34 × 10 −2 0.99 
10 7 512 × 256 × 512 8.50 × 10 −3 7.67 × 10 −3 0.90 
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the maximum horizontal velocity (Gastine et al. 2015 ). From the 
values of the boundary layer thickness at the inner and the outer 
boundary from Table 2 , it is apparent that there is an asymmetry 
in the temperature profile between the inner and the outer radius. 
The total heat flowing in through the inner surface should flow 

out from the outer surface for thermal equilibrium. In conjunc- 
tion with the inner spherical shell area being less than the outer 
spherical shell area, the temperature drop is higher at the inner 
boundary than at the outer boundary (Gastine et al. 2015 ). We also 
observe a steepening of the temperature profile near the bound- 
aries that occurs with an increase in Ra , as shown in the insets of 
Fig. 11 . 

5.4 Turbulent kinetic ener g y budg et 

In this section, we discuss the turbulent kinetic energy ( t . k . e .) budget 
in RBC to check the energy balance and the adequacy of the resolu- 
tion of the present simulations. The t . k . e . budget can be expressed 
as follows: 〈

dK 

dt 

〉
= 〈 B 〉 − 〈 εν〉 , (58) 

where 

〈 K 〉 = 

〈
1 

2 
u i u i 

〉
, 〈 B 〉 = 〈 gu r T 〉 , 〈 εν〉 = 

√ 

P r 

Ra 

〈
( ∇ × u ) 2 

〉
. (59) 

In the RHS of eq. ( 58 ), the buoyancy flux 〈 B 〉 is the source term that 
converts the available potential energy to turbulent kinetic energy 
to drive the convective motions. This t . k . e . is converted to internal 
energy by the viscous dissipation term 〈 εν〉 , (Tennekes & Lumley 
1972 ), which acts as a sink. The buoyancy flux averaged over the 
whole spherical volume can be expressed as 

〈 B 〉 = 

4 π

V 

∫ r o 

r i 

gr 2 〈 u r T 〉 s dr. (60) 

After substituting Nu from eq. ( 55 ) and T c from eq. ( 57 ), we obtain, 

〈 B 〉 = 

3 

1 + � + � 

2 

1 √ 

Ra P r 
( Nu − 1) = 

√ 

P r 

Ra 

〈
( ∇ × u ) 2 

〉
, (61) 

χεν
= 

〈 εν〉 
〈 B〉 (62) 
The evolution of the t . k . e . budget terms in eq. ( 58 ) for the case
Ra = 10 5 is shown in Fig. 12 (a). We e v aluate the volume-averaged 
t . k . e . budget terms for three grid resolutions 64 × 64 × 64 (grid1), 
128 × 128 × 128 (grid2) and 256 × 256 × 256 (grid3). The 
balance term signifies the difference between the left- and right- 
hand sides of eq. ( 58 ). As the dissipation increases with resolution, 
the balance becomes smaller than 1 per cent of 〈 B〉 for grid2 and 
grid3, indicating sufficient resolution achieved in these simulations 
to dissipate all the kinetic energy. To further quantify the spatial 
resolution of the numerical model, the viscous dissipation ratio 
( χεν

) defined by eq. ( 62 ) is also tested for its closeness to unity 
(Gastine et al. 2015 ). The Table 4 shows that χεν

approaches unity 
with increasing grid resolution, signifying grid convergence for Ra 
= 10 5 . For Ra = 10 7 , we obtain χεν

= 0 . 9 , and it is possible that the
value of χεν

will also approach 1, with an increase in the number 
of grids as we observed for Ra = 10 5 . To test the adequacy of the 
resolution further, the radial grid spacing is compared against the 

Kolmogorov scale ( l η) defined by, l η = 

( P r /R a ) 
3 
8 ( 1 / εν) 

1 
4 . As seen 

from the Fig. 12 (b), the radial grid spacing normalized by l η is 
near unity for all the Ra cases near the walls, indicating appropriate 
wall resolution. As seen in Fig. 12 (b), the normalized spacing stays 
below 2 for all the cases, which is sufficient for accurate calculation 
of second-order correlations (Brucker & Sarkar 2010 ; Naskar & Pal 
2022a , b ; Singh & Pal 2023 ). 

5.5 Strong scaling test 

We have performed a strong scaling test following Matsui et al. 
( 2016 ) to test the performance of the numerical methods imple- 
mented in the solver. All computations are performed on Intel Xeon 
Platinum 8268 CPUs. To standardize our tests, we exclude initial- 
ization and all data IO operations. The tests were run at Ra = 10 5 , 
using saved data (i.e. from a simulation run that achieved a statisti- 
cally stationary state) as an initial condition, keeping the time-step 
size ( � t in Fig. 5 ) at a constant value. For this strong scaling test, the 
grid size is kept constant at 256 × 256 × 256 while the number of 
processing cores increases gradually. We measured the time step per 
iteration, w hich remains appro ximately constant over the iterations. 
The variation of time-step per iteration with the number of cores is 
plotted in Fig. 13 (a). We fit a power law of Y = aX 

n , where Y is the
time per iteration and X is the number of processing cores. Ideally, 
a strong scaling test should demonstrate an exponent of n = −1 if 
the time/iteration decreases proportionally with the increase in the 
number of cores (Matsui et al. 2016 ). We get a scaling exponent of n 
= −1.035 up to 128 cores, after which the scaling deviates from its 
ideal value for 256 cores owing to increased communication time. 
We further compute the scaling efficiency, following Matsui et al. 
( 2016 ), as defined below. 

ε = 

N re f 

N 

t re f 

t 
(63) 
core core 
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Figure 12. (a) The t . k . e . budget terms for Ra = 10 5 and (b) the radial variation of grid spacing ( � r ) normalized by the Kolmogorov scale ( l η) as estimated 
from the spatially averaged dissipation ( 〈 εν〉 s ). 

Figure 13. A comparison of the time per iteration as a function of the number of CPUs for different grids. 
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Here, N ref and t ref are the reference number of processors and
he corresponding time taken per interaction. Here, time per itera-
ion t core should decrease proportionally as the number of proces-
ors, N core increases. The scaling efficiency stays near unity up to
28 and falls to 0.68 for 256 cores. Matsui et al. ( 2016 ) further
efined the parallelization limit as ε = 0.6 to compare the scal-
ng behaviour of contemporary solvers (see fig. 6 in their paper).
he present solver stays above this limit up to the highest number
f cores studied here (i.e. 256). Therefore, the scaling behaviour
f the present solver is comparable to that of the contemporary

olvers. 

e  
 C O N C LU S I O N  

his present investigation discusses the development of a general-
zed curvilinear solver for spherical Rayleigh–B énard convection.
sing the Jacobi transformation, the solver transforms a curvilinear
omain into a Cartesian domain, and a set of modified governing
quations are solved in the Cartesian domain. The solver uses a
econd-order central differencing scheme for spatial discretization,
hile for temporal discretization, a combined marching scheme of
DI-CN-RKW3 is implemented. A parallel Thomas algorithm with
ipelining is utilized to solve the tridiagonal system, which is more
fficient and faster as it reduces the idle time for CPUs. To remove
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the divergence residual from the projected velocity in the interme- 
diate field of the fractional step method, a SMG routine from the 
HYPRE library for the pressure correction is used. 

We have performed simulations at two Rayleigh numbers ( Ra = 

10 5 and 10 7 ). The primary emphasis is given to the ability of the 
solver to predict the heat transfer, quantified by the Nusselt number, 
Nu . Comparing Nu obtained from the numerical simulation with 
the expected value is not a reliable criterion to assess its validity 
because even the under-resolved schemes show good closeness with 
the Nu while producing temperature fields with strong non-physical 
oscillations (Kooij et al. 2018 ). Due to this fact, the solver is not only 
validated for Nu but also with the radial temperature and velocity 
profiles from Gastine et al. ( 2015 ). The radial temperature profile 
and Nu obtained from our solver match the results from Gastine 
et al. ( 2015 ). To further test the spatial resolution, we check on the 
viscous dissipation ratio’s closeness to unity and turbulent kinetic 
energy budget closure. The t . k . e . budget exhibits better closure with 
increasing resolution. With increased Ra , the temperature profile 
near the boundaries becomes steeper. This is because the fluid near 
the boundaries is subjected to strong thermal gradients, generating a 
large buoyancy force that drives the flow. Therefore, the steepening 
of the temperature profile near the boundaries is the evidence of the 
buoyancy-induced strong con vective flo w with increased Ra . For a 
particular Ra , the temperature profile shows asymmetry due to the 
difference in area between the spherical inner and outer shell. 

The majority of the computational methods developed for spher- 
ical shell Rayleigh–B énard convection use spherical harmonic de- 
composition of the solution variables in the angular coordinates 
( θ , φ) while using finite difference or Cheb yshe v pol ynomials in 
the radial direction (Busse et al. 1998 ; Christensen et al. 1998 , 
1999 ; Dormy et al. 1998 ; Glatzmaier 1984 ; Sakuraba & Kono 
1999 ; Tilgner 1999 ). A notable exception to this rule is reported 
in the work by Kageyama et al. ( 1995 ). However, all these methods 
were developed for perfectly spherical geometries. The novelty of 
the present solver lies in its capability to account for the effects 
of non-spherical geometries in planetary core convection. A strong 
scaling test suggests that our solver has comparable scalability to 
contemporary codes for simulating spherical shell convection. 

Our ongoing work is focused primarily on extending the present 
solver to include the effects of rotation and magnetic field. Fu- 
ture extensions, with further model improvements, should reveal 
the possible effects of a non-spherical geometry on the conv ectiv e 
patterns and the self-generated magnetic field in global numerical 
dynamo simulations. 
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