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Abstract. Pedestrian-pedestrian interaction (PPI) is one of the fundamental mechanisms 

purported to influence the amplitudes of structural response under the action of a walking 

crowd. This is because a pedestrian is likely to alter their gait due to the presence of other pe-

destrians, which in turns alters the magnitude of structural loading. However, little empirical 

data are currently available to assess the effect of PPI in the context of vibration serviceabil-

ity. This is mainly due to logistical challenges in assembling and instrumenting a crowd of 

walking pedestrians, and the associated cost. To this end, a novel virtual reality platform is 

developed for experimental investigation of pedestrian-pedestrian interaction. In comparison 

to real-world crowd testing, the platform enables experimental protocols to be implemented 

repeatedly in a highly controlled environment while collecting a rich set of data on pedestrian 

behaviour. The platform incorporates state-of-the-art technology for motion capture, artifi-

cial intelligence and three-dimensional computer modelling, and comprises of three core 

modules: (i) the environment, (ii) the crowd and (iii) the user interface enabling real walking 

behaviour. To assess the validity of the platform for investigating PPI, tests were conducted to 

quantify gait synchronisation between a pair of walking pedestrians. The pair of pedestrians 

consisted of either two real humans or a real human and an avatar generated within a fully 

immersive VR environment. The test subject was either not explicitly asked to or specifically 

asked to synchronise their gait while walking side-by-side or front-to-back. It was found that 

walking with an avatar yields qualitatively the same results as walking with a real person, 

whether that is with or without the instruction to synchronise gait. However, the results differ 

quantitatively in terms of the synchronisation strength and the directionality. 
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1 INTRODUCTION 

In recent years, the industry-wide trend of pushing boundaries in terms of sleek and slender 

design using light materials often leads to reduced mass, stiffness and damping [1] of the 

newly built structures. As a consequence, several footbridges failed to satisfy the vibration 

serviceability criteria when occupied by a crowd of people [2–11]. A number of dynamic 

force models were put forward to account for the adaptation of pedestrian’s stepping behav-

iour due to the presence other walkers [12–15], known as pedestrian-pedestrian interaction 

(PPI). However, very few studies attempted to uncover the underlying network of complex 

dynamic interactions present in a crowd of walking pedestrians and quantify the strength of 

PPI in the context of structural dynamics [16–18]. This is predominantly due to many uncer-

tainties associated with a full-scale crowd testing, but also low repeatability of experimental 

conditions and a significant logistical challenge of gathering and instrumenting a group of 

walkers together with the accompanying costs.   

To alleviate these issues, a novel experimental platform is proposed to limit the logistical 

efforts in investigating PPI whilst providing an accurate representation of real-life environ-

ment. This is achieved by employing the latest developments in motion capture, three-dimen-

sional modelling and virtual reality (VR) technology, and by using artificial intelligence (AI) -

driven virtual pedestrians capable of simulating complex social interactions present in real 

crowds. 

This paper is structured as follows: Section 2 describes the development of the VR experi-

mental platform for PPI investigation, Section 3 details the validation procedure of the plat-

form, followed by the data analysis process, Section 4 presents the validation results together 

with the discussion, and Section 5 provides the conclusions.  

2 DEVELOPMENT OF THE VIRTUAL-REALITY PLATFORM 

A construction of biomechanically representative, virtual reality-based experimental platform 

for investigating PPI consisted of the following stages. Firstly, an optical motion capturing 

system was employed to record multiple gait cycles of a real person walking with various 

speeds along a straight line as well as along an arc of circles with various radiuses, with the 

procedure repeated at multiple walking speeds. Secondly, the recorded motions were used to 

create an animation controller which would drive the motion of a realistic humanoid character 

in VR, referred to as an agent. Lastly, a novel AI system was employed to steer the agent in 

the virtual setting.   

2.1 Motion capture 

A twenty-five years old male performer (height 182.5 cm, weight: 80 kg) was recruited from 

the university cohort.  He was outfitted with a motion capture equipped with thirty-seven re-

flective markers placed on body landmarks. The performer was asked to complete four differ-

ent types of walks at pacing frequencies ranging from 1.3 Hz to 2.0 Hz at 0.1 Hz increments. 

The walks consisted of walking along a straight line, and around small, medium and large cir-

cles with the radiuses of 63.5 cm, 27 cm and 254 cm (25 in, 50 in and 100 in) respectively. A 

metronome was used to ensure the consistent pacing frequency of the performer throughout 

the motion recording process.  

The gait cycles were recorded using a set of eight OptiTrack Prime 13 cameras, which pro-

vided near real-time tracking data at the sampling rate of 120 Hz. The raw tracking data were 

transferred over to the processing unit over the IEEE 802.3 compliant, gigabit network. The 
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data were recorded and post-processed using OptiTrack's proprietary software, Motive:Body 

2.0.  

The initial post-processing consisted of interpolation of missing markers' trajectories due to 

occlusions and light reflections. Based on the characteristics of the specific marker's trajec-

tory, this was done by employing a first or third-degree polynomial interpolation algorithm. 

Furthermore, any noise in the raw tracking data was removed by using a fourth-order two-way 

Butterworth low-pass filter with the cut off frequency at 6 Hz. The primary noise source was 

markers’ vibration, as they were not directly attached to the bones. Also, changes in air tem-

perature and lighting conditions contributed to the decrease in the tracking quality.  

The actual processing of the motion capture data was conducted in Autodesk Mo-

tionBuilder 2018. During this stage, the original data were down sampled to 30 frames per 

second. Furthermore, details such as feet's floor contact and fingers positions were adjusted. 

Finally, from multiple recordings of the same kind, gait cycles were extracted and stitched to-

gether to minimise the repeatability of the avatar's motions.   

2.2 Avatars creation 

Adobe Fuse CC 1.2 was used to create three-dimensional models of humanoid characters em-

ployed in VR. The software allowed physical and visual features of virtual avatars to be ad-

justed, i.e. dimensions of body parts, facial expression and clothing. In order to create the 

bone structure of the virtual characters, the models were exported to Adobe Mixamo where 

they were rigged. This created a puppet-like animation mechanism by tying the skeleton to the 

skin mesh.  

Rigged avatars were then exported to Unity 2018.4.0f1 – a game engine used throughout 

this project. Unity was chosen predominantly due to its C# scripting API and a vast Asset 

Store collection compared to other game engines.  

The next step consisted of retargeting motion-captured gait cycle animations onto the ava-

tars and creating an animation controller. The animation controller employed two-dimensional 

linear animation blending to create smooth transitions between recorded animations based on 

two input parameters: (i) selected pacing frequency and (ii) the desired direction of progres-

sion. 

Footsteps sound effects were added to avatars to provide realistic auditory ques based on 

the walking surface. The sound effects were programmed to be triggered by every heel strike.   

2.3 Steering system 

Polarith AI system was implemented to navigate the avatar around the virtual environment by 

feeding input parameters into the animation controller. It is an artificial-intelligence naviga-

tion system which is fully programmable and operates based on a multi-objective optimisation 

algorithm. The system works in two stages. Firstly, it samples the surrounding to detect the 

position of the objective and any obstacles. Secondly, it uses an optimisation algorithm to find 

the local solution to the optimisation problem [19]. The solution takes the form of the desired 

direction of movement, which is then fed to the animation controller to move the avatar.  

For the purpose of experimental platform validation, a path-follow behaviour was pro-

grammed without any obstacles present. 

3 PLATFORM VALIDATION 

To validate the virtual reality platform, one healthy male test subject (age: 30, height: 191.6 

cm, weight: 80.1 kg) was recruited from the cohort of students at the University of Leicester. 
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Prior to taking part in the experiment, he was asked to: (i) familiarise himself with the partici-

pant's information letter, (ii) complete the physical activity readiness questionnaire, and (iii) 

sign the informed consent form. He was asked to wear flat sole shoes and casual clothing.  

The study was approved by the University of Leicester Ethics of Research Committee. 

3.1 Location 

Due to the space requirement, the Charles Wilson Sports Hall was selected as a suitable loca-

tion for the validation study. The sports hall is located within the main campus of the Univer-

sity of Leicester, UK. It is 16.7 m wide and 33.5 m long with the clear ceiling height of 5.6 

metres at the highest point. To minimise the effect of light reflections on tracking quality, the 

parquet floor was covered with a dark monotone carpet. This also eliminated visual reference 

cues offered by the floor markings, which otherwise might have influenced the test subject’s 

movements. 

3.2 Experimental protocol 

The test subject was provided with a habituation time to familiarise himself with the virtual 

environment. He was asked to perform a total of sixteen walks around a path consisting of 

two 10 m long straights and two turns 5 m in diameter. Each walk consisted of 8 laps, result-

ing in a total distance of 285 m travelled per walk. During each walk, the test subject walked 

next to (side-by-side; SbS) or behind (front-to-back; FtB) a pacer. The walks were performed 

in two settings: (i) in the virtual environment (VR), where the pacer was previously created, 

virtual agent or (ii) in the real environment (RL), where the male performer employed to rec-

ord virtual agent’s motion served as a pacer.  

To avoid any directional bias in test subject's behaviour, each walk was performed twice, 

in a clockwise and an anticlockwise direction around the path. During the first eight walks, 

the test subject was only directed to maintain his assigned position relative to the pacer, here-

after referred to as uninstructed synchronisation experimental conditions (US). During the last 

eight walks, the test subject was explicitly asked to walk in step with the pacer, in such man-

ner that the timing of their ipsilateral footsteps was perfectly matched, hereafter referred to as 

instructed synchronisation experimental conditions (IS). 

In order to control real pacer's stepping behaviour, he was equipped with Pioneer SE-M521 

over-ear headphones connected to KORG MA-1 metronome. The pacing frequency of the vir-

tual pacer was controlled in the game engine through the animation controller.  

The pacing frequency of pacers was based on test subject's height and calculated using the 

following formula: 

𝐹𝑅 = 	 𝑣𝑔𝑙 (1) 

where 𝑣 is the walking velocity, 𝑔 is the gravitational acceleration, 𝑙 is a leg length, and 𝐹𝑅 is 

the Froude number which was set to 0.15. The leg length 𝑙 was estimated by using test sub-

ject's height, and gender relationship derived by Pheasant [20], and explicitly given by Bocian 

et al. [21]:  

𝑙 = 0.7028ℎ − 0.3091 (2) 

where ℎ is the test subject’s height. The walking velocity v was converted to the pacing fre-

quency 𝑓! using the Eq. 3, which was derived from experimental data in Soczawa-Stronczyk 

et al. [22]. 

𝑓! = 0.66𝑣 + 0.99  (3) 
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As a consequence, virtual pacer’s pacing frequency was set to 1.81 Hz and the metronome 

beat for the real pacer was set to 108 BPM.  

3.3 Instrumentation 

A motion capture system (mocap system) made up of twenty-four OptiTrack Prime 17W and 

ten OptiTrack Prime 13 cameras was set up in the sports hall. During walks performed in the 

virtual environment, the test subject was equipped with Oculus Rift CV1 head-mounted dis-

play (HMD) together with the MSI VR One 7RE backpack PC used to generate the environ-

ment. The HMD had reflective markers affixed to it in order to track its position and rotation 

using the mocap system. The positional data were wirelessly streamed to the backpack PC 

from the dedicated mocap processing PC using the NatNet server broadcast protocol version 

3.0, through IEEE 802.11n-2009 wireless network.  

The virtual environment used during the validation experiment was created using building 

information modelling (BIM) software - ARCHICAD 23. A high-detail, realistic representa-

tion of the Charles Wilson Sports Hall was created.  

During all walks, the test subject was instrumented with two APDM Opal™ wireless atti-

tude and heading reference systems (AHRS). One AHRS was attached to the lower back, at 

the level of fifth lumbar vertebra (L5), whereas the other was strapped to the right ankle, us-

ing elastic straps. The data recorded by AHRSs were sampled at 128 Hz and time locked. For 

the purpose of the subsequent analysis, three-dimensional acceleration signal recorded in the 

local coordinate system (i.e. sensor) was extracted and resolved to the global coordinate sys-

tem by means of the quaternion algebra. This allowed the vertical component of the accelera-

tion vector (i.e. that aligned with the gravity vector) to be extracted for further analysis.  

The real pacer was outfitted with a set of AHRS of the same type and positioned at the 

same body locations as in the case of the test subject. This enabled synchronisation to be eas-

ily quantified based on a set of compatible signals. 

Only the data from the sensor strapped to the ankle were used, as the data were sufficient 

to describe a gait cycle fully. 

Figure 1: A person wearing HMD (right) walking next to the pacer in the virtual environment (left). 

As it was impossible to instrument the virtual pacer, the displacement of the right ankle 

was recorded in the game engine, at a sampling frequency of circa 50 Hz. Considering that the 
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displacement signal was not time-locked with the AHRS's data, the following time alignment 

procedure was implemented. An AHRS was fastened to a rigid body with three reflective 

markers, which were tracked by the motion capture system. The position of the rigid body 

was isometrically mapped (i.e. preserving distances and rotation angles) onto an unrendered 

virtual cube, of which displacement was recorded together with the displacement of the vir-

tual pacer's ankle. Before and after each test, the AHRS-rigid body couple was slowly waved 

using a sinusoidal motion to create a reference signal subsequently used to time-align the data 

from the game engine and the AHRS. 

3.4 Data analysis 

The subsequent quantification of the synchronisation strength was performed in MATLAB 

R2019b and was based on vertical velocity signals from the ankle. This is due to the need to 

reconcile the displacement signals from the game engine (expressed in m) with the accelera-

tion signals from AHRS (expressed in m/s2) to a common physical quantity before further 

processing. In order to minimise the impact of the data loss inherent to the numerical differen-

tiation (high frequency noise), as well as to lessen the signal drift rising from the numerical 

integration (low frequency noise), it was decided to differentiate game engine's displacement 

signals and integrate the AHRS' acceleration signals to achieve compatible velocity signals 

(expressed in m/s), as shown in Figure 2. 

Figure 2: Examples of (a) the raw AHRS acceleration signal and the resampled game engine displacement 

signal from the ankle, (b) the corresponding velocity signals, (c) the corresponding phase difference signal and (d) 

the relative probability distribution.  
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At the start, the displacement signals were upsampled from the variable sampling rate of 

circa 50 Hz to the uniform sampling rate of 128 Hz to match the sampling rate of AHRS ac-

celeration signals. The upsampling was performed using shape-preserving piecewise cubic in-

terpolation algorithm implemented in MATLAB's resample function [23]. 

In order to differentiate the game engine's displacement signals, a one-dimensional gradi-

ent of the vertical displacement vector was calculated and then divided by the numerical gra-

dient of the corresponding time vector. The ensuing velocity vector was post-filtered using the 

fourth-order two-way Butterworth band-pass filter with the frequency band set to preserve the 

first three harmonics of the original signal.  

The numerical integration of AHRS acceleration signal was proceeded by the pre-filtering 

of original signals with the fourth-order two-way Butterworth band-pass filter with the same 

frequency band as in the case of numerical differentiation. The integration was performed by 

employing the cumulative trapezoidal numerical integration method [24] and post-filtering the 

resulting velocity signals with the fourth-order two-way Butterworth high-pass filter with the 

cut-off frequency equal to half of the frequency of the first harmonic. 

Finally, with all signals representing the same physical quantity, the two velocity signals 

derived from the AHRS-rigid body were used to find the delay between AHRS and the game 

engine's signals for each walk. Using MATLAB's finddelay function [25], the cross-correla-

tion between the two velocity signals was calculated at all viable lags. Subsequently, the 

cross-correlation was normalised, and the estimated delay was given as the negative lag char-

acterised by the largest absolute value of the normalised cross-correlation, which allowed 

game engine's and AHRS signals to be time-aligned. 

3.5 Synchronisation quantification 

Before the quantification of pairwise gait synchronisation strength between the test subject 

and the pacer, analytic representations of velocity signals had to be calculated first. For this 

purpose, each pair of velocity signals (velocities of test subject's and pacer's right ankles from 

each walk) was band-pass filtered by utilising the fourth-order two-way Butterworth band-

pass filter with a frequency band ranging from 0.70 times the minimum signal (stride) fre-

quency to 1.25 times the maximum stride frequency, as suggested in van Ulzen et al. [26]. 

For each of the velocity signals 𝑣"(𝑡), the Hilbert transform was then used to obtain the in-

stantaneous phase information contained within the analytic signal 𝑣"#(𝑡), defined as [27]: 

𝑣"#(𝑡) = 𝑣"(𝑡) + 𝑖
𝜋 𝑃. 𝑉.<

𝑣"(𝜏)
𝑡 − 𝜏 𝑑𝜏

$%

&%

 (4) 

where 𝑃. 𝑉. is the Cauchy principal value of the integral. The instantaneous phase angle of the 

velocity signals 𝜙"(𝑡) was calculated by taking the four-quadrant inverse tangent of the imag-

inary, ℑ, and real, ℜ, parts of the analytical signal: 

𝜙"(𝑡) = tan&' ℑ[𝑣"
#(𝑡)]

ℜ[𝑣"#(𝑡)] (5) 

The phase angle difference of the considered pair of signals 𝜙!,)(𝑡) was calculated by sub-

tracting test subject's phase angle time series (denoted by subscript 𝑠) from the one of the 

pacer (denoted by subscript 𝑝). 

𝜙!,)(𝑡) = 𝜙!(𝑡) − 𝜙)(𝑡) (6) 

The synchronisation strength between test subject's and pacer's gait cycles was determined 

based on the Shannon entropy 𝐸!,) of the phase difference distribution, defined as [28]: 
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𝐸!,) = −J𝑃!,)* ln 𝑃!,)*
+

*,'

 (7) 

where 𝑃!,)*  is the probability of the phase difference 𝜙!,)(𝑡) falling into a 𝑘-. bin of 𝜋 8⁄  in 

size, and 𝑁 is the total number of bins. In order to be able to compare the values of the syn-

chronisation strength across different walks, the synchronisation strength index 𝜌!,) was then 

calculated by normalising by the maximum achievable Shannon entropy in the case of the 

perfect frequency synchrony: 

𝜌!,) = ln𝑁 − 𝐸!,)
ln𝑁 (8) 

The index takes values ranging from 0 to 1, with 0 corresponding to a complete lack of gait 

synchronisation (i.e. a uniform distribution of phase difference) and 1 representing a perfect 

gait synchronisation (i.e. a Dirac-like distribution of phase difference). 

4 RESULTS AND DISCUSSION 

4.1 Stride frequency 

In order to assess the influence of the experimental environment on the pacing rate, stride fre-

quency of both pacers and the test subject was calculated using fast Fourier transform for each 

of the walks. Subsequently, the difference between pacers’ and test subject’s stride frequen-

cies was quantified. Under US experimental conditions, the mean (± standard deviation) dif-

ference was equal to f!̅&)/0.23 = 0.060 ± 0.011 Hz and to f!̅&)4/.23 = 0.037 ± 0.008 Hz during 

walks in the RL and VR environments, respectively. Similarly, the same comparison made for 

walks under IS experimental conditions showed an average difference of f!̅&)/0.53 = 0.004 ±
0.005 Hz and f!̅&)4/.53 = 0.003 ± 0.002 Hz, respectively. Moreover, the overall increase of test 

subject’s stride frequency in the virtual environment was equal to 2.81% and 0.13%, under 

US and IS experimental conditions, respectively. Those results show a high level of affinity 

between the two tested environments and indicate that test subject’s stride frequency re-

mained unaltered in the virtual environment, compared to the real equivalent. 

4.2 Gait variability  

To evaluate the compatibility of the walking stimulus between the real and virtual environ-

ments, the gait cycle variability of both pacers was quantified and assessed through the coeffi-

cient of variation (CoV) of the stride frequency.  

The mean gait variability attained by the real pacer was CoVXXXXX
!
/0 = 1.09 ± 0.09%, with the 

maximum recorded value of CoV!/0 = 1.26%. The virtual pacer achieved the maximum gait 

variability of CoV!4/ = 0.56% with the mean of CoVXXXXX
!
4/ = 0.52 ± 0.03%. Even though the 

average gait variability of the real pacer was double the value achieved by the virtual counter-

part, the real pacer's variability was deemed acceptable to provide consistent visual and audi-

tory cues to the test subject. A certain level of discrepancy between the two pacers' gait 

variabilities was expected due to the inherent inability of the real human to replicate their 

stepping behaviour perfectly, and the finite number of gait cycles available to drive the virtual 

pacer. 
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Under the US experimental conditions, the mean gait variability of the test subject was 

CoVXXXXX
)
/0.23 = 3.63 ± 1.44% and CoVXXXXX

)
4/.23 = 3.32 ± 2.00% during walks in the real and vir-

tual environments, respectively, with the corresponding maximum values CoV)/0.23 = 5.43% 

and CoV)/0.23 = 5.75%.  

The walks performed under IS experimental conditions were characterised by test subject's 

lower gait variability. The maximum gait variability attained during walks performed in the 

real and virtual environment, respectively, was CoV)/0.53 = 4.24% and CoV)4/.53 = 3.10%, 

with the mean values of CoVXXXXX
)
/0.53 = 3.01 ± 0.95% and CoVXXXXX

)
4/.53 = 2.31 ± 0.58% respec-

tively.  

The instruction to synchronise steps with the pacer resulted in a decrease in the gait cycle 

variability in both environments. A more considerable increase in the consistency of the gait 

cycle was observed during the VR walks, which was pronounced under the IS experimental 

conditions. This can be attributed to the more isolated conditions offered by the virtual envi-

ronment. Although the virtual environment was constructed to mimic the sports hall's interior 

where the tests took place, it secluded the test subject from some of the peripheral stimuli pre-

sent in the real environment. As a consequence, the test subject's cognitive load was relieved, 

which might have resulted in more cognitive resources being spent on the execution of gait 

control. In addition, several studies have reported that the virtual environment alters the dis-

tance perception while walking [29–33], resulting in shorter strides [34] and more careful feet 

placement.  

4.3 Synchronisation strength  

Synchronisation strength index values achieved during walks under US experimental condi-

tions were comparably low, with the mean synchronisation strength index of ρX/0.23 =
0.005 ± 0.004	and ρX4/.23 = 0.015 ± 0.014 during walks performed in the real and virtual 

environments, respectively, with the corresponding highest index values of ρ/0.23 =
0.012	and ρ4/.23 = 0.037. 

The synchronisation strength index values recorded under US experimental conditions 

were below the proposed synchronisation threshold of ρ = 0.2 [35]. These results are con-

sistent with previous findings for a pair of walkers [26,36] and a group of pedestrians walking 

on a rigid ground [22] and a bridge [16], and reflect the transient nature of the unprompted 

gait adaptation mechanism. 

The synchronisation strength index values achieved in IS experimental conditions are pre-

sented in Figure 3 (represented by the vector magnitude) and are accompanied by the mean 

circular direction (represented by the corresponding vector angle) to indicate the directionality 

of the synchronisation phenomenon. The mean circular direction 𝑟̅ was calculated by trans-

forming all phase difference values into a two-dimensional vector 𝑟̅ = (cos 𝛼 , sin 𝛽) and av-

eraging over the number of data points [37]. According to the adopted sign convention, 

positive values represent test subject’s leading the pacer, and the negative values indicate the 

test subject lagging the pacer. 

1785



Artur A. Soczawa-Stronczyk, Mateusz Bocian 

Figure 3: The synchronisation strength index values (magnitude) together with the corresponding mean circular 
direction (angle) recorded during walks in (a) the real and (b) virtual environments under IS experimental condi-

tions.  

The instruction given to the test subject to synchronise his gait cycle with the pacer led to a 

similar increase in the synchronisation strength values in both environments. The mean syn-

chronisation strength index of ρX/0.53 = 0.605 ± 0.074 and ρX4/.53 = 0.650 ± 0.134 was at-

tained during walks in the real and virtual environment, respectively. This was the result of 

the test subject exhibiting increased control over the stepping behaviour in comparison to US 

walks. 

The mean circular direction of the walks performed in the real environment took near-zero 

values with the front-to-back walks recording slightly negative values, and the side-by-side 

walks slightly positive values. Negative values of the directionality during front-to-back 

walks were the result of the test subject reaction to the pacer’s action. On the other hand, dur-

ing side-by-side walks, the pacer was positioned within test subject’s horizontal far peripheral 

vision [38], which might have prompted the emergence of test subject’s anticipatory stepping 

behaviour.  

The aforementioned mechanism responsible for the anticipatory behaviour was amplified 

during the side-by-side walks performed in the virtual environment. This is because of the 

head-mounted display limiting test subject’s horizontal field of view by circa. 110o [39,40], 

and thus effectively eradicating far peripheral vision. The test subject attempted to compen-

sate for this by falling slightly behind the pacer so that the pacer was within his field of view. 

The virtual reality gave rise to an additional mechanism prompting the anticipatory behav-

iour, as the gait anticipation was also present during the front-to-back walks, where the pacer 

was no longer positioned in the test subject's far horizontal peripheral but rather in the centre 

of his gaze. In the front-to-back collocation, the rear walker would attempt to arrive at the 

double stance phase of gait faster than the person positioned in front in order to allow for a 

more natural collision avoidance corrections [41]. 

In the case of side-by-side and front-to-back collocations, the repetitiveness of virtual pac-

er's gait cycle might have laid grounds for greater predictability of its gait cycle, especially 

given the more isolated conditions offered by the virtual environment. 

5 CONCLUSIONS 

This paper presents the development and validation of a novel virtual reality platform for in-

vestigating pedestrian-pedestrian interaction and crowd dynamics. The platform utilises the 

most recent advancements in three-dimensional modelling, motion capturing and virtual real-

ity technology. It comprises of a highly detailed representation of the real environment and an 

AI-driven virtual pedestrian capable of exhibiting complex social interactions found in real 
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crowds. The validation process involved a 30 years old male test subject covering the distance 

in excess of 4 km in the real and virtual environments, walking next to or behind a pacer, that 

being either a real person or an animated virtual agent. Sixteen walks were recorded in total, 

including eight without and eight with the instruction to synchronise steps.  

No disimilarities were found between test subject’s stride frequencies attained in the RL 

and VR environments, as the stride frequency values increased by a total of 1.42% in the VR. 

This subsequently resulted in the relationship between test subject’s and pacers’ stride fre-

quencies being compatible across the two tested environments.  

The assessment of the difference between test subject’s and pacers’ stride frequencies 

yielded compatible results in both, the real and virtual environments. Furthermore, no signifi-

cant differences in gait parameters of the tested subject were found between the two tested en-

vironments. 

The analysis of pacers’ gait variability showed that the average difference between real and 

virtual pacers’ gait variability is equal to 0.57%, which ensures the compatibility of the visual 

and auditory cues provided by the walking stimulus across the two environments. The test 

subject’s gait variability was lower in the virtual environment by 8.5% under US experimental 

conditions, and by 23.3% under IS experimental conditions. The more consistent stepping be-

haviour was likely the result of a smaller number of peripheral stimuli offered by the virtual 

environment, which subsequently allowed for a greater focus on pacer’s motion. 

Under US experimental conditions, the synchronisation strength index achieved in the vir-

tual reality platform was compatible with the real environment, yielding values not exceeding 

0.04. This is consistent with previous results obtained for a pair of walkers [26,36] and during 

walking in a group [16,22]. 

The instruction given to the test subject to synchronise his gait with that of the pacer re-

sulted in an increase of the synchronisation strength index in both environments beyond 0.2. 

The effect of the instruction was stronger in the virtual environment, where the synchronisa-

tion strength index was higher by 7.4%. The directionality of gait synchronisation revealed 

that in the real environment, the test subject was reacting to pacer’s stepping behaviour during 

walks in the front-to-back arrangement and anticipating pacer’s footsteps during side-by-side 

walks. The anticipatory behaviour was further amplified in the virtual environment and also 

emerged during front-to-back walks. 

Overall, the preliminary results presented herein indicate that the developed experimental 

platform has the potential to become a viable solution for investigating crowd dynamics, 

within and beyond the context of vibration serviceability. 
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