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A B S T R A C T   

Artificial intelligence (AI) has a multitude of applications in cancer research and oncology. However, the training 
of AI systems is impeded by the limited availability of large datasets due to data protection requirements and 
other regulatory obstacles. Federated and swarm learning represent possible solutions to this problem by 
collaboratively training AI models while avoiding data transfer. However, in these decentralized methods, 
weight updates are still transferred to the aggregation server for merging the models. This leaves the possibility 
for a breach of data privacy, for example by model inversion or membership inference attacks by untrusted 
servers. Somewhat-homomorphically-encrypted federated learning (SHEFL) is a solution to this problem because 
only encrypted weights are transferred, and model updates are performed in the encrypted space. Here, we 
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demonstrate the first successful implementation of SHEFL in a range of clinically relevant tasks in cancer image 
analysis on multicentric datasets in radiology and histopathology. We show that SHEFL enables the training of AI 
models which outperform locally trained models and perform on par with models which are centrally trained. In 
the future, SHEFL can enable multiple institutions to co-train AI models without forsaking data governance and 
without ever transmitting any decryptable data to untrusted servers.   

One Sentence Summary: 

Federated learning with somewhat homomorphic encryption en
ables multiple parties to securely co-train artificial intelligence 
models in pathology and radiology, reaching state-of-the-art per
formance with privacy guarantees, while requiring negligible 
extra computational resources. 

Data availability 

The data that support the findings of this study are in part publicly 
available, in part proprietary datasets provided under collabora
tion agreements. Data from the BraTS collective is publicly 
available under https://www.med.upenn.edu/cbica/brats 
2020/data.html. Data (including histological images) from the 
TCGA database are available at https://portal.gdc.cancer.gov/. 
All molecular data for patients in the TCGA cohorts are available 
at https://cbioportal.org. Data access for the Northern Ireland 
Biobank can be requested at http://www.nibiobank. 
org/for-researchers. All other data can be requested from the 
respective study groups who independently manage data access 
for their study cohorts.   

1. Introduction 

Artificial intelligence (AI) and machine learning techniques are 
transforming cancer imaging and cancer research and will have a pro
found impact on the practice of medicine(Boehm et al., 2022; Echle 
et al., 2021; Elemento et al., 2021; Kleppe et al., 2021). They can 
automate manual tasks in medical image analysis and can be used to 
extract hidden information from routinely available clinical image data, 
beyond what is visible to the human eye(Kather and Calderaro, 2020; Lu 
et al., 2021). AI models have been used for the detection and diagnosis of 
cancer, subtype classification, and optimization of cancer treatments. In 
particular, deep neural networks have been trained to analyze radiology 
images and digitized pathology slides for numerous different cancer 
types. For example, AI models can now detect mammographic lesions 
with expert-level performance(Lotter et al., 2021). Similarly, AI models 
predict molecular biomarkers for treatment selection directly from 
routine pathology slides of solid tumors(Binder et al., 2021; Coudray 
et al., 2018; Fu et al., 2020; Kather et al., 2020, 2019; Loeffler et al., 
2022). 

However, the training of AI models is infamously data hungry and 
requires large amounts of annotated training data. While this data may 
already exist, in most cases it is scattered among multiple centers. Col
lecting this data at a central site is hindered by obstacles which are often 
insurmountable in practice, most notably issues with data privacy and 
data governance. The data governance problem has been addressed by 
collaborative learning protocols such as federated learning (FL)(Lu 
et al., 2022; McMahan et al., 2017) in which an AI model is trained on 
separate sites and in which not data, but only the learned model weights 
are shared. This facilitates collaboration between multiple parties, but 
still poses significant risks for breach of patient privacy. The weight 
updates communicated to the central FL server contain information 
about the data that can be extracted to reconstruct sensitive patient 
information(Kaissis et al., 2021). This can be exploited through privacy 
attacks such as model inversion(Kaissis et al., 2020; Usynin et al., 2021; 

Wang et al., 2019), in which a malicious server eavesdropper captures 
the weight updates and attempts to recover the private dataset used to 
train the model or reveal other private attributes. Thus, secure multi 
party computation (SMPC)(Canetti et al., 2002) methods are needed by 
the medical community. 

1.1. Prior work on privacy-preserving federated learning 

One measure to protect against privacy breaches is differential pri
vacy (DP) in which deliberate noise is added to the training updates by 
each site(Dwork and Roth, 2013; Kaissis et al., 2020; Truex et al., 2019). 
However, while this paradigm protects private information, it comes at a 
utility tradeoff and can lead to less performant AI models as demon
strated recently(Lu et al., 2022; Tayebi Arasteh et al., 2023). Another 
privacy-preserving technique which could be used for SMPC is homo
morphic encryption (HE). HE can protect against a malicious server 
eavesdropper while maintaining AI model performance by encrypting 
the weight updates before sending them to the central server. One of the 
most common methods to implement HE in machine learning is 
so-called fully homomorphic encryption (FHE)(Gentry, 2009), where all 
the operations are done in an encrypted space. A successful imple
mentation of FHE was first shown by Cheon et al.(Cheon et al., 2017), i. 
e., the CKKS algorithm (named after the authors’ names: Cheon, Kim, 
Kim, and Song) which supports computation for almost all algebraic 
operations. Further works(Froelicher et al., 2021; J. X. Ma et al., 2022; 
Sav et al., 2021; Stripelis et al., 2021; Zhang et al., 2020) built on top of 
CKKS by introducing other modules such as bootstrapping or new 
batching mechanisms to improve the performance or to save more 
computation time. Although guaranteeing up to a high degree of pri
vacy, a major downside of the CKKS-based algorithms is the high 
compute needed to execute(Taiello et al., 2022) which leads to very high 
demand of computational resource for the SMPC training process, in 
particular for high-dimensional data. On the other hand, none of the 
above works employed real-world large medical datasets to support 
their methods and their applicability in terms of utility and computa
tional overhead in the medical image analysis domain is unclear. 
Somewhat homomorphic encryption (SHE)(Damgård et al., 2012) 
methods, could save computational resources while still providing pri
vacy guarantees for certain parts of the process. One of the most suc
cessful SHE protocols is the SPDZ algorithm (named after the authors’ 
names: Damgård, Pastro, Smart, and Zakarias)(Damgård et al., 2012), 
and extensions thereof(Baum et al., 2020; Damgård et al., 2013; Keller, 
2020), which is based on additive secret sharing and can provide 
low-latency SMPC because of its very fast online phase. Keller et al. 
(Keller et al., 2018) showed that computational time could be drastically 
reduced while still preserving privacy by ignoring the zero-knowledge 
proof of plaintext knowledge(Bendlin et al., 2011). 

We propose to use an SPDZ-based algorithm, so-called somewhat- 
homorphically-encrypted federated learning (SHEFL). In this setup, HE 
is merely employed after each local training round of participating sites. 
The central server performs the weight aggregation on the encrypted 
values and the encrypted updated weights are sent back to the clients for 
decryption and incorporation into their models. Importantly, since the 
central server does not have access to the decryption key, it cannot infer 
any information about which calculations have been done at individual 
peer locations and thus cannot extract sensitive private information. In 
other words, all handling of the model parameters happens in the 
encrypted space, making homomorphic encryption an optimal tool for 
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low-trust environments and handling of personal health data. 

1.2. System and threat models 

In this study, we examined how SHEFL can be leveraged for training 
of competitive AI models for cancer diagnosis and detection of cancer 
biomarkers in radiology and pathology images. To this end, we assumed 
the following threat model: A mutually trusting confederation of data 
owners wishes to collaboratively train a model on their joint data, but 
neither wants to relinquish data governance. For conducting the 
training, the confederation makes use of a untrusted aggregation server, 
which we assume to honestly participate in the protocol (i.e., faithfully 
conduct the aggregation procedure), but attempt to extract all available 
information from the weight updates sent to it by the other participants 
(“trusted‑but-curious” threat model). We evaluated the training of AI 
models in three retrospective multicentric settings: 1) AI models are 
trained with local data only 2) AI models are trained with conventional 
federated learning whereby no additional measure of protection against 
privacy-centred attacks on the updates is undertaken and 3) AI models 
are trained with SHEFL in a decentralized, secure and privacy- 
preserving manner, whereby the individual participants encrypt their 
weight update before transmitting it to the server. We hypothesized that 
the collective and secure training of AI models reaches better accuracy 
than training of local models and is associated with minimal risk of 
privacy leakage as compared to conventional FL while keeping the cost 
of additional training time low due to employing HE according to the 
SPDZ algorithm, which is only applied immediately before weight ag
gregation. Furthermore, we hypothesized that dropping the zero- 
knowledge proof requirement(Keller et al., 2018) of the SPDZ algo
rithm could reduce the quadratic complexity to linear, which could 
substantially lower the computational time. 

2. Results 

2.1. SHEFL guarantees data privacy compared to conventional federated 
learning in the untrusted central server setting 

When multiple institutions collaborate in a conventional federated 
learning scheme, weight updates are calculated locally and are sent to a 
central server to be aggregated. When unencrypted weight updates are 
transmitted, we demonstrate that the untrusted central server can 
reconstruct the training images from the weight updates in a model 
inversion attack. In this setting we train a neural network for the 
detection of malignant lesions on brain MRI examinations from the brain 
tumor segmentation (BraTS) dataset(Bakas et al., 2018, 2017; Menze 
et al., 2015). We employ a realistic setting in which data is contributed 
by five different institutions and in which each institution performs 
separate weight updates only on their data. We then perform a gradient 
inversion attack following the approach by Zhao et al.(Zhao et al., 
2020). We demonstrate that the original training images can be recon
structed after only 120 iterations - notably, before training of the un
derlying neural network objective has converged, see Fig. 1. This poses a 
serious threat and renders the whole concept of conventional federated 
learning vulnerable to privacy-focused attacks. To showcase that ho
momorphic encryption can be used to counter these attacks and to 
salvage patient privacy, we repeat the training procedure, but employ 
homomorphic encryption in which the central server only has access to 
the encrypted weight updates and the key is kept private by the peers. 
Following the same approach - no identifiable information can be 
extracted from the weight updates, even after eavesdropping on the 
weight updates for 40,000 iterations. 

Fig. 1. Schematic of FL and SHEFL and associated Information extraction attacks. (A) In FL, each site trains on their own data and weight updates are transmitted to 
the central server for aggregation. (B) In SHEFL, the weight updates are encrypted and the server only has access to the encrypted values. While FL allows the server 
to extract patient sensitive information by reconstructing the images from the weights through gradient inversion attacks and eavesdropping on the weight updates 
(C), this information remains protected in SHEFL and images cannot be reconstructed (D). Experiments were performed on 2D slices including native T1-weighted 
sequences in the top row, post-contrast T1-weighted sequences in the second row, T2-weighted sequences in the third row and fluid attenuated inversion recovery 
sequences in the bottom row. 
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2.2. Secure training does not affect performance of oncological AI models 

We trained AI models for tasks in oncology spanning both radio
logical and histopathological use-cases, see Fig. 2. Each model was 
trained in three settings: a) AI models are trained with local data only b) 
AI models are trained with conventional federated learning in a 
decentralized manner c) AI models are trained with SHEFL in a decen
tralized, secure and privacy-preserving manner. While approach a) is 
immune to privacy leaks, it results in training on only a limited subset of 
the possible data pool. Approach b) makes full use of the data but is 
prone to privacy leaks through the aforementioned attack by the 
untrusted aggregator. Only approach c) combines both training on full 
data and guarantees patient privacy. Moreover, as the HE scheme uti
lized in our study is endowed with a correctness guarantee (i.e., the 
values of the decrypted updates are guaranteed to be identical up to 
numerical precision to their plain-text counterparts), this setting does 
not suffer from an accuracy penalty compared to non-private training. 
We test the performance of each paradigm for AI models for the seg
mentation of glioblastoma on magnetic resonance images (MRIs) and for 
the detection of microsatellite instability in histopathological whole 
slide images (WSIs) of colorectal cancer patients. 

2.2.1. Segmentation of glioblastoma on MRI 
The BraTS training dataset comprises 369 MRI examinations of 369 

patients which have been acquired at seventeen different clinical cen
ters. We partitioned the data along the information where the images 
had been acquired into five groups and trained a 3D U-Net(Çiçek et al., 
2016; Ronneberger et al., 2015) architecture to segment the tumor 
volume. All models were tested on an external test set from a separate 
institution provided by the BraTS organizers (n = 125) and employed 
the dice similarity score as a measure of performance. All five locally 
trained AI models performed inferior in terms of the dice score both to 
the models trained with FL and with SHEFL. Notably, no performance 
drop was seen in the model trained with SHEFL as compared to the 
model trained with conventional FL, cf. Table 1. 

2.2.2. Prediction of genetic biomarkers in colorectal cancer patients from 
pathology images 

In an analogous setting to the radiological use-case, we tested 
whether SHEFL performs equal to conventional FL and superior to 
locally trained models in the benchmarking task of predicting a molec
ular biomarker in colorectal cancer from pathology images: microsat
ellite instability (MSI)/mismatch repair deficiency (dMMR), which 
qualifies metastatic patients to receive cancer immunotherapy. 

Fig. 2. Schematic of the deep learning workflow. (A) Histology images are first tessellated. Features are then extracted by a feature extractor network (fixed) and a 
multi-layer perceptron is trained to predict MSI status. (B) The MRI examination is normalized and rescaled to a standard resolution of 128 × 128 × 128. All four 
three-dimensional sequences are then fed into a 3D U-Net architecture that is trained to predict tumor segmentation outlines. 

D. Truhn et al.                                                                                                                                                                                                                                   



Medical Image Analysis 92 (2024) 103059

5

We performed the evaluation on independent test sets never seen 
during training: the clinical trial cohort QUASAR (n = 1774 patients 
from the United Kingdom) and the population-based cohort YCR BCIP 
(Yorkshire Cancer Research Bowel Cancer Improvement Programme, n 
= 889 patients). We trained three models on the Epi700 data (United 
Kingdom, n = 607), the DACHS data (Germany, n = 2039) and the TCGA 
data (USA, n = 426) respectively. Subsequently, we trained one model 
each in the federated learning setup including all three datasets without 
and with homomorphic encryption. Training with SHEFL was superior 
to training just with local data and non-inferior to training with FL both 
for testing on the YCR cohort and for testing on the QUASAR cohort. 
Both FL and SHEFL performed on the same level with no detectable 
difference, cf. Table 2. 

2.3. Secure training is time-efficient 

A notable drawback of homomorphic encryption is its computational 
overhead. In our study, we eschewed this drawback by encrypting not 
the entire training process, but only the privacy-critical weight aggre
gation step, which is performed by a (potentially untrusted third party), 
thus enabling substantial computational savings. To determine the effect 
of our scheme on training time compared to FL without encryption, we 
conducted the following experiments on a typical hardware setup used 
in machine learning. As a side note, de- and encryption as well as weight 
aggregation is usually conducted on the central processing unit (CPU), 
while backpropagation during training of the networks depends on the 
graphics processing unit (GPU). 

We found that the time required for encryption was almost negligible 
compared to the time required to perform the backpropagation steps and 
the application of weight updates: for the radiological use-case 
described above, less than 1 % of computational time was spent on 
decryption, encryption and homomorphic aggregation of the weights 
(Fig. 3d). For the histopathological use-case, less than 5 % of time was 
used for decryption and encryption (which happens at edge) and ho
momorphic aggregation of the weights (which happens at the central 
server, Fig. 3b). This difference is due to the different network archi
tectures and different number of parameters: the histopathological use- 
case employs a fixed backbone feature extractor(Saldanha et al., 2022) 
and thus has fewer parameters to optimize. Encryption and decryption 
scales approximately linear with the number of weights to be updated, 
while neural network training complexity scales more than linearly in 
our setup. Thus, more complex networks, such as the one used to 

segment brain tumors invest more computational resources in the 
backpropagation algorithm relative to the encryption algorithm. This is 
encouraging, since the relationship between training time and aggre
gation time is in favor of more complex networks that are usually 
employed when working with big data. 

3. Discussion 

AI has an indisputable potential in the field of oncology(Bhinder 
et al., 2021) and AI models are currently reaching a stage in which they 
can improve patient care and render medical processes more efficient 
(Killock, 2020; McKinney et al., 2020). 

However, this improvement critically depends on the availability of 
sufficiently large, curated, and representative training data(Willemink 
et al., 2020). Currently, most research groups and industry have limited 
and only local data access. To train useful and generalizable AI models, 
stakeholders need to be able to collaborate on a large scale without 
jeopardizing patient privacy(Bhinder et al., 2021). Only through such 
multi-institutional collaboration can robust AI models be trained that 
adequately capture the entire human population and that make the 
transition from bench to bedside(Bhinder et al., 2021). Federated 
learning was initially proposed as a technical solution for 
privacy-preserving distributed AI(Konečný et al., 2017). FL enables joint 
training of AI models by multiple partners who do not share their data 
with each other and has been demonstrated to facilitate the training of 
AI models on big data(Dayan et al., 2021). Similarly, swarm learning 
(SL) utilizes a network of nodes to jointly train a model on distributed 
data and to aggregate model weights without a central instance(Salda
nha et al., 2022; Warnat-Herresthal et al., 2021). However, FL and SL 
have an important shortcoming: during training, weight updates must 
be shared and information about the underlying data can be extracted 
from these weight updates as shown in our study. Such techniques 
should thus not be considered privacy techniques, but techniques for 
preserving data governance(Ziller et al., 2022). Since medical data is 
highly sensitive and since data privacy laws forbid the use of data in such 
environments, where private data can be extracted, this critically limits 
the applicability of collaborative learning schemes and prevents the 
development of powerful AI models in cancer diagnosis and treatment. 

This shortcoming can be remedied by employing techniques which 
guarantee privacy to data owners. The only technique to guarantee 
privacy in a data release process is differential privacy(Dwork and Roth, 
2013). Hence, when sharing the model with untrusted third parties, such 
a technique would have to be employed to constrain the success of at
tacks against patient privacy. We operate under a slightly different 
threat model. As all participants of the federated learning workflow 
described above are mutually trusting, are not intending to publish the 
model to the outside world and all receive an identical copy of the final 
model, we need only protect against an attack by the (untrusted ag
gregation server). Our homomorphic encryption scheme protects the 
weights during this critical aggregation step: local sites encrypt their 
weight updates before sending them out and keep the decryption key 
private. The entity which receives the weight updates from all sites and 
which performs the weight aggregation in the encrypted space thus has 
no access to the underlying data and no sensitive data can be extracted 
by design. Our technique has two notable benefits: it sidesteps the 
computational overhead of having to train the entire model in the 
encrypted space using HE. In principle, it would also be possible to use 
HE on all levels of the training process - i.e., also during 

Table 1 
Performance of the five radiological AI models that were trained on local data only (sites 1–5) and of the AI model that was trained with federated learning (FL) and 
with additional homomorphic encryption (SHEFL). P-values are given for the comparison to SHEFL.   

Site 1 Site 2 Site 3 Site 4 Site 5 FL SHEFL 

Dice Score (%) 66.15 ± 29.56 
(p < 0.001) 

78.43 ± 21.58 
(p = 0.101) 

76.58 ± 22.89 
(p = 0.021) 

77.63 ± 19.86 
(p = 0.021) 

76.54 ± 22.57 
(p = 0.003) 

81.71 ± 18.89 
(p = 0.091) 

80.32 ± 19.40  

Table 2 
Area under the receiver operating characteristic curve for the histopathological 
AI models that were trained for MSI detection on the Epi700, DACHS and TCGA 
datasets respectively and tested on the independent QUASAR and YCR-BCIP 
cohorts. P-values are given for the comparison to SHEFL.   

Train on 
Epi700 

Train on 
DACHS 

Train on 
TCGA 

FL SHEFL 

Testing on 
QUASAR 

74.66 ±
1.50 
(p =
0.008) 

70.38 ±
1.22 
(p <
0.001) 

70.94 ±
1.68 
(p <
0.001) 

78.52 ±
1.34 
(p =
0.289) 

79.54 ±
1.45 

Testing on 
YCR-BCIP 

77.13 ±
1.74 
(p <
0.001) 

82.46 ±
2.08 
(p =
0.054) 

78.83 ±
1.67 
(p <
0.001) 

85.42 ±
1.63 
(p =
0.270) 

86.77 ±
1.65  
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backpropagation. However, with concurrently available computational 
resources, this has proven to be prohibitively computationally expensive 
and is not yet in reach(Keller et al., 2018). Furthermore, as long as all 
data stays on site - as is the case in our FL setup - there is no need to 
encrypt the backpropagation procedure: potential eavesdroppers do not 
have access to that part of the training procedure as it is done behind 
secure firewalls. By restricting the fully homomorphic encryption to the 
most critical part of FL - the weight aggregation - we show that addi
tional computational overload is almost negligible. Moreover, our 
technique allows us to avoid the privacy-utility trade-offs of employing 

Differential Privacy for training, in which training with Differential 
Privacy can lead to less-performant AI models(Lu et al., 2022). We note 
that the utilization of Differential Privacy would be mandatory in threat 
models different from ours, especially if the final model was designed to 
be shared with untrusted third parties. 

A similar scheme to ours was demonstrated by Kaissis et al. in a 
proof-of-concept study for classifying pneumonia on chest radiographs 
by using secure multi-party computation through additive secret sharing 
(Kaissis et al., 2021; Keller et al., 2018). With our study, we are the first 
to comprehensively assess fully homomorphic encryption in cancer 

Fig. 3. Results of training on local data only vs. training using FL and SHEFL. Training neural networks on single-site datasets results in inferior performance as 
compared to FL and SHEFL. A neural network was trained to detect MSI on data from the Epi700, the DACHS and the TCGA cohorts respectively as well as on all three 
datasets using FL and SHEFL. The resulting networks were then tested on the QUASAR (A) and the YCR-BCIP (B) cohorts demonstrating superior performance of FL 
and SHEFL. Similarly, tumor segmentation in MRI data was trained on data from five different sites as well as on all data using FL and SHEFL. The resulting neural 
networks were then tested on an independent held-out test set and demonstrated improved performance (C). Computational overhead was almost negligible (red: 
overhead for FL, yellow: additional overhead for encryption) as compared to training time needed for backpropagation (blue) (D). . 
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diagnosis on large multi-centric databases spanning both radiology and 
histopathology. 

Our study demonstrates that AI models for oncological image- 
processing can be trained securely on multi-institutional data without 
compromising patient privacy. This will facilitate collaboration between 
researchers and industry alike, ultimately leading to the development of 
advanced and clinically useful AI models. We show that implementing 
the FL scheme together with homomorphic encryption comes with 
minimal additional code complexity and can be performed with our 
publicly available code. 

A technical limitation of our study is that we performed all experi
ments within one institutional network. However, by distributing the 
datasets to different computing entities and keeping them strictly 
separate, we simulated the setting in which multiple institutions - each 
with their own network - perform FL realistically. We assumed a con
stant network communication cost in our experiments. In realistic set
tings, communication overhead can be unpredictable, as it depends on 
more factors than network size (such as concurrent traffic or physical 
distance of the sites). We thus chose to exclude this factor, believing it to 
only represent a minor limitation. We note that homomorphically 
encrypted weights cannot be efficiently reduced in size by compression, 
however this limitation is negligible compared to the requirement to 
encode them as 64-bit data types for transmission over the hypertext 
transfer protocol (HTTP). Moreover, as all parties are mutually trusting 
and receive an identical copy of the fully trained model at the end of 
training, we utilized the same key pair to encrypt the weights on all 
participating nodes, thus avoiding the technical challenge of key 
distribution. 

Further improvements to the FL process are possible: with increasing 
peer numbers who participate in the FL setup, participation of a boun
ded number of malicious participants who try to corrupt the training 
process by delivering adversarial weight updates is possible, whereas we 
regarded all participants as either fully trusted or honest but curious. It 
has been shown that regular FL fails to converge in the presence of faulty 
and malicious clients(Blanchard et al., 2017). Measures to counter these 
attacks are available and can be integrated in federated learning 
schemes should the need arise(X. J. Ma et al., 2022). 

In conclusion, our study provides a blueprint for the secure and 
privacy-preserving multi-institutional training of oncological AI models 
and solves an urgent need, since it is becoming increasingly clear that 
differences in race and gender affect disease risk among individuals and 
that existing datasets at local institutions are insufficient to account for 
these effects. 

4. Methods 

4.1. Ethics statement 

This study was carried out in accordance with the Declaration of 
Helsinki. This study is a retrospective analysis of publicly available 
anonymized MRI examinations and of anonymized histopathological 
tissue samples from multiple cohorts of cancer patients. Collection and 
anonymization of patients in all cohorts took place in each contributing 
center. Approval by the local ethics committee at each contributing 
center was given if applicable (QUASAR: North East – York Research 
Ethics Committee; YCR: Ethical approval was not required, because 
screening was recommended in all patients diagnosed with CRC. Testing 
was considered part of the ‘standard of care’ clinical pathway; Epi700: 
Northern Ireland Biobank (NIB13/0069, NIB13/0087, NIB13/0088 and 
NIB15/0168), DACHS: Ethics committee of the Medical Faculty, Uni
versity of Heidelberg). Approval of the ethics committee at the Uni
versity Hospital of Aachen was given for the retrospective analysis of 
anonymized image data under reference number “Ethikkommission EK 
028/19″. 

4.2. Patient cohorts 

MRI data for the BraTS patient collective contains brain MRI scans of 
341 patients collected from 17 imaging centers and additional 28 pa
tients for whom the imaging centers were not specified by the data 
provider. During federated learning we allocated the patients to five 
data clusters simulating the situation in which a regional hospital’s 
image database contains MRI data of multiple imaging centers. This 
situation is typical in real-world scenarios where patients are referred 
for surgery and bring their image data that had been acquired at an 
external institution before. The allocation of patients is detailed in 
supplemental Table S1. All MRI examinations contained pre- and post- 
contrast T1-weighted sequences, T2-weighted sequences and fluid 
attenuation inversion-recovery sequences (FLAIR). All sequences were 
acquired in axial orientation. All the imaging datasets have been 
segmented manually, by one to four raters, following the same anno
tation protocol, and their annotations were approved by experienced 
neuro-radiologists. 

For the histopathological data we collected digital whole slide im
ages (WSI) of H&E-stained slides of human colorectal cancer (CRC) from 
five patient cohorts, three of which were used as training cohorts and 
two of which were used as test cohorts following the division of data in a 
previous study(Saldanha et al., 2022). The training cohorts are repre
sentative of real-world clinical settings. First, the Northern Ireland 
Epi700 (n = 661) cohort study contained data of patients with stage II 
and III colon cancer. This data was provided by the Northern Ireland 
Biobank(Lewis et al., 2018; Loughrey et al., 2021) (application 
NIB20–0346). Second, the “Darmkrebs: Chancen der Verhütung durch 
Screening” study (DACHS, n = 2448) is a large population-based 
case-control study. This data includes samples of CRC patients at any 
disease stage. This data was collected from over 20 hospitals in Ger
many. Data collection was coordinated by the German Cancer Research 
Center (DKFZ, Heidelberg, Germany)(Brenner et al., 2006; Carr et al., 
2020; Li et al., 2022) and supported by the NCT tissue bank at the Na
tional Center for Tumor Diseases and the Institute of Pathology at the 
University of Heidelberg. Third, “The Cancer Genome Atlas” (TCGA) 
CRC cohort (n = 632) is a large collection of tissue specimens from 
multiple populations across different countries, but largely from the 
United States of America (USA) (“GDC,” n.d.). 

We employed two separate test cohorts: The “Quick and Simple and 
Reliable” (QUASAR) cohort was derived from a clinical trial of adjuvant 
therapy containing 2206 WSI, which aimed to determine survival 
benefit from adjuvant chemotherapy in CRC patients from the United 
Kingdom (UK)(Hutchins et al., 2011; Quasar Collaborative Group et al., 
2007). The second test cohort used data from the Yorkshire Cancer 
Research Bowel Cancer Improvement Programme(Taylor et al., 2019) 
(YCR-BCIP) cohort (n = 889). This was a population-based study 
collected in the Yorkshire Region in the UK. For all cohorts, microsat
ellite instability (MSI) / mismatch repair deficiency (dMMR)(Marks and 
West, 2020) data were acquired. 

The distribution of tumor stages in TCGA, DACHS and YCR-BCIP is 
comparable, see supplemental Table S2. In QUASAR, stage III tumors are 
overrepresented due to the fact that adjuvant therapy is mainly per
formed in intermediate stage tumors. Therefore, following previous 
work(Saldanha et al., 2022), we used YCR-BCIP and QUASAR as test 
cohorts to investigate the robustness of the AI models both on a general 
population and on a clinical trial population. Importantly, neither in the 
MRI data nor in the histopathological data, there was any overlap be
tween training and test cohorts. 

4.3. Deep learning training procedure 

4.3.1. Hardware 
The hardware used in our experiments were Intel CPUs with 18 cores 

and 32 GB RAM and Nvidia RTX 6000 GPUs with 24 GB memory. 
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4.3.2. MRI data 
All of the 3D volumes were cropped around the brain to lower the 

computational costs and standardize the field of view. As intensity dis
tributions vary across magnetic resonance images, intensity normaliza
tion is crucial. Therefore, we clipped the intensity values above the 99 
percentiles of the image, then subtracted the minimum value of the 
result from voxel values and divided the shifted image by the maximum 
value of the image. We performed data augmentation during training by 
applying random cropping of patches of 128 × 128 × 128 from each 
original volume around its center. Additionally, we applied medio- 
lateral and cranio-caudal flipping with a probability of 0.4. Intensity 
was randomly rescaled according to a power-law Inew = g.Iγ (Cirillo 
et al., 2021) with gain g and the exponent γ randomly selected between 
0.8 - 1.2 from a uniform distribution. White Gaussian noise with zero 
mean and a standard deviation of 0.03 was added to each sequence of 
the multi modal MRI data. 

A modified 4-level 3D U-Net(Çiçek et al., 2016; Ronneberger et al., 
2015) was utilized for segmentation of brain tumors. In the contraction 
path, each layer contained two 3 × 3 × 3 convolutions, each followed by 
a rectified linear unit (ReLU)(Agarap, 2019), a batch normalization (BN) 
(Ioffe and Szegedy, 2015) and then a 2 × 2 × 2 max pooling with strides 
of two in each dimension. The output channel number was doubled after 
each level in the contraction path, and it was 48 at the end of level one. 
In the expansion path, each layer consisted of a nearest neighbor 
up-sampling of 2 × 2 × 2 in each dimension, followed by two 3 × 3 × 3 
convolutions each followed by a ReLU and BN. The output channel 
number was halved after each level in the expansion path. In the last 
layer, a 1 × 1 × 1 convolution, which reduced the number of output 
channels to 3, followed by a SoftMax layer, was used for the per-voxel 
final classification. 

The model was optimized using the Adam optimizer(Kingma and Ba, 
2017) with a learning rate of 10− 4. To be consistent in our comparison 
scenarios, all the weight and bias parameters of all the different models 
were initialized using the He initialization scheme(He et al., 2015). As a 
loss function, we chose the Dice loss tailored to the BraTS data needs 
(Henry et al., 2021). To minimize the overhead and make maximum use 
of the graphics processing unit memory, we utilized large input tiles over 
a large batch size and reduced the batch to a single 3D image(Ronne
berger et al., 2015) with 4 channels, each channel being one of the MR 
modalities. Hence, the batch normalization acted like instance normal
ization in our implementation. The network contained a total of 5,670, 
579 trainable parameters. 

4.3.3. Histopathological data 
For prediction of molecular features from image data, we based our 

analysis on a well-established weakly-supervised end-to-end prediction 
pipeline, which was described and evaluated in a recent benchmark 
study(Ghaffari Laleh et al., 2022). As a preprocessing step, the original 
gigapixel WSIs were tessellated into patches of size (512 × 512 × 3)
pixels and were color-normalized with the Macenko method(Macenko 
et al., 2009). Blurry patches and patches with no tissue were removed 
from the data set using canny edge detection(Ghaffari Laleh et al., 
2022). Following that approach, we obtained a normalized edge image 
using the “canny” method in Python’s OpenCV(Culjak et al., 2012) 
package and then removed all tiles with a mean value below a threshold 
of 4. A pre-trained ResNet18 was used to extract a (512 × 1) feature 
vector from 150 randomly selected patches for each patient 9. Before 
training, the number of tiles in each class were equalized by random 
undersampling until all classes had the same number of tiles, as 
described before(Kather et al., 2020, 2019). Feature vectors served as 
input to a fully connected classification network and the patient-wise 
MSI label was used to label every single tile derived from that patient. 
The fully connected classifier network comprised four layers with 
(512 × 256), (256 × 256), (256 × 128) and (128 × 2) connections 
with a ReLU activation function and the network contained a total of 
492,930 trainable parameters. The model was optimized using the 

Adam optimizer(Kingma and Ba, 2017) with a learning rate of 4 × 10− 5 

and the He initialization scheme(He et al., 2015) was employed. 
Cross-entropy was chosen as the loss function and the model was trained 
in batches of size 124 for 100 epochs and utilizing 5-fold 
cross-validation. 

4.4. Somewhat-homomorphically-encrypted federated learning (SHEFL) 
process 

4.4.1. The collaborative learning procedure 
Every participating site performed a complete local training round, 

in a conventional non-privacy-preserving machine learning manner, 
using their own data, where in our case each round equaled an epoch, 
leading to calculation of local gradient updates of the network param
eters. Afterward, the local sites applied a homomorphic encryption setup 
using a public key on their gradient updates according to the SPDZ al
gorithm(Damgård et al., 2012) while ignoring the zero-knowledge proof 
of plaintext knowledge(Bendlin et al., 2011) requirement. The encryp
ted network parameters were aggregated according to the FedAvg 
(McMahan et al., 2017) algorithm by the central server in the encrypted 
space, leading to one set of global network parameters (which are still in 
the encrypted space). A copy of the global encrypted parameters was 
transferred back to the local sites by the central server. Using the public 
key, each site decrypted the global model and started another local 
training round with these new model parameters. This iterative process 
continued until the convergence of the global model. 

4.4.2. Details of the homomorphic encryption method: the SPDZ algorithm 
The algorithm utlizes an additive secret sharing strategy, where a 

message x is encrypted through distributing it as different shares to the 
participants. Assuming trusted‑but-curious aggregation server, it re
quires only one crypto provider for dividing the shares between local 
sites. Particularly, assuming there are n sites, where n ∈ {1, 2, 3, …,

N}, each site gets assigned a random integer number in the range of 
(0, Q) as its secret share xn, except for the site N which gets a share as 
follows: 

xN = (x − x1 − x2 − ... − xN− 1) % Q (1) 

The public key Q is a large prime number generated by the crypto 
provider. Consequently, the secret x could be decrypted according to 
Eq. (2): 

x = (x1 + x2 + ... + xN) % Q (2) 

Although all the sites have access to the public key Q, none of them 
would know about the actual secret x as it is shared additively among 
them. Importantly, since the central server does not have access to Q, it 
cannot infer any information about the secret x. Moreover, the scheme 
has a homomorphic property. Thus, a certain numer of operations could 
be performed in the encrypted space without any information loss such 
as addition and multiplication. This method particularly suits our goals 
as we intended to solely use the HE during the weight aggregation which 
eventually requires only two types of operations namely addition and 
multiplication, i.e., no need for expensive operations such as convolu
tion, pooling, and derivation. 

Of note, this additive secret sharing algorithm assumes all numbers 
to be of integer values, which is in conflict with the neural network 
weights and biases that are usually of floating-point nature. Conse
quently, an important step before the encryption process is encoding the 
secret x into an integer value, namely using the fixed-point arithmetic 
(Catrina and de Hoogh, 2010; Costache et al., 2017). Subsequently, a 
conversion from fixed-point to the original floating-point precision 
happens before the decryption process. Depending on the chosen pre
cision, this conversion could be both a lossy or a lossless process. For 
instance, the fractional value of 2.9874 will be represented by 2987 in 
the case of selecting a precision of 3. In our implementation, we 
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observed that a precision > 13 results in almost lossless computations 
for cancer image analysis when using 32-bit memory for storing the 
image values. 

4.5. Evaluation metrics and statistical analysis 

4.5.1. MRI data 
The dice similarity score was employed as a measure of segmentation 

performance for MRI data. Statistical spread were determined for 125 
points. All the mean values were accompanied by a standard deviation 
values. For determining statistical significance, two-tailed paired t-test 
or Wilcoxon singed-rank test were employed accounting for normality, 
which was tested using Shapiro-Wilk test(Shapiro and Wilk, 1965). A 
P-value ≤ 0.05 was considered significant. 

4.5.2. Histopathological data 
Area under the receiver operating characteristic curve (AUROC) was 

employed as the main classification evaluation metric. Bootstrapping 
was utilized with 1000 redraws for each measure to determine the sta
tistical significance and spread(Konietschke and Pauly, 2014). All the 
mean values were accompanied by a standard deviation. A P-value ≤
0.05 was considered significant. 

4.6. Code availability 

Our source code for secure federated learning using homomorphic 
encryption is publicly available at https://github.com/tayebiarasteh 
/federated_HE. All source codes for training and evaluation of the 
deep neural networks, MR image analysis and preprocessing, 3D data 
augmentation, and gradient inversion attack are available at https: 
//github.com/tayebiarasteh/federated_HE. All source code for the his
tological image analysis is available at https://github.com/Kath 
erLab/HIA and all source code for histological image preprocessing is 
available at https://github.com/KatherLab/preProcessing. All code for 
the experiments was developed in Python v3.8 using the PyTorch v1.4 
framework. The secure federated learning process including homo
morphic encryption was developed using PySyft(Ziller et al., 2021) 
v0.2.9. 
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